JP3976678B2 - Oct応用装置のアクティブ・トラッキング・システムとその作動方法 - Google Patents

Oct応用装置のアクティブ・トラッキング・システムとその作動方法 Download PDF

Info

Publication number
JP3976678B2
JP3976678B2 JP2002538813A JP2002538813A JP3976678B2 JP 3976678 B2 JP3976678 B2 JP 3976678B2 JP 2002538813 A JP2002538813 A JP 2002538813A JP 2002538813 A JP2002538813 A JP 2002538813A JP 3976678 B2 JP3976678 B2 JP 3976678B2
Authority
JP
Japan
Prior art keywords
tracking
oct
radiation
radiation beam
application apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002538813A
Other languages
English (en)
Other versions
JP2004512125A5 (ja
JP2004512125A (ja
Inventor
ウェイ,ジェイ
Original Assignee
カール・ツアイス・スティフツング・トレーディング・アズ・カール・ツアイス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カール・ツアイス・スティフツング・トレーディング・アズ・カール・ツアイス filed Critical カール・ツアイス・スティフツング・トレーディング・アズ・カール・ツアイス
Publication of JP2004512125A publication Critical patent/JP2004512125A/ja
Publication of JP2004512125A5 publication Critical patent/JP2004512125A5/ja
Application granted granted Critical
Publication of JP3976678B2 publication Critical patent/JP3976678B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • A61B3/1225Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes using coherent radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02029Combination with non-interferometric systems, i.e. for measuring the object
    • G01B9/0203With imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02075Reduction or prevention of errors; Testing; Calibration of particular errors
    • G01B9/02076Caused by motion
    • G01B9/02077Caused by motion of the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/65Spatial scanning object beam

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Eye Examination Apparatus (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Description

【0001】
(発明の属する技術分野)
本発明は、眼球などの組織の光コヒーレンス・トモグラフィ検査を行うための方法および装置に関する。特に本発明は、眼球の光コヒーレンス・トモグラフィ検査を行うために、アクティブ・トラッキング・システムを用いて、光コヒーレンス・トモグラフィ(「OCT」)スキャニング・ビームを網膜組織の所望する部位上にロックする方法および装置に関する。本発明は、例えば、網膜組織のイメージング、網膜層および網膜神経繊維層の厚みの測定、視神経乳頭のトポグラフィのマッピングなどで用いられる。
【0002】
(発明の背景)
良く知られているように、光コヒーレンス・トモグラフィ(「OCT」)装置(例えば、米国特許第5,321,501号(「‘501特許」)に開示されている)は、光イメージング装置であって、生物組織のミクロン分解能の断面イメージングが行えるものである(トモグラフィ・イメージングとも言われる)。また良く知られているように、軸方向に沿って(すなわち生物組織内部へ)測定するために、(a)マイケルソン干渉計の1つのアーム(基準アーム)内に配置されている基準ミラーに放射が送られて反射され(基準アームの位置はスキャンされる)、また(b)マイケルソン干渉計の第2のアーム(サンプルアーム)において、放射が生物組織に送られて散乱される。マイケルソン干渉計の2つのアームにおける放射の光路差が、光源から干渉計へ送られる放射の光コヒーレンス長以下である限り、光干渉信号が検出できる。‘501特許で開示されるように、組織の断面イメージを形成するために、連続軸方向スキャンからのデータを結合させる。
【0003】
トモグラフィ画像の作成に必要な時間は、以下のような種々の要因によって制限される。(a)軸方向の測定値を得るために用いられる、基準アーム内の参照ミラーのスキャン速度、(b)連続軸方向スキャンを得るために用いられる、偏向器の横方向スキャン速度、(c)画質に関係するS/N限界、(d)エレクトロニクスおよび何らかの関連するコンピュータの、アナログOCT信号をサンプリングして擬似カラー、またはグレースケール、画像に変換する速度。しかし一般的に、基準ミラーのスキャン速度が上がるとS/N比は下がる。そのため画質に悪影響が出る。他方で、眼球の組織をイメージングするときには、眼球運動が引き起こす問題を避けるために、画像を素早く得なければならない。
【0004】
現在のところ、基準ミラーのスキャン速度が、OCTイメージを取り込む際の制限要因である。このことを理解するためには、米国特許第5,459,570号(「‘570特許」)を参照されたい。この文献では基準ミラーをPZTアクチュエータで動かしている。PZTアクチュエータのスキャン速度は数KHzまで高くできるが、スキャン範囲がミクロン領域に制限される。ミクロン領域では、生体内で人間の眼球を診断するのには実用的ではない。人間の眼球を診断する場合、2〜3mmのスキャン範囲が、臨床で使用するためには必要である。必要な数mmのスキャン範囲を得るためには、リトロ反射鏡を、ガルバノ・メータでスキャンされるアームの一端に取り付ければ良いが、スキャン速度は約数100Hzに制限される(このスキャン方法を現在用いている市販のOCTスキャナ装置は、Zeiss Humphrey Systems(ダブリン、カリフォルニア州)製である)。
【0005】
OCTシステムのスキャニング装置として、2〜4KHzのスキャン速度を出し、かつスキャン範囲が実用的であるものが、以下の論文に開示されている。題名「High−speed phase− and group−delay scanning with a grating−based phase control delay line、(G.J.Tearneyら、Optics Letters、Vol.22、No.23、Dec.1、1997、pp.1811−1813)。この論文では、スキャニング装置は、次の論文に開示された位相ランピング・ディレイ・ライン原理(phase ramping delay line principle)に基づいている。題名「400−Hz mechanical scanning optical delay line」(K.F.Kwongら、Optics Letters、Vol.18、No.7、Apr.1、1993、pp.558−560)。G.J.Tearneyらの論文で開示されたスキャニング装置の欠点は、容易に磨耗することであり、かつ、生体内で人間の眼球を診断する際に安全に使用できる光出力に上限が存在することである。しかしすでに指摘したように、スキャン速度を増加させると、S/N比が減少して画質は劣化する。
【0006】
OCTスキャン・データは、眼球などの組織のトモグラフィ画像を得るために用いることができるが、得られたOCTデータは、画像を得る以外にも多くの用途がある。例えば、OCTデータの用途として、網膜層および網膜神経繊維層の厚みの測定、視神経乳頭のトポグラフィのマッピングなどが挙げられる。しかしこれらの用途では、同じような問題が起こる。すなわち、組織の動きを考慮に入れながら、許容できるS/N比のデータをどのようにして得るかである。上述の点を考慮すると、問題として例えば患者の動きを考慮に入れながら、例えばトモグラフィ・スキャン・イメージを形成するための高品質のOCTデータを得ることが可能な方法および装置に対する要求が存在する。
【0007】
(発明の概要)
本発明の実施態様は、上記で確認された当該技術分野における要求が好都合に満たされ、また光コヒーレンス・トモグラフィ(「OCT」)の応用を行うための方法および装置を提供する。具体的には、本発明の第1の実施態様は、対象物に対してOCTの応用を行うOCT応用装置であって、(a)OCTスキャニング放射ビームを出力するOCTスキャニング装置と、(b)トラッキング放射ビームを発生させて、基準トラッキング部位を含む領域へ投射し、トラッキング放射ビームとOCTスキャニング放射ビームとの光路中に配置されるトラッキング光学システムを備えるアクティブ・トラッキング・システムとを備え、(c)アクティブ・トラッキング・システムが、前記領域から反射されるトラッキング放射を解析して対象物の動きを検出し、トラッキング光学システムに対象物の動きに追従するように指示を出すトラッキング信号を生成するOCT応用装置である。本発明の1つの実施態様においては、OCT応用例には、OCTスキャン・イメージを、対象物として例えば、これに限定しないが、眼球の網膜に対して形成することが含まれる。
【0008】
(発明の詳細な説明)
本発明の一実施形態によれば、部位(例えば人間の眼球)の高分解能断層イメージを、比較的遅い光コヒーレンス・トモグラフィ(「OCT」)スキャンによって得る。例えば、患者の中には、10秒間もの長い間、眼を開けられるものがいる。有利なことに、本発明のこの実施形態によれば、このような低速スキャンを行うことによって形成されるイメージのS/N比は、従来技術の比較的速いスキャン特性を用いて得られるS/N比よりも高い。その理由は、OCTイメージのS/N比は、スキャン速度の平方根で増加するからである。
【0009】
本発明の一実施形態による比較的遅いスキャンを行うために、OCTスキャニング放射ビームを基準トラッキング部位上に固定して、患者の眼球運動のために生じであろう人為的な結果を避ける。本発明の好ましい実施形態においては、OCTスキャン・ビームを基準トラッキング部位上へ固定するために、アクティブ・トラッキング・システムを用いる。アクティブ・トラッキング・システムは、基準トラッキング部位の反射率特性を用いて、トラッキング信号を生成する。有利なことに、このようなアクティブ・トラッキング・システムは、生体内で人間の眼球をトラッキングする速度に必要な速度で、すなわち数KHzという高い速度で動作することができる。
【0010】
本発明の一実施形態をOCT断層イメージを提供することに関して説明するが、当業者であれば、本発明が、OCT断層イメージを形成する実施形態に限定されないことを容易に理解するであろう。特に、OCTデータを得て、イメージ以外におよび/またはイメージとともに用いること、例えば(これらに限らないが)網膜層および網膜神経繊維層の厚みの測定、視神経乳頭のトポグラフィのマッピングなどの実施形態が含まれることは本発明の範囲内である。したがってこれらの応用の何れかを行うための装置を、本明細書ではOCT応用装置と言い、これらの応用の何れかを行うための方法を、本明細書ではOCT応用方法と言う。
【0011】
図1に、本発明の実施形態100の一部と、それに関連する種々の光路を示す図を示す。図1に示すように、実施形態100は、眼底照明(fundus illumination)装置101、ビューイング装置102、アクティブ・トラッキングシステム104、OCT装置のOCTスキャニング・アーム103を備える。OCT装置の残り(図示せず)は、当業者に良く知られた数多くの方法の何れかによって製造され、本発明の理解を容易にするために図示していない。
【0012】
眼底照明装置101の実施形態とビューイング装置102の実施形態とは、米国特許第5,506,634号に記載されている。この特許は本出願の譲受人に譲渡されており、またこの特許は本明細書において参照により取り入れられている。図1に示されるように、眼底照明装置101の光路とビューイング装置102の光路とは、ビーム・スプリッタ111によって結合されており、空中像(aerial image)が、眼球112の網膜上へ接眼レンズ110と眼球112のレンズとによって中継される。
【0013】
図2に、実施形態100の一部を示す図を示す。図2は、(a)トラッキング放射ビーム(アクティブ・トラッキング・システム104から出力される)の光路と、(b)OCTスキャニング放射ビーム(OCTスキャニング・アーム103から出力される)の光路とを示している。図2に示すように、OCTスキャニング・アーム103はOCTスキャニング装置のサンプルアームを備えている。特に、OCTスキャニング放射として、例えばファイバ干渉計210の面端(face end)から出力された放射が、コリメーティング・レンズ・システム211(当業者に良く知られているように、レンズ・システム211は1つまたは複数のレンズを備え得る)を通った後、スキャニング・ミラー対212および213(例えば直角に配置されたされた反射鏡の対)に入射する。スキャニング・ミラー対212および213は、例えば、当業者に良く知られた数多くの方法の何れかによる一対のX−Yガルバノ・メータ(本発明の理解を容易にするために図示せず)を用いて駆動される。当業者に良く知られているように、このようなOCTスキャニング放射は通常、短コヒーレンス長光源(例えば、スーパー・ルミネッセント・ダイオード)から出力される。
【0014】
本発明のこの実施形態によれば、スキャニング・ミラー対212と213との中点220は、トラッキング光学システム(例えば、トラッキング・ミラー対217と218、例えば、直角に配置されたされた反射鏡の対として実施される)の中点222と、1対1倍率リレー・レンズ・システム対214および215(当業者に良く知られているように、レンズ・システム214およびレンズ・システム215はそれぞれ、1つまたは複数のレンズを備え得る)を通して、光学的に共役である。トラッキング・ミラー対217、218は、例えば、当業者に良く知られた数多くの方法の何れかによる一対のX−Yガルバノ・メータ(本発明の理解を容易にするために図示せず)を用いて駆動される。
【0015】
図2にさらに示すように、スキャニング・ミラー対212および213から出力されるOCTスキャニング放射コリメートビームは、レンズ・システム214によって点221にフォーカスされる。図2にさらに示すように、点221は、中間にある空中像面223と、リレー・レンズ・システム対215および219(当業者に良く知られているように、レンズ・システム219は、1つまたは複数のレンズを備え得る)を通して、光学的に共役である。さらに、空中像面223は、眼球112の網膜225と、レンズ・システム110(当業者に良く知られているように、レンズ・システム110は、1つまたは複数のレンズを備え得る)および眼球112の瞳224を通して、光学的に共役である。最後に、トラッキング・ミラー対217、218の中点222は、眼球112の瞳224と、レンズ・システム219およびレンズ・システム110を通して、光学的に共役である。
【0016】
当業者に良く知られているように、スキャニング・ミラー対212および213を用いて、所望のスキャン・パターンを網膜225上に形成することで、OCTイメージが形成される。本発明のこの実施形態によれば、スキャニング・ミラー対217、218は、アクティブ・トラッキング・システム104の一部を構成している。アクティブ・トラッキング・システム104は、トラッキングエレクトロニクス410によって検出される位置誤差信号によって駆動される。検出の仕方については、後で詳述する。通常のOCTスキャン・パターンは、軸スキャン方向に垂直な方向では、線または円である。このような場合、本発明のこの実施形態によれば、スキャニング・ミラー対212および213を起動して形成されるスキャン・パターンは、線または円である。後で詳述するように、スキャニング・ミラー対212および213の動作は、トラッキング信号から独立している。本発明のこの実施形態によれば、眼球の動きがアクティブ・トラッキング・システム104によって検出されると、トラッキング・ミラー対217、218が動いて眼球の動きに直ちに追従する。OCTスキャニング放射もトラッキング・ミラー対217、218を通過するため、好ましくは本発明のこの実施形態において、OCTスキャン・パターンは眼球の動きとともに動く。その結果、OCTスキャン位置は、網膜上の基準トラッキング部位に対して相対的に変化しない。
【0017】
図2に示すように、アクティブ・トラッキング・システム104の実施形態は、放射源312を備える。放射源312は、例えば(これらに限らないが)、レーザまたは発光ダイオード(「LED」)、または他の多くのコヒーレントもしくはインコヒーレントな放射源のうちの何れかである。トラッキング放射ビームは、トラッキングビーム源312から出力された後、コリメーティング・レンズ・システム313によってコリメートされる(当業者に良く知られているように、レンズ・システム313は1つまたは複数のレンズを備え得る)。コリメートされたトラッキング放射ビームは、ビーム・スプリッタ315を通過して、ディザ・メカニズム(dither mechanism)329に入射する。ディザ・メカニズム329は、例えば、直角に配置されたされたガルバノ・メータで動作可能に接続された反射鏡の対を備える(ガルバノ・メータとしてアーマチュアの慣性が小さいものを用いることで、高速トラッキング応答を実現できる)。さらに図2に示すように、ディザ・メカニズム329は、X軸およびY軸のディザリング・ミラー対316、317を備える。ミラー対316、317は、一対の共振型スキャナ(本発明の理解を容易にするために図示せず)によってそれぞれ駆動される。本発明のこの実施形態によれば、ディザリング・ミラー対316、317の中点320は、1対1倍率のリレー・レンズ・システム対318、319(当業者に良く知られているように、レンズ・システム318およびレンズ・システム319はそれぞれ、1つまたは複数のレンズを備え得る)を通して、トラッキング・ミラー対217、218の中点222と光学的に共役である。前述したように、トラッキング・ミラー対217、218の中点222は、眼球112の瞳224と光学的に共役である。したがって、スキャニング・ピボット点220とディザリングピボット点320とは、眼球112の瞳224と光学的に共役である。その結果、米国特許第5,5506,634号に記載されるように、OCTスキャン・ビームには口径食が全くない。
【0018】
本発明のこの実施形態によれば、トラッキング放射は、レンズ・システム318によって点321にフォーカスされる。点321は、網膜225と、レンズ・システム319、219、110、および眼球112を通して、光学的に共役である。当業者であれば容易に分かるように、トラッキング放射は、網膜225に入射すると、網膜225によってリトロレフレクションされる。リトロレフレクションされたトラッキング放射は、ビーム・スプリッタ315へ(最初にトラッキング放射を眼球112へ運んだ同じ光路を通って)送られる。ビーム・スプリッタ315によって、リトロレフレクションされたトラッキング放射は、レンズ・システム314へ送られる(当業者に良く知られているように、レンズ・システム314は1つまたは複数のレンズを備え得る)。レンズ・システム314によって、リトロレフレクションされたトラッキング放射は光検出器311(例えば、限定を意味しないで、フォト・ダイオード)上にフォーカスされる。
【0019】
本発明のこの実施形態によれば、眼球112の運動の検出を、基準トラッキング部位とその周囲または隣接する範囲との間における反射率の変化(トラッキング放射の波長における)を検出することによって行う。基準トラッキング部位は、眼球と関連付けても良いし、リトロレフレクション材料であっても良い。しかし網膜部位の多くは、反射コントラストがバックグランド領域に対して十分に高いので、基準トラッキング部位としての使用に適している。例えば、基準トラッキング部位として網膜内の2本の血管の交点を含むものは、周囲の網膜組織と比べて比較的暗い領域をもたらす。他の例として、基準トラッキング部位として視神経乳頭を含むものは、周囲の網膜組織と比べて比較的明るい円板をもたらす。
【0020】
本発明のこの実施形態によれば、アクティブ・トラッキング・システム104によってトラッキング放射が投射される基準トラッキング部位は、網膜上の基準トラッキング部位とほぼ同じサイズの範囲である。したがって眼球112が動くと、基準トラッキング部位と周囲領域との反射率の違いによって、光検出器311が検出するリトロレフレクション・トラッキング放射強度が変化する。また本発明のこの実施形態によれば、運動の方向の検出が、反射放射強度の変化を検出することでなされる。トラッキング信号が生成されて、トラッキング・ミラー対217、218が駆動され、眼球112の動きが追跡される。
【0021】
本発明の1つの実施形態によれば、眼球112の運動の方向を検出するメカニズムは、米国特許第5,767,941号(「‘941特許」)に開示されるメカニズムに基づいて製造される。‘941特許は、本明細書において参照により取り入れられる。本発明の1つの実施形態によれば、アクティブ・トラッキング・システム104を基準トラッキング部位上にロックするために、小さい周期的な横方向振動またはディザをトラッキング放射ビーム内に生じさせる。トラッキング放射ビームは、基準トラッキング部位と周囲範囲との反射率の変化を検出できるものであれば、どんな波長の放射で形成されていても良い。特に、ビームを形成する放射は、発光ダイオードまたは他の多くのインコヒーレントもしくはコヒーレントな放射源のうちの何れか1つから出力されるものであっても良い。典型的には、基準トラッキング部位は、円形のディザによる2次元のトラッキング放射ビームによってロックされる。
【0022】
本発明の1つの実施形態によれば、アクティブ・トラッキング・システム104はディザリング・メカニズムを備える。このメカニズムは、第1および第2のディザ・ドライバ(図2に示すディザ・メカニズム329)で構成され、トラッキング放射ビームを第1および第2の方向にディザさせる。これは、例えば、第1位相および第2位相をそれぞれ有する振動運動によってなされる(振動運動の第1および第2の位相は互いに直交しているであろう)。この実施形態においては、ディザ・メカニズムによって、円形のディザが基準部位に形成され、これは第1および第2方向の振動運動の振幅が同じで位相差が90°であるならばいつでも形成される。アクティブ・トラッキング・システム104は、さらにトラッキング装置(図2に示すトラッキング・ミラー対217、218)を備えることによって、OCTスキャニング放射ビームの位置(基準トラッキング部位に対する)を制御し、トラッキング放射ビームの位置(基準トラッキング部位に対する)を制御する。トラッキング装置は、第1の方向制御信号(これは例えば、ガルバノ・メータ駆動トラッキング・ミラー217に印加される)を受け取るための第1の入力と、第2の方向制御信号(これは例えば、ガルバノ・メータ駆動トラッキング・ミラー218に印加される)を受け取るための第2の入力とを備える。第1および第2の方向制御信号によって、トラッキング装置は、OCTスキャン・ビームを第1および第2の方向にそれぞれ動かす。
【0023】
アクティブ・トラッキング・システム104はさらに、反射率計(ビーム・スプリッタ315、レンズ・システム314、光検出器311(図2に示す))を備える。反射率計は、リトロレフレクションされたトラッキング放射の光路に配置されており、反射率計の出力信号の位相は、リトロレフレクションされたトラッキング放射の位相に対応する。トラッキング放射ビームが反射率の変化する領域を横切るたびに、対応する変化が反射率計の出力信号強度に発生する。反射率計の出力信号は、ディザ・メカニズムが起こす振動運動に同期して変化する(ただし、位相シフトに対して適切に補正がされている場合である)。
【0024】
さらに、アクティブ・トラッキング・システム104はシグナルプロセッサを備える。これは、反射率計の出力信号の位相と、振動運動を起こした信号の位相とを比較して、第1および第2の方向制御信号を生成するためである。第1および第2の方向制御信号は、トラッキング装置の第1および第2の入力とそれぞれ結合される。第1および第2の方向制御信号によって、トラッキング装置が反応し、OCTスキャニング放射が基準トラッキング部位を追跡する。‘941特許で説明されているように、トラッキング装置のトラッキング速度は、ディザ・メカニズムのディザ・ドライバのディザ周波数と、基準トラッキング部位の空間寸法との積に比例する。さらなる実施形態においては、‘941特許によれば、アクティブ・トラッキング・システム104はさらに、オフセット信号発生器を備える。オフセット信号発生器は、ディザ・メカニズムとトラッキング装置とに動作可能に結合され、OCTスキャニング放射ビームをトラッキング放射ビームに対して所定の距離だけずらす。OCTスキャニング放射ビームの位置を変えるために制御信号がトラッキング装置に入力されるたびに、オフセッティング・デコントロール(offsetting de-control)信号がディザ・メカニズムに入力される。このようなオフセット・デコントロール信号によって、OCTスキャニング放射ビームをあるターゲットから他のターゲットへ移動可能な速度を増加させることができる。同じ大きさで反対符号の電圧を、ディザ・メカニズムとトラッキング装置とに印加することによって、OCTスキャニング放射ビームをトラッキング放射ビームに対して移動させることができ、その速度は最大トラッキング速度よりも速い。
【0025】
本発明のこの実施形態によれば、アクティブ・トラッキング・システム104(図2に示す)は、制御ユニット413を備える(例えば、制限なしに、制御ユニット413はコンピュータ、例えばパーソナル・コンピュータとして実装される)。制御ユニット413からは、当業者に良く知られた多くの方法のいずれかに基づくメッセージが、スキャナ駆動エレクトロニクス412へ送られる。メッセージによって、スキャナ駆動エレクトロニクス412からディザ駆動信号がディザ・メカニズム329へ送られて、一対の共振型スキャナが駆動される(その結果、一対の共振型スキャナは、X軸とY軸のディザリング・ミラー対316、317をそれぞれ駆動する)。これは、振幅が等しいコサイン波形およびサイン波形を用いて、当業者に良く知られた多くの方法の何れかに基づいて行われる。これらのディザ駆動信号によって、トラッキング放射が円運動でディザする。
【0026】
図2に示すように、光検出器311は、リトロレフレクションされたトラッキング放射に応答して光検出器信号を出力する。光検出器信号は、検出エレクトロニクス410に対する入力として印加される。例えば、限定を意味しないで、検出エレクトロニクス410は、一対のロックインアンプ(当業者に良く知られた多くの方法の何れかに基づいて製造される)を備える。‘941特許の教示するところによれば、検出エレクトロニクス410によって、一対の共振型スキャナを駆動する信号と光検出器信号との間の位相変化が測定される。これは、当業者に良く知られた多くの方法の何れかに基づいて、制御器ユニット413および光検出器311からの入力信号を用いて行われる。位相変化は、第1および第2の位相比較信号の形態を取り得る。第1および第2の位相比較信号は、DCオフセット電圧を構成する。DCオフセット電圧は、反射率計の出力信号成分(ディザ駆動信号と位相が揃っている)の振幅に比例する。これらのDCオフセット電圧によって、ベクトル補正または誤差電圧(ディザ周期ごとに平衡状態からの変位に比例する)がもたらされる。また検出エレクトロニクス410は、積分器を備える。積分器は、第1および第2の位相比較信号を入力として受け取る。そしてこれに応答して、積分器は、出力として第1および第2の積分信号を、第1および第2の位相比較信号からそれぞれ生成する。また検出エレクトロニクス410はオフセット信号発生器を備える。オフセット信号発生器は、積分器からの出力を受け取り、これに応答して、第1および第2の方向制御信号を生成する。これらの方向制御信号は、眼球運動によって生じる位相変化を補正するために、入力として、トラッキング・スキャナ駆動エレクトロニクス411へ印加される。これに応答して、トラッキング・スキャナ駆動エレクトロニクス411は、信号を、一対の、例えばX−Yガルバノ・メータへ送る。その結果、X−Yガルバノ・メータはトラッキング・ミラー対217、218を駆動して、眼球112の動きを追跡する。
【0027】
必要なディザ周波数は、種々の要因に依存する。例えば、トラッキング放射ビームを眼球の網膜上に等倍率でイメージさせた場合、2KHzのディザ周波数は、ディザ周期ごとに約50μの変位に対応する。なおこれは、ターゲット速度が10cm/秒の場合(すなわち眼球において300°/秒を超える場合)である。このようなディザ周波数であれば十分に、スポットサイズが約400μのOCTスキャニング放射ビームを追跡することができる。
【0028】
図3に、図2に示すアクティブ・トラッキング・システム104の1つの実施形態を製造する際に用いるディザ・メカニズムの代替的な実施形態の一部の図を示す。図3に示すように、トラッキングビーム源312から出力されるトラッキング放射ビームは、コリメーティング・レンズ・システム313によってコリメートされる。コリメートされたトラッキング放射ビームは、ビーム・スプリッタ315を通過してビーム500として出た後、ディザ・メカニズム500に入射する。図3にさらに示したように、ディザ・メカニズム500はウェッジ・プリズム510(ウェッジ面520を有する)を備える。ウェッジ・プリズム510を、トラッキング放射ビームの光軸の周りに、円運動をするように回転させる。これはモータ(図示せず)によって、当業者に良く知られた多くの方法の何れかに基づいてなされる。ウェッジ・プリズム510が回転する結果、ウェッジ・プリズム510のウェッジ面520を出たトラッキング放射ビームは、円運動でディザされる。ディザされたビームは、ビーム・スプリッタ512へ入射して、(a)ディザされたビームの第1の部分は方向を変えて位置センサ513へ入射し、(b)ディザされたビームの第2の部分はディザされたビーム515として出て行く。本発明のこの実施形態によれば、ウェッジ・プリズム510のウェッジ面520上の点511は、1対1倍率リレー・レンズ・システム対318、319(図2を参照)を通して、トラッキング・ミラー対217、218の中点222(図2に示す)と光学的に共役である。前述したように、トラッキング・ミラー対217、218の中点222は、眼球112の瞳224と光学的に共役である。したがって、スキャニング・ピボット点220とディザリング・ピボット点511とは、眼球112の瞳224と光学的に共役である。
【0029】
本発明のこの実施形態によれば、位置センサ513は、例えば、限定を意味しないで、シリコン位置センサ(当業者に良く知られているタイプで市販のもの)で良い。図3に示すように、トラッキング放射ビーム514の位置は、例えば矢印525で示す経路に沿って回転する。本発明のこの実施形態によれば、ビーム514によって位置センサ513はX−Y信号を生成し、この信号を用いて、リトロレフレクションされたトラッキング放射強度の位相変化を測定して追跡が行われる。これは前述した通りである。アクティブ・トラッキング・システム104の残りの部分の動作は、図2と関連してすでに詳述した実施形態の動作と同じである。図2では、リトロレフレクションされたトラッキング放射ビームは、ビーム・スプリッタ315で方向によって、レンズ・システム314および光検出器311の方へ送られる。
【0030】
当業者ならば、以上の記載は、例示および説明のみを目的として与えたものであることが分かるであろう。したがって、包括的であること、または本発明を開示された厳密な形態に限定することは、意図されていない。例えば、本発明の実施形態を、眼球のOCTスキャン・イメージを得ることに関連して説明したが、本発明はこれによって限定されない。特に、OCTイメージを得るための方法および装置として、どんなタイプの材料、例えば、限定しないが、動物、人間、植物組織などのイメージを得るものも包含することが、本発明の範囲および趣旨に含まれる。
【図面の簡単な説明】
【図1】 本発明の実施形態の一部およびそれに関連する種々の光路を示す図である。
【図2】 アクティブ・トラッキング・システムから出力されるトラッキング放射ビームの光路と、光コヒーレンス・トモグラフィ(「OCT」)装置から出力されるスキャン放射ビームの光路とを示す図1に示す実施形態の一部を示す図である。
【図3】 図2に示すアクティブ・トラッキング・システムの実施形態の製造において用いるディザ・メカニズムの代替的な実施形態の一部を示す図である。

Claims (19)

  1. 対象物に対して光コヒーレンス・トモグラフィ(「OCT」)の応用を行うOCT応用装置であって、
    OCTスキャニング放射ビームを出力するOCTスキャニング装置と、
    トラッキング放射ビームを発生させて、前記対象物の基準トラッキング部位を含む領域へ投射するアクティブ・トラッキング・システムにして、前記OCTスキャニング放射ビームの光路中に配置されて該光路を変化させるトラッキング光学システムを有するアクティブ・トラッキング・システムとを備え、
    このアクティブ・トラッキング・システムは、前記領域から反射されるトラッキング放射を解析して前記対象物の動きを検出するとともに、該検出した対象物の動きに前記OCTスキャニング放射ビームが追従するように前記トラッキング光学システムに指示を出すトラッキング信号を生成するOCT応用装置。
  2. トラッキング光学システムは、直角に配置された反射鏡の対を備える請求項1に記載のOCT応用装置。
  3. アクティブ・トラッキング・システムは、トラッキング放射ビーム源とディザ・メカニズムとを備え、ディザ・メカニズムによって、トラッキング放射ビームが所定のパターンで前記領域の周りを移動する請求項1又は2に記載のOCT応用装置。
  4. ディザ・メカニズムは、直角に配置された反射鏡の対を備え、その反射鏡の対の中点は、1対1倍率のリレー・レンズ・システムを通して、トラッキング光学システムの直角に配置された反射鏡の対と光学的に共役である請求項3に記載のOCT応用装置。
  5. OCTスキャニング装置のOCTスキャニング・メカニズムの中点は、1対1倍率のリレー・レンズ・システムを通して、トラッキング光学システムの直角に配置された反射鏡の対と光学的に共役である請求項4に記載のOCT応用装置。
  6. トラッキング光学システムの直角に配置された反射鏡の対の中点は、1つまたは複数のレンズ・システムを通して、対象物のターゲット領域と光学的に共役である請求項5に記載のOCT応用装置。
  7. アクティブ・トラッキング・システムが、(a)反射されるトラッキング放射に応答して信号を生成する光検出器をさらに備え、(b)基準トラッキング部位とその周囲または隣接する範囲との間の領域における反射率の違いによる反射トラッキング放射の強度変化によって生じる光検出器からの出力信号の変化を解析する請求項3〜6のいずれかに記載のOCT応用装置。
  8. ディザ・メカニズムによって、トラッキング放射ビームが円パターンで移動する請求項3〜7のいずれかに記載のOCT応用装置。
  9. アクティブ・トラッキング・システムが、検出エレクトロニクスをさらに備え、検出エレクトロニクスによって、ディザ・メカニズムを駆動してトラッキング放射ビームを円パターンで移動させる信号と光検出器からの出力信号との間の位相変化を測定する請求項3〜8のいずれかに記載のOCT応用装置。
  10. ディザ・メカニズムが、ウェッジ面を有するウェッジ・プリズムをさらに備え、このウェッジ・プリズムは、該ウェッジ・プリズムのウェッジ面と反対側の面で前記トラッキング放射ビームを受ける請求項3〜9のいずれかに記載のOCT応用装置。
  11. ディザ・メカニズムは、ウェッジ・プリズムをトラッキング放射ビームの光軸の周りに回転させて、ウェッジ面から出るトラッキング放射を所定のパターンでディザする請求項10に記載のOCT応用装置。
  12. ディザ・メカニズムは、ウェッジ面から出るトラッキング放射の第1の部分を位置センサへ送るビーム・スプリッタをさらに備える請求項10又は11に記載のOCT応用装置。
  13. ウェッジ面上の点は、1対1倍率のリレー・レンズ・システムを通して、トラッキング光学システムの直角に配置された反射鏡の対の中点と光学的に共役である請求項12に記載のOCT応用装置。
  14. OCTスキャニング装置のOCTスキャニング・メカニズムの中点は、1対1倍率のリレー・レンズ・システムを通して、トラッキング光学システムの直角に配置された反射鏡の対の中点と光学的に共役である請求項13に記載のOCT応用装置。
  15. 眼底照明装置とビューイング装置を更に含む請求項1〜14のいずれかに記載のOCT応用装置。
  16. 位置センサによってX−Y信号が生成され、アクティブ・トラッキング・システムはこの信号を用いて、反射される放射強度の位相変化を解析する請求項12〜14のいずれかに記載のOCT応用装置。
  17. OCT応用装置のためのアクティブ・トラッキング・システムの作動方法であって、前記アクティブ・トラッキング・システムは制御器ユニット(413)を含み、
    前記制御器ユニットがトラッキング放射ビーム発生手段(312)を作動させて、トラッキング放射ビームを出力するステップと、
    前記制御器ユニットが受信手段(311)を作動させて、対象物から反射されたトラッキング放射ビームを受信するステップと、
    前記制御器ユニットがトラッキング・エレクトロニクス手段(410)を作動させて、前記受信手段(311)により受信した反射トラッキング放射ビームから前記対象物の動きを検出するステップと、
    前記制御器ユニットがトラッキング・スキャナ駆動エレクトロニクス手段(411)を作動させて、前記OCT応用装置のOCTスキャニング放射ビームが前記トラッキング・エレクトロニクス手段(410)が検出した前記対象物の動きに追従するよう、該OCTスキャニング放射ビームの光路を変化させるステップと、
    を含む作動方法。
  18. 前記制御器ユニットがトラッキング放射ビームをディザリングするディザ・メカニズムを作動させて、前記出力されたトラッキング放射ビームを所定のパターンで所定領域の周りを移動させるステップをさらに含む請求項17に記載の方法。
  19. 前記ディザ・メカニズムは、ウェッジ面を有するとともに該ウェッジ面と反対の面で前記トラッキング放射ビームを受けるウェッジ・プリズムを備えており、さらに前記制御器ユニットはこのディザ・メカニズムを作動させて該ウェッジ・プリズムを回転させるステップをさらに含む請求項18に記載の方法。
JP2002538813A 2000-10-31 2001-10-16 Oct応用装置のアクティブ・トラッキング・システムとその作動方法 Expired - Fee Related JP3976678B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/703,044 US6325512B1 (en) 2000-10-31 2000-10-31 Retinal tracking assisted optical coherence tomography
PCT/EP2001/011947 WO2002035996A1 (en) 2000-10-31 2001-10-16 Retinal tracking assisted optical coherence tomography

Publications (3)

Publication Number Publication Date
JP2004512125A JP2004512125A (ja) 2004-04-22
JP2004512125A5 JP2004512125A5 (ja) 2005-01-06
JP3976678B2 true JP3976678B2 (ja) 2007-09-19

Family

ID=24823732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002538813A Expired - Fee Related JP3976678B2 (ja) 2000-10-31 2001-10-16 Oct応用装置のアクティブ・トラッキング・システムとその作動方法

Country Status (6)

Country Link
US (1) US6325512B1 (ja)
EP (1) EP1244381B1 (ja)
JP (1) JP3976678B2 (ja)
AT (1) ATE367762T1 (ja)
DE (1) DE60129531T2 (ja)
WO (1) WO2002035996A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101162A1 (en) 2009-03-06 2010-09-10 Canon Kabushiki Kaisha Optical tomographic imaging apparatus
US8919959B2 (en) 2011-03-10 2014-12-30 Canon Kabushiki Kaisha Photographing apparatus and image processing method

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10132378A1 (de) * 2001-07-06 2003-04-24 Zeiss Carl Meditec Ag Verfahren und Vorrichtung zur Verfolgung von Augenbewegungen
WO2003068051A2 (en) * 2002-02-12 2003-08-21 Visx, Inc. Flexible scanning beam imaging system
US6726325B2 (en) 2002-02-26 2004-04-27 Carl Zeiss Meditec, Inc. Tracking assisted optical coherence tomography
AU2003245458A1 (en) 2002-06-12 2003-12-31 Advanced Research And Technology Institute, Inc. Method and apparatus for improving both lateral and axial resolution in ophthalmoscopy
US7474407B2 (en) * 2003-02-20 2009-01-06 Applied Science Innovations Optical coherence tomography with 3d coherence scanning
DE10313028A1 (de) * 2003-03-24 2004-10-21 Technovision Gmbh Verfahren und Vorrichtung zur Augenausrichtung
US7347548B2 (en) * 2003-05-01 2008-03-25 The Cleveland Clinic Foundation Method and apparatus for measuring a retinal sublayer characteristic
WO2005077256A1 (en) * 2004-02-06 2005-08-25 Optovue, Inc. Optical apparatus and methods for performing eye examinations
EP1713377A1 (en) * 2004-02-10 2006-10-25 Optovue, Inc. High efficiency low coherence interferometry
US7365856B2 (en) * 2005-01-21 2008-04-29 Carl Zeiss Meditec, Inc. Method of motion correction in optical coherence tomography imaging
US7805009B2 (en) * 2005-04-06 2010-09-28 Carl Zeiss Meditec, Inc. Method and apparatus for measuring motion of a subject using a series of partial images from an imaging system
CA2637500A1 (en) * 2006-01-19 2007-07-26 Optovue, Inc. A method of eye examination by optical coherence tomography
JP4822332B2 (ja) * 2006-06-22 2011-11-24 株式会社トプコン 眼科装置
JP4822331B2 (ja) * 2006-06-22 2011-11-24 株式会社トプコン 眼科装置
JP5089940B2 (ja) * 2006-08-29 2012-12-05 株式会社トプコン 眼球運動測定装置、眼球運動測定方法及び眼球運動測定プログラム
US7452077B2 (en) * 2006-08-29 2008-11-18 Carl Zeiss Meditec, Inc. Image adjustment derived from optical imaging measurement data
US7496174B2 (en) 2006-10-16 2009-02-24 Oraya Therapeutics, Inc. Portable orthovoltage radiotherapy
US7620147B2 (en) 2006-12-13 2009-11-17 Oraya Therapeutics, Inc. Orthovoltage radiotherapy
WO2008058386A1 (en) * 2006-11-16 2008-05-22 Rsem, Limited Partnership Apparatus and method for measuring a displacement within an eye in vivo in situ, and method of assesment
WO2008101359A1 (en) 2007-02-23 2008-08-28 Mimo Ag Ophthalmologic apparatus for imaging an eye by optical coherence tomography
US8920406B2 (en) 2008-01-11 2014-12-30 Oraya Therapeutics, Inc. Device and assembly for positioning and stabilizing an eye
US8363783B2 (en) 2007-06-04 2013-01-29 Oraya Therapeutics, Inc. Method and device for ocular alignment and coupling of ocular structures
CN101945685B (zh) * 2007-12-13 2014-05-21 Oraya治疗公司 正电压眼放疗以及治疗计划的方法和装置
US7792249B2 (en) 2007-12-23 2010-09-07 Oraya Therapeutics, Inc. Methods and devices for detecting, controlling, and predicting radiation delivery
US7801271B2 (en) * 2007-12-23 2010-09-21 Oraya Therapeutics, Inc. Methods and devices for orthovoltage ocular radiotherapy and treatment planning
DE102008028312A1 (de) * 2008-06-13 2009-12-17 Carl Zeiss Meditec Ag SS-OCT-Interferometrie zur Vermessung einer Probe
JP5368765B2 (ja) * 2008-10-21 2013-12-18 キヤノン株式会社 撮影制御装置、撮影装置、撮影制御方法、プログラム、記憶媒体
US8433117B2 (en) * 2008-11-21 2013-04-30 The United States Of America As Represented By The Secretary Of The Army Computer controlled system for laser energy delivery to the retina
DE102009041996A1 (de) 2009-09-18 2011-03-24 Carl Zeiss Meditec Ag Ophthalmologisches Biometrie- oder Bilderzeugungssystem und Verfahren zur Erfassung und Auswertung von Messdaten
JP5297415B2 (ja) 2010-04-30 2013-09-25 キヤノン株式会社 眼科装置及び眼科方法
EP2680741A4 (en) 2011-03-02 2014-08-27 Brien Holden Vision Diagnostics Inc RETINOGRAPH SYSTEM AND METHODOLOGY
JP5901124B2 (ja) 2011-03-10 2016-04-06 キヤノン株式会社 撮像装置およびその制御方法
JP5917004B2 (ja) 2011-03-10 2016-05-11 キヤノン株式会社 撮像装置及び撮像装置の制御方法
US8950863B2 (en) 2011-03-10 2015-02-10 Canon Kabushiki Kaisha Image photographing apparatus and image photographing method
US9033510B2 (en) 2011-03-30 2015-05-19 Carl Zeiss Meditec, Inc. Systems and methods for efficiently obtaining measurements of the human eye using tracking
WO2013004801A1 (en) 2011-07-07 2013-01-10 Carl Zeiss Meditec Ag Improved data acquisition methods for reduced motion artifacts and applications in oct angiography
US9101294B2 (en) 2012-01-19 2015-08-11 Carl Zeiss Meditec, Inc. Systems and methods for enhanced accuracy in OCT imaging of the cornea
JP6226510B2 (ja) * 2012-01-27 2017-11-08 キヤノン株式会社 画像処理システム、処理方法及びプログラム
JP5932369B2 (ja) 2012-01-27 2016-06-08 キヤノン株式会社 画像処理システム、処理方法及びプログラム
US9265458B2 (en) 2012-12-04 2016-02-23 Sync-Think, Inc. Application of smooth pursuit cognitive testing paradigms to clinical drug development
US9380976B2 (en) 2013-03-11 2016-07-05 Sync-Think, Inc. Optical neuroinformatics
WO2015044366A1 (en) 2013-09-30 2015-04-02 Carl Zeiss Meditec Ag High temporal resolution doppler oct imaging of retinal blood flow
CN105011900B (zh) * 2014-04-30 2018-02-02 卡尔蔡司医疗技术公司 用于生成宽视场光学相干体层析图的方法和装置
WO2015171566A1 (en) * 2014-05-06 2015-11-12 Oregon Health & Science University Aqueous cell differentiation in anterior uveitis using optical coherence tomography
JP6259391B2 (ja) * 2014-12-17 2018-01-10 キヤノン株式会社 画像解析装置、画像解析システム、画像解析装置の制御方法およびプログラム
EP3069653A1 (en) * 2015-03-19 2016-09-21 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Optical coherence tomography method, system and computer program product therefor
US9579017B2 (en) 2015-06-15 2017-02-28 Novartis Ag Tracking system for surgical optical coherence tomography
CN110461213A (zh) 2016-12-21 2019-11-15 奥克塞拉有限公司 基于家庭眼科应用的小型移动低成本光学相干断层扫描系统
JP2017221742A (ja) * 2017-08-28 2017-12-21 キヤノン株式会社 画像解析装置、画像解析装置の制御方法及びプログラム
EP3809948A4 (en) 2018-06-20 2022-03-16 Acucela Inc. MINIATURIZED MOBILE, LOW COST OPTICAL COHERENCE TOMOGRAPHY SYSTEM FOR HOME OPHTHALMIC APPLICATIONS
DE102019116280B3 (de) * 2019-06-14 2020-12-17 Etalon Ag Verfahren und Vorrichtung zum Bestimmen einer Länge
US11730363B2 (en) 2019-12-26 2023-08-22 Acucela Inc. Optical coherence tomography patient alignment system for home based ophthalmic applications
US10959613B1 (en) 2020-08-04 2021-03-30 Acucela Inc. Scan pattern and signal processing for optical coherence tomography
CN116390683A (zh) 2020-08-14 2023-07-04 奥克塞拉有限公司 用于光学相干断层扫描a扫描去弯曲的系统和方法
US11393094B2 (en) 2020-09-11 2022-07-19 Acucela Inc. Artificial intelligence for evaluation of optical coherence tomography images
CN116322471A (zh) 2020-09-30 2023-06-23 奥克塞拉有限公司 近视预测、诊断、计划和监测设备
CN117222353A (zh) 2021-03-24 2023-12-12 奥克塞拉有限公司 轴向长度测量监测器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992019930A1 (en) 1991-04-29 1992-11-12 Massachusetts Institute Of Technology Method and apparatus for optical imaging and measurement
US5506634A (en) 1994-07-05 1996-04-09 Carl Zeiss, Inc. Fundus illumination apparatus formed from three, separated radiation path systems
US5644642A (en) * 1995-04-03 1997-07-01 Carl Zeiss, Inc. Gaze tracking using optical coherence tomography
US5767941A (en) 1996-04-23 1998-06-16 Physical Sciences, Inc. Servo tracking system utilizing phase-sensitive detection of reflectance variations
US6601956B1 (en) * 1998-11-13 2003-08-05 Benedikt Jean Method and apparatus for the simultaneous determination of surface topometry and biometry of the eye

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101162A1 (en) 2009-03-06 2010-09-10 Canon Kabushiki Kaisha Optical tomographic imaging apparatus
US8919959B2 (en) 2011-03-10 2014-12-30 Canon Kabushiki Kaisha Photographing apparatus and image processing method

Also Published As

Publication number Publication date
DE60129531T2 (de) 2008-04-17
ATE367762T1 (de) 2007-08-15
WO2002035996A1 (en) 2002-05-10
JP2004512125A (ja) 2004-04-22
DE60129531D1 (de) 2007-09-06
US6325512B1 (en) 2001-12-04
EP1244381A1 (en) 2002-10-02
EP1244381B1 (en) 2007-07-25
WO2002035996B1 (en) 2002-09-19

Similar Documents

Publication Publication Date Title
JP3976678B2 (ja) Oct応用装置のアクティブ・トラッキング・システムとその作動方法
JP4262603B2 (ja) トラッキング支援光コヒーレンストモグラフィー
US5767941A (en) Servo tracking system utilizing phase-sensitive detection of reflectance variations
US8992016B2 (en) Image sensing apparatus using optical coherence tomography and control method therefor
JP6294328B2 (ja) 走査型レーザー・オフサルモスコープにおける改良または走査型レーザー・オフサルモスコープに関する改良
US6788421B2 (en) Arrangements for coherence topographic ray tracing on the eye
US8678588B2 (en) Optical coherence tomographic imaging apparatus
JP5721411B2 (ja) 眼科装置、血流速算出方法およびプログラム
US8472028B2 (en) Optical coherence tomographic apparatus
EP0659383A2 (en) Method and apparatus for optical coherence tomographic fundus imaging
US20130021575A1 (en) Optical tomographic imaging apparatus
JP2011161007A (ja) 光画像撮像装置及びその制御方法
WO2010074098A1 (en) Optical tomographic imaging apparatus and imaging method for optical tomographic image
WO2010063416A1 (en) Method and apparatus for eye movement tracking in spectral optical coherence tomography. (sd-oct)
US6813050B2 (en) Rotary mirror array for fast optical tomography
US20130335706A1 (en) Device for interferometrically measuring the eye length and the anterior eye segment
EP1391718B1 (en) Optical coherence tomography device
US20220330815A1 (en) Measurement device
JP2001255264A (ja) Oct装置
JP2023122379A (ja) 眼科撮影装置、眼科撮影装置の制御方法、及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees