JP3972252B2 - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
JP3972252B2
JP3972252B2 JP2003118367A JP2003118367A JP3972252B2 JP 3972252 B2 JP3972252 B2 JP 3972252B2 JP 2003118367 A JP2003118367 A JP 2003118367A JP 2003118367 A JP2003118367 A JP 2003118367A JP 3972252 B2 JP3972252 B2 JP 3972252B2
Authority
JP
Japan
Prior art keywords
solar cell
inverted
reinforcing plate
terminal
cell module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003118367A
Other languages
Japanese (ja)
Other versions
JP2004327592A (en
Inventor
勇次郎 綿貫
茂 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003118367A priority Critical patent/JP3972252B2/en
Publication of JP2004327592A publication Critical patent/JP2004327592A/en
Application granted granted Critical
Publication of JP3972252B2 publication Critical patent/JP3972252B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建物の屋根等に取り付けて太陽光発電を行う太陽電池モジュールに関し、詳しくはその内部配線構造に係わる。
【0002】
【従来の技術】
太陽電池として、フレシキブルなプラスチックシートを基板として、この基板上にアモルファスシリコン(a-Si)の薄膜半導体層からなる光電変換素子,透明電極,接続電極をパターンニングしたフィルム基板形の薄膜太陽電池が公知である(例えば、特許文献1参照。)。
【0003】
次に、前記フィルム基板形薄膜太陽電池の構造を図9で説明する。図において、1はプラスチック基板、2はアモルファスシリコンの光電変換層、3は透明電極、4は光電変換層2の裏面電極、5はプラスチック基板1の背面に形成した接続電極(薄膜太陽電池の裏面側電極)、6はプラスチック基板1を貫通して透明電極3と接続電極5との間を導通する集電ホール(スルーホール)、7は接続電極5と裏面電極4との間を導通する接続ホールであり、プラスチック基板1の光入射側に形成した透明電極3,光電変換層2,および裏面電極4にはセル分割溝8をレーザースクライブして複数の単位セルに分離し、さらにプラスチック基板1の裏側に形成した接続電極5には前記の単位セルと半ピッチずらして分割溝9をレーザースクライブし、これで複数単位セルを直列接続した薄膜太陽電池10を構成している。
【0004】
上記のフィルム基板形薄膜太陽電池は軽量であり、またロール・ツー・ロール(roll-to-roll) プロセスが適用できて量産性にも優れていることから各種用途への適用が進められており、特に電力用分野では、屋外環境での使用にも十分耐えるように薄膜太陽電池に封止保護層および補強板などの外装を施した太陽電池モジュールが既に実用化されており、その具体例として薄膜太陽電池の受光面および裏面をシート状の保護層で封止し、さらに金属補強板を裏打ちした上で該補強板の裏面側に端子ボックスを設け、この端子ボックスに連通して金属補強板および裏面側保護層に開口した出力リード線引出し用の穴を通して薄膜太陽電池の+極,−極電極と端子ボックスとの間に出力リード線を配線して太陽電池の出力を外部に取り出すようにした太陽電池モジュールが知られている(例えば、特許文献2参照。)
次に、前記の特許文献2に開示されている太陽電池モジュールの組立構造を図6〜図8に示す。薄膜太陽電池10は、その受光面側がフィルム状の接着層(EVA:エチレン−酢酸ビニル共重合体)11、防湿層(ETFE)12,強化層(ガラス繊維で補強したEVA)13,耐候性の表面保護層(ETFE)14からなる受光面側保護層15で封止され、また裏面側(非受光面)は接着層(EVA)16,絶縁層(ETFEやボリイミド)17,接着層18からなる裏面側保護層19で封止され、さらに最裏面に亜鉛鋼板などで作られた補強板20を裏打ちして剛性を持たせている。なお、上記の太陽電池モジュールを製作する工程では、薄膜太陽電池に保護層,補強板を積層した状態で、真空ラミネータにより加熱,加圧して各層間を熱溶着して一体化するようにしている。
【0005】
また、太陽電池の発電出力を取り出すために、あらかじめ薄膜太陽電池10の左右両側に振り分けて非発電領域に内部リード線(平箔銅線)21を布設した上で、導電性粘着テープ,平箔銅線など渡り線22を介して薄膜太陽電池10の裏面に形成した+極,−極の接続電極5(図9参照)に接続しておき、この内部リード線21と前記補強板20の背面に設置した端子ボックス23との間に図8で詳記するように出力リード線24を配線し、端子ボックス23に接続した出力ケーブル25を介して太陽電池の発電出力を外部に取り出すようにしている。
【0006】
すなわち、図8において、端子ボックス23に連ねて補強板20および裏面側保護層19には出力リード線24を引き出す穴26を開けておき、この穴26に外部から挿入した出力リード線24の先端を内部リード線(平箔銅線)21に半田付けしている。なお、23aは端子ボックス23の端子台、23bは端子ねじ、23cは端子ボックスの蓋で、端子ボックス23の端子台23aに出力リード線23を接続した後にボックス内方に封止樹脂を充填し、外部から雨水がモジュール内部に浸透するのを防ぐようにしている。
【0007】
また、前記した出力リード線の引出し構造に関して、補強板の開口穴周縁と出力リード線とが電気的に接触して漏電するのを防ぐように、補強板に開口した穴の内周面を封止材(EVA)で被覆するようにした太陽電池モジュールの構成も知られている(例えば、特許文献3参照。)。
【0008】
【特許文献1】
特開2000−223727号公報(図6)
【特許文献2】
特開2002−111032号公報(図5、図6、図7)
【特許文献3】
特開2001−44462号公報(図1、図2)
【0009】
【発明が解決しようとする課題】
ところで、前記した従来構造の太陽電池モジュールは、製作面で次記のような問題点がある。すなわち、
(1) 図6〜図8に示した従来構成(特許文献2)で、太陽電池出力を取り出すためにモジュールの裏面側に開口した穴26は、薄膜太陽電池に封止保護材,裏面補強板(端子ボックス23の設置位置に合わせてあらかじめ丸穴あるいは角穴を開口しておく)を積層し、真空ラミネータを使用してラミネート処理した後に、補強板20の開口穴から裏面側保護層19を切込んで穴26の底部に内部リード線21を露出させるようにしているが、この穴の切込みは導電箔の内部リード線を切断しないように細心の注意を払う必要もあって自動化による作業が困難である。
【0010】
(2) また、特許文献3に開示されているように、あらかじめ裏面側の補強板と封止接着層に穴を開口しておいてから薄膜太陽電池に積層して一体にラミネートする方法では、ラミネート処理の加圧,加熱条件(加圧力、加熱温度,加熱時間)によって接着層(EVA)の溶け具合が変化するために、実際の作業では穴を塞がずに溶融,流動したEVAで補強板の開口内周面を被覆させることが中々難しく、EVAの溶融,流動が過剰になると前もって開口しておいた穴を塞いでしまい、その後に行う出力リード線の配線に支障を来すおそれもある。
【0011】
(3) さらに、前記した製作上の問題点をクリアできたとしても、次の工程で穴の開口部に外部から挿入した出力リード線を半田付けツールを使って穴内底部に露出している内部リード線に半田接合すると、ツールからの加熱の影響を受けて穴に面した接着層(EVA)が再び溶け出し、最悪の場合には内部リード線と金属製の補強板とが直接接触して電気的に短絡した状態になるおそれがある。また、特許文献3の構成では半田付け時の加熱により補強板の開口穴を被覆しているEVAが溶融して穴に挿入した出力リード線が補強板と接触して電気的に短絡するおそれもある。
【0012】
(4) なお、図6〜図8の構造において、薄膜太陽電池の非発電領域に敷設した内部リード線21を省略し、出力リード線24を薄膜太陽電池10の裏面側電極面(図9における接続電極9)に直接半田付けするようにして発電領域の面積効率を改善することも考えられるが、発明者等が行った実験では、薄膜太陽電池自身がフィルム状で強度が極めて低いために、出力リード線の半田付け部が僅かな外力で簡単に剥離してしまって実用的な信頼性が確保できない。
【0013】
本発明は上記の点に鑑みなされたものであり、その目的は前記課題を解決し、薄膜太陽電池の出力を取り出す内部配線構造に関して、配線作業が簡便で、かつ電気的,機械的に高い信頼性が得られるように改良した太陽電池モジュールを提供することにある。
【0014】
【課題を解決するための手段】
上記目的を達成するために、本発明によれば、薄膜太陽電池の受光面および裏面を保護層で封止し、さらに裏面側保護層に金属製の補強板を裏打ちした上で該補強板の裏面に端子ボックスを設け、該端子ボックスに連通して前記補強板の開口穴および裏面側保護層に開口した穴を通して薄膜太陽電池の+極,−極電極と端子ボックスとの間に出力取出し用の内部配線を施した太陽電池モジュールにおいて、
前記穴に位置を合わせて薄膜太陽電池の裏面側電極面に逆U字状リード端子を設置し、該逆U字状リード端子の頂部端面を補強板の開口穴に臨ませて配置し、前記頂部端面と端子ボックスの端子台との間にリード線を接続する(請求項1)ものとし、その実施には逆U字状リード端子と端子ボックスの端子台との間に配線したリード線を端子の頂部端面に半田付けして接続する(請求項2)。さらに前記逆U字状リード端子は、半田・錫メッキを施したバー状の銅箔,もしくは銅箔に導電性粘着剤を塗布した銅箔粘着テープを逆U字状に折り曲げて形成し上で、その頂部端面を出力リード線の接合部としてその外形サイズを補強板の開口穴より小さく設定する(請求項3)。
【0015】
上記の構成により、モジュールのラミネート処理後に行う出力リード線の配線作業では、裏面側の補強板に開口した開口穴とは非接触で該開口穴の開口端面に突き出している逆U字状リード端子の頂部端面に出力リード線の一端を電気的に接合(半田付け)すればよく、しかも逆U字状に折り曲げ成形した逆U字状リード端子はその形状を保って自立するので、従来のように出力リード線の先端を補強板の開口穴,保護層に開口した小径な穴に挿入して太陽電池の電極と接合する配線方式と比べて、半田付けツールのハンドリングが楽に行えて配線の自動化が容易となる。また、逆U字状リード端子と出力リード線とを半田接合する際に、半田付けツールを穴の中に挿入する必要がないのでツールから保護層に加わる熱の影響が小さく、これにより従来のように穴に面した接着層(EVA)の溶け出しに起因する電気的な絶縁の欠陥を効果的に回避できる。
【0016】
しかも、薄膜太陽電池に保護層,補強板を積層して一体化するラミネート工程での加圧,加熱処理に伴い接着層が溶け出して穴を塞いだとしても、逆U字状リード端子の半田接合面が補強板の開口穴端面に突き出して露呈しているので、その後に行う出力リード線の配線作業には何ら支障を来すことはない。
【0017】
また、本発明によれば、前記構成における逆U字状リード端子および該逆U字状リード端子を通すために保護層に開口した穴は、次記のような態様で実施できる。
【0018】
(1) 前記逆U字状リード端子の台形高さを、該逆U字状リード端子の頂部端面と補強板の開口穴端面とが略同じ高さに並ぶように設定し(請求項4)、真空ラミネータがリード端子と干渉しないようにする。
【0019】
(2) 前記逆U字状リード端子の頂部端面をアーチ状に形成して、アーチ状の端面が補強板の穴開口端面から突き出すようにしておき(請求項5)、真空ラミネータで処理する際に逆U字状リード端子の頂部端面をラミネータ側(ラミネータの基台あるいはカバーの内面に敷設した剥離シート)へ密着状態に押し当ててラミネート処理により溶融した保護層の接着剤がリード端子の頂部端面に付着するのを防ぐようにする。
【0020】
(3) 逆U字状リード端子と薄膜太陽電池の電極面との間を確実に導電接合するために、逆U字状リード端子の両端脚部を薄膜太陽電池の裏面側電極面に重ね合わせた上で、前記両端脚部を導電性粘着テープ/金属テープ/絶縁テープからなる積層テープを介して電極面に導電的に固定する(請求項6)。
【0021】
(4) 逆U字状リード端子と金属製の補強板との接触を防止して電気的な絶縁性の信頼性向上と併せて、太陽電池モジュールの難燃,不燃性を高めるために、逆U字状リード端子と補強板の開口穴および裏面側保護層に開口した穴との間の隙間に不燃性のガラス不織布を充填する(請求項)。
【0022】
【発明の実施の形態】
以下、本発明の実施の形態を図1〜図5に示す実施例に基づいて説明する。なお、実施例の図中で図6〜図8に対応する部材には同じ符号を付してその説明は省略する。
【0023】
〔実施例1〕
まず、本発明の実施例による太陽電池モジュールの内部配線構造およびその分解図を図1,図2に示す。すなわち、図示実施例の太陽電池モジュールは図6,図7で述べた従来構造と基本的に同様であるが、従来構造における平箔の内部リード線21に代えて、図示実施例では薄膜太陽電池10の裏面側電極10a(図9における接続電極5の+極,−極に対応)に逆U字状に成形した逆U字状リード端子27を設置し、該逆U字状リード端子27の頂部端面(図の下端面)を後記のようにモジュールに裏打ちした補強板20に開けた開口穴20aの端面に引き出した上で、この逆U字状リード端子27の頂部端面に半田付けした出力リード線28を介して端子ボックス23の端子台23aに接続するようにしている。
【0024】
すなわち、モジュールに裏打ちした補強板20(厚さ0.8mmの鋼板)には、出力リード配線位置に合わせてリード引出用の開口穴(直径10 mm)20aを開口し、さらにこの開口穴20aに位置を合わせて裏面側保護層19には穴26を切込み形成しておく。
【0025】
一方、前記した逆U字状リード端子27は、半田・錫メッキを施したバー状の銅箔(幅5mm,厚さ0.1mm)、もしくは前記銅箔に導電性粘着剤を塗布した銅箔粘着テープを図3(a) のように逆U字状に折り曲げ形成したもので、その頂部の端面27aを出力リード線28の半田付け面として前記した補強板20の開口穴20aよりも小サイズに設定し、両端脚部27bを薄膜太陽電池10の裏面側電極10aに重ねて設置した上で、図4(a),(b) で示すように導電性粘着テープ29a/金属テープ(アルミ箔)29b/絶縁テープ29cからなる3層の積層テープ(幅8mm)29を貼り付けて電極面に固定する。また、逆U字状リード端子27の高さHは、図1に示すモジュール組立状態で頂部端面27aが補強板20の開口穴20a端面と略同レベルに並んで開口穴20aの中央に臨むように設定しておく。
【0026】
上記構成のモジュール組立は次のような手順で行う。すなわち、薄膜太陽電池10には、あらかじめその裏面側電極10aの+極,−極位置に逆U字状リード端子27を設置しておく。続くモジュール組立工程では、受光面側保護層15の上に前記逆U字状リード端子27付き薄膜太陽電池10、前記穴26を形成した裏面側保護層19を順に積み重ねた後、補強板20を組み立てる。この過程で逆U字状リード端子27の端面を、裏面側保護層19の穴26を貫通させ、補強板20の開口穴20a端面に引き出し、仮組立体とする。
【0027】
次に、この仮組立体に剥離シートを重ねて真空ラミネータにセットし、ラミネータの内部を脱気して上下からモジュール組立体を加圧しつつ所定の加熱処理条件(加熱温度150℃,加熱時間20分)で一体にラミネートする。このラミネート工程では、前記逆U字状リード端子27の頂部端面27aが補強板20の開口穴20aから外方にはみ出してないので、脱気,加圧の際に逆U字状リード端子27と干渉することはない。
【0028】
なお、この場合に、図3(b) で示すように逆U字状リード端子27の頂部端面27aをあらかじめアーチ状に形成しておき、モジュールの仮組立状態でアーチ状の頂部端面27aが補強板20の開口穴20aから若干突き出すようにしておけば、このモジュール仮組立体を真空ラミネータにセットして加圧力を加えた際に、前記アーチ状の頂部端面27aが押し潰されるよう変形してモジュールの下に敷いた剥離シートに密着するようになる。これにより、ラミネート処理の加熱で裏面側保護層19の接着層(EVA)18(図2参照)が溶け出しても、逆U字状リード端子27の端面にEVAが付着するのを防止して半田接合面を確保できる。また、逆U字状リード端子27の頂部端面27aに、あらかじめフッ素樹脂の粘着テープを貼り付けて半田接合面を保護するようにしてもよい。
【0029】
次に、ラミネート処理済みモジュールに対して、補強板20の開口穴20aに端子ボックス23のケースを取付けた上で、自動半田付け装置(パルスヒート式)により補強板20の開口穴20a端面に露呈している逆U字状リード端子27の頂部端面27aに出力リード線28を半田付けする(図1に半田接合部30を示す)。なお、出力リード線28は、自動半田付け装置によるハンドリング性,および半田接合強度を考慮して厚さ0.035〜0.2mm,幅3mmの半田・錫メッキ処理した銅箔が適している。
【0030】
そして、出力リード線28の一端を逆U字状リード端子27に半田接合した後、リード線の他端を端子ボックス23の端子台23aに接続(半田接合あるいはねじ締結)し、さらに端子ボックス23のケース内にシリコーン樹脂を充填して逆U字状リード端子27と出力リード線28との半田接合部30,および補強板20の開口穴20aを封止して水分浸入防止を兼ねた絶縁処理を施し、最後に端子ボックス23にカバーを被せて太陽電池モジュールの組立が完了する。
【0031】
〔実施例2〕
次に、先記実施例1の応用実施例として本発明の請求項8に対応する実施例を図5で説明する。すなわち、木造家屋の屋根に葺設する太陽電池モジュールの製品には火災延焼防止のために難燃構造が要求され、この観点から太陽電池モジュールには鋼板製の補強板20を裏打ちしてモジュールの難燃性を高めるようにしている。しかしながら、太陽電池出力を取り出すために補強板20に開口穴20aを開口して端子ボックス23を取り付けた構造では、開口穴20aの開口部分が火災延焼の弱点となる。
【0032】
そこで、この実施例では、モジュールの仮組立状態で補強板20の開口穴20aとこの開口穴20a内に突き出している逆U字状リード端子27との間の隙間に不燃性のガラス不織布31を充填している。
【0033】
この構成によれば、ガラス不織布31が補強板20の開口部20aを通しての火災延焼を防止するほか、電気的にも逆U字状リード端子27と補強板20の開口穴20a部との接触を防ぐ絶縁材としての役目を果して太陽電池モジュールの信頼性が向上する。
【0034】
【発明の効果】
以上述べたように、本発明によれば、薄膜太陽電池の受光面および裏面を保護層で封止し、さらに裏面側保護層に金属製の補強板を裏打ちした上で該補強板の裏面に端子ボックスを設け、該端子ボックスに連通して前記補強板の開口穴および裏面側保護層に開口した穴を通して薄膜太陽電池の+極,−極電極と端子ボックスとの間に内部配線を施した太陽電池モジュールにおいて、前記穴に位置を合わせて薄膜太陽電池の裏面側電極面に逆U字状リード端子を設置し、該逆U字状リード端子の頂部端面を補強板の開口穴に臨ませて配置し、前記頂部端面と端子ボックスの端子台との間に出力リード線を配線したことにより、
モジュールのラミネート処理後に行う出力リード線の配線作業を、金属製補強板の開口穴にリード線を挿入して、その開口穴内底部で半田付けを行うようにした従来の内部配線構造と比べて大幅に改善できて配線の自動化が容易となる。また、逆U字状リード端子と出力リード線とを半田接合する際に、半田付けツールを開口穴の中に挿入する必要がないのでツールから保護層に加わる熱の影響が小さく、これにより従来のように開口穴に面した接着層(EVA)の溶け出しに起因する電気的な絶縁の欠陥を効果的に回避できる。しかも、薄膜太陽電池に保護層,補強板を積層して一体化するラミネート工程での加圧,加熱処理に伴い接着層が溶け出して開口穴を塞いだとしても、逆U字状リード端子の半田接合面が補強板の開口穴端面に突き出して露呈しているので、その後に行う出力リード線の配線作業には何ら支障を来すことはないなど、リード配線作業に対する利便性と併せて、電気的,機械的にも信頼性の高い太陽電池モジュールを提供できる。
【0035】
また、補強板の開口穴と逆U字状リード端子との間に不燃性のガラス不織布を充填した請求項の構成によれば、太陽電池モジュールを木造家屋の屋根などに葺設して使用する場合の火災延焼防止と併せて、電気的な絶縁性確保にも有効である。
【図面の簡単な説明】
【図1】 本発明の実施例1による太陽電池モジュールの内部配線構造を表す断面図
【図2】 図1における薄膜太陽電池モジュールの分解図
【図3】 図1における逆U字状リード端子の構造図で、(a),(b) はそれぞれ異なる実施例の外形斜視図
【図4】 図1における薄膜太陽電池の裏面側電極に設置した逆U字状リード端子の取付構造図で、(a) はその裏面図、(b) はリード端子を固定する積層テープの断面図
【図5】 本発明の実施例2による太陽電池モジュールの内部配線構造を表す断面図
【図6】 従来例の太陽電池モジュールの平面図
【図7】 図6における矢視X−X断面図
【図8】 図7における端子ボックス部分の拡大断面図
【図9】 薄膜太陽電池の構造説明図
【符号の説明】
10 薄膜太陽電池
15 受光面側保護層
19 裏面側保護層
20 補強板
20a 開口穴
23 端子ボックス
23a 端子台
26 穴
27 逆U字状リード端子
27a 頂部端面
27b 両端脚部
28 出力リード線
29 積層テープ
29a 導電粘着テープ
29b 金属テープ
29c 絶縁テープ
30 半田接合部
31 ガラス不織布
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solar cell module that is attached to the roof of a building and performs solar power generation, and more particularly to its internal wiring structure.
[0002]
[Prior art]
As a solar cell, there is a film substrate type thin film solar cell in which a flexible plastic sheet is used as a substrate, and a photoelectric conversion element, a transparent electrode, and a connection electrode made of an amorphous silicon (a-Si) thin film semiconductor layer are patterned on the substrate. It is publicly known (for example, refer to Patent Document 1).
[0003]
Next, the structure of the film substrate type thin film solar cell will be described with reference to FIG. In the figure, 1 is a plastic substrate, 2 is an amorphous silicon photoelectric conversion layer, 3 is a transparent electrode, 4 is a back electrode of the photoelectric conversion layer 2, and 5 is a connection electrode formed on the back surface of the plastic substrate 1 (the back surface of the thin film solar cell). (Side electrode), 6 is a current collecting hole (through hole) passing through the plastic substrate 1 and conducting between the transparent electrode 3 and the connection electrode 5, and 7 is a connection conducting between the connection electrode 5 and the back electrode 4. The transparent substrate 3 formed on the light incident side of the plastic substrate 1, the photoelectric conversion layer 2, and the back electrode 4 are divided into a plurality of unit cells by laser-scribing a cell dividing groove 8. The connecting electrode 5 formed on the back side of the thin film solar cell 10 in which a plurality of unit cells are connected in series is formed by laser scribing the dividing grooves 9 shifted by a half pitch from the unit cells. There.
[0004]
The above-mentioned film substrate type thin film solar cell is lightweight, and can be applied to various applications because of its roll-to-roll process and excellent mass productivity. In particular, in the field of electric power, a solar cell module in which a thin-film solar cell is provided with an exterior such as a sealing protective layer and a reinforcing plate so as to sufficiently withstand use in an outdoor environment has already been put into practical use. The light-receiving surface and back surface of the thin-film solar cell are sealed with a sheet-like protective layer, and further a metal reinforcing plate is lined, and then a terminal box is provided on the back side of the reinforcing plate, and the metal reinforcing plate communicates with the terminal box. In addition, the output lead wire is wired between the positive electrode and negative electrode of the thin film solar cell and the terminal box through the output lead wire drawing hole opened in the protective layer on the back side so that the output of the solar cell is taken out to the outside. A solar cell module is known (for example, see Patent Document 2).
Next, the assembly structure of the solar cell module disclosed in Patent Document 2 is shown in FIGS. The thin-film solar cell 10 has a film-like adhesive layer (EVA: ethylene-vinyl acetate copolymer) 11, a moisture-proof layer (ETFE) 12, a reinforced layer (EVA reinforced with glass fiber) 13, and a weather-resistant layer. Sealed with a light-receiving surface side protective layer 15 made of a surface protective layer (ETFE) 14, and the back side (non-light-receiving surface) is made of an adhesive layer (EVA) 16, an insulating layer (ETFE or polyimide) 17, and an adhesive layer 18. The back surface side protective layer 19 is sealed, and a reinforcing plate 20 made of a galvanized steel plate is lined on the back surface to give rigidity. In the process of manufacturing the solar cell module, the thin film solar cell is laminated with a protective layer and a reinforcing plate, and is heated and pressed by a vacuum laminator to thermally bond the layers to be integrated. .
[0005]
Further, in order to take out the power generation output of the solar cell, the thin film solar cell 10 is distributed in advance on both the left and right sides, and the internal lead wire (flat foil copper wire) 21 is laid in the non-power generation region, and then the conductive adhesive tape, flat foil The internal lead wire 21 and the back surface of the reinforcing plate 20 are connected to a positive electrode and a negative electrode connecting electrode 5 (see FIG. 9) formed on the back surface of the thin film solar cell 10 through a connecting wire 22 such as a copper wire. As shown in detail in FIG. 8, an output lead wire 24 is wired between the terminal box 23 and the terminal box 23, and the power generation output of the solar cell is taken out via the output cable 25 connected to the terminal box 23. Yes.
[0006]
That is, in FIG. 8, a hole 26 for leading out the output lead wire 24 is formed in the reinforcing plate 20 and the back surface side protective layer 19 continuously to the terminal box 23, and the tip of the output lead wire 24 inserted from the outside into this hole 26. Is soldered to the internal lead wire (flat foil copper wire) 21. 23a is a terminal block of the terminal box 23, 23b is a terminal screw, 23c is a cover of the terminal box, and after the output lead wire 23 is connected to the terminal block 23a of the terminal box 23, the inside of the box is filled with sealing resin. The rainwater is prevented from penetrating into the module from the outside.
[0007]
In addition, with respect to the output lead wire drawing structure described above, the inner peripheral surface of the hole opened in the reinforcing plate is sealed so as to prevent electrical leakage between the peripheral edge of the opening hole of the reinforcing plate and the output lead wire. A configuration of a solar cell module covered with a stopper (EVA) is also known (see, for example, Patent Document 3).
[0008]
[Patent Document 1]
JP 2000-223727 A (FIG. 6)
[Patent Document 2]
JP 2002-111032 A (FIGS. 5, 6, and 7)
[Patent Document 3]
JP 2001-44462 A (FIGS. 1 and 2)
[0009]
[Problems to be solved by the invention]
By the way, the above-described conventional solar cell module has the following problems in terms of production. That is,
(1) In the conventional configuration shown in FIGS. 6 to 8 (Patent Document 2), the hole 26 opened on the back side of the module for taking out the output of the solar cell is provided with a sealing protective material and a back reinforcing plate on the thin film solar cell. (A round hole or a square hole is opened in advance according to the installation position of the terminal box 23), and after laminating using a vacuum laminator, the back side protective layer 19 is removed from the opening hole of the reinforcing plate 20. The inner lead wire 21 is exposed at the bottom of the hole 26 by cutting, but it is necessary to pay close attention not to cut the inner lead wire of the conductive foil. Have difficulty.
[0010]
(2) In addition, as disclosed in Patent Document 3, a method of laminating on a thin film solar cell after opening a hole in a reinforcing plate and a sealing adhesive layer on the back side in advance, Since the melting level of the adhesive layer (EVA) changes depending on the pressure and heating conditions (pressing force, heating temperature, heating time) of the laminating process, it is reinforced with melted and flowed EVA without blocking the holes in actual work. It is difficult to cover the inner peripheral surface of the opening of the plate, and if the EVA melts and flows excessively, the hole that has been opened in advance may be blocked, and the wiring of the output lead wire performed thereafter may be hindered. is there.
[0011]
(3) Even if the above manufacturing problems can be cleared, the output lead wire inserted from the outside into the hole opening in the next step is exposed to the bottom inside the hole using a soldering tool. When soldered to the lead wire, the adhesive layer (EVA) facing the hole melts again under the influence of heating from the tool, and in the worst case, the internal lead wire and the metal reinforcing plate are in direct contact. There is a risk of electrical short circuit. Further, in the configuration of Patent Document 3, there is a risk that the EVA covering the opening hole of the reinforcing plate is melted by heating at the time of soldering and the output lead wire inserted into the hole comes into contact with the reinforcing plate and is electrically short-circuited. is there.
[0012]
(4) In the structure of FIGS. 6 to 8, the internal lead wire 21 laid in the non-power generation region of the thin film solar cell is omitted, and the output lead wire 24 is connected to the back side electrode surface of the thin film solar cell 10 (in FIG. 9). Although it is conceivable to improve the area efficiency of the power generation region by soldering directly to the connection electrode 9), in the experiment conducted by the inventors, the thin film solar cell itself is in the form of a film and the strength is extremely low. Practical reliability cannot be secured because the soldered part of the output lead wire is easily peeled off with a slight external force.
[0013]
The present invention has been made in view of the above points. The object of the present invention is to solve the above-mentioned problems and to provide an internal wiring structure for taking out the output of a thin-film solar cell. An object of the present invention is to provide a solar cell module that is improved so as to obtain the characteristics.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, the light-receiving surface and the back surface of a thin-film solar cell are sealed with a protective layer, and further a metal reinforcing plate is lined on the back surface-side protective layer, and then the reinforcing plate A terminal box is provided on the back side, and the output is taken out between the positive electrode and the negative electrode of the thin-film solar cell and the terminal box through the opening hole of the reinforcing plate and the hole opened in the protective layer on the back side. In solar cell modules with internal wiring,
Align the holes established the inverted U-shaped lead terminals on the back-side electrode surface of the thin-film solar cell, place the top end face of the inverted U-shaped lead terminals to face the opening hole of the reinforcing plate, the A lead wire is connected between the top end surface and the terminal block of the terminal box (Claim 1), and for this, a lead wire wired between the inverted U-shaped lead terminal and the terminal block of the terminal box is used. The terminal is soldered to the top end face of the terminal (claim 2). Furthermore, the reverse U-shaped lead terminal is formed by bending a copper foil adhesive tape obtained by applying a solder-tin plated bar-shaped copper foil or a copper foil with a conductive adhesive into an inverted U-shape. The outer end size is set smaller than the opening hole of the reinforcing plate with the top end face as the joint portion of the output lead wire (Claim 3).
[0015]
By the above configuration, the wiring work output leads performed after lamination of the module, the inverted U-shaped lead terminals with an opening hole that opens to the reinforcing plate on the back side which projects into the opening end surface of the open hole in a non-contact It may be electrically bonded to the top end surface of one end of the output lead (soldering), and since the reverse U-shaped lead terminals molded bent in an inverted U shape is self-supporting and maintains its shape, as in the prior art Compared to the wiring method in which the tip of the output lead wire is inserted into the opening hole of the reinforcing plate and the small diameter hole opened in the protective layer and joined to the electrode of the solar cell, the soldering tool can be handled easily and the wiring is automated Becomes easy. In addition, when soldering the inverted U-shaped lead terminal and the output lead wire, it is not necessary to insert a soldering tool into the hole, so that the influence of heat applied from the tool to the protective layer is small, which makes it possible to Thus, it is possible to effectively avoid electrical insulation defects caused by the melting of the adhesive layer (EVA) facing the hole.
[0016]
Moreover, even if the adhesive layer melts and closes the hole in the laminating process in which a protective layer and a reinforcing plate are laminated and integrated on the thin film solar cell, the reverse U-shaped lead terminal solder Since the joint surface protrudes from the end surface of the opening hole of the reinforcing plate and is exposed, there is no problem in the wiring work of the output lead wire performed thereafter.
[0017]
Further, according to the present invention, the opened holes in the protective layer to pass an inverted U-shaped lead terminals and said inverted U-shaped lead terminal in the configuration may be implemented in a manner as follows follow.
[0018]
(1) the trapezoid height of the inverted U-shaped lead terminals, and the opening hole end surface of the top end surface and the reinforcing plate of the inverted U-shaped lead terminal is set to be substantially aligned at the same height (claim 4) Make sure that the vacuum laminator does not interfere with the lead terminals.
[0019]
(2) The top end surface of the inverted U-shaped lead terminal is formed in an arch shape so that the arch-shaped end surface protrudes from the hole opening end surface of the reinforcing plate (Claim 5), and when processing with a vacuum laminator The top end surface of the inverted U-shaped lead terminal is pressed against the laminator side (the release sheet laid on the base of the laminator or the inner surface of the cover) in close contact, and the adhesive of the protective layer melted by the laminating process is applied to the top of the lead terminal Try to prevent sticking to the end face.
[0020]
(3) In order to ensure conductive bonding between the inverted U-shaped lead terminal and the electrode surface of the thin-film solar cell, both end legs of the inverted U-shaped lead terminal are superimposed on the back-side electrode surface of the thin-film solar cell. In addition, the both leg portions are conductively fixed to the electrode surface through a laminated tape made of conductive adhesive tape / metal tape / insulating tape.
[0021]
(4) In order to prevent the contact between the inverted U-shaped lead terminal and the metal reinforcing plate and improve the electrical insulation reliability, reverse the flame resistance and non-flammability of the solar cell module. A nonflammable glass nonwoven fabric is filled in a gap between the U-shaped lead terminal and the opening hole of the reinforcing plate and the hole opened in the back surface side protective layer (Claim 7 ).
[0022]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on the examples shown in FIGS. In addition, in the figure of an Example, the same code | symbol is attached | subjected to the member corresponding to FIGS. 6-8, and the description is abbreviate | omitted.
[0023]
[Example 1]
First, an internal wiring structure of a solar cell module and an exploded view thereof according to an embodiment of the present invention are shown in FIGS. That is, the solar cell module of the illustrated embodiment is basically the same as the conventional structure described with reference to FIGS. 6 and 7, but instead of the flat lead internal lead wire 21 in the conventional structure, the illustrated embodiment is a thin film solar cell. 10 backside electrode 10a (the connection electrode 5 in FIG. 9 + pole, - corresponding to the pole) of installing an inverted U-shaped lead terminal 27 molded into an inverted U-shape, of the inverted U-shaped lead terminal 27 The top end face (lower end face in the figure) is pulled out to the end face of the opening hole 20a formed in the reinforcing plate 20 lined on the module as described later, and then soldered to the top end face of the inverted U-shaped lead terminal 27. The lead wire 28 is connected to the terminal block 23 a of the terminal box 23.
[0024]
That is, a lead plate opening hole ( diameter 10 mm ) 20a is opened in the reinforcing plate 20 (0.8 mm thick steel plate) lined on the module in accordance with the position of the output lead wiring, and the opening hole 20a is further opened. A hole 26 is cut and formed in the back surface side protective layer 19 in alignment.
[0025]
On the other hand, the reverse U-shaped lead terminal 27 is a bar-shaped copper foil (width 5 mm, thickness 0.1 mm) plated with solder or tin, or a copper foil obtained by applying a conductive adhesive to the copper foil. adhesive tape in FIGS. 3 (a) formed by bending and formed in an inverted U-shape as a small size than the opening hole 20a of the reinforcing plate 20 mentioned above the end face 27a of the top as the soldering surface of the output lead 28 And both end legs 27b are placed on the back surface side electrode 10a of the thin-film solar cell 10 and the conductive adhesive tape 29a / metal tape (aluminum foil) as shown in FIGS. 4 (a) and 4 (b). ) A three-layer laminated tape (width 8 mm) 29 made of 29b / insulating tape 29c is attached and fixed to the electrode surface. Also, the height H of the inverted U-shaped lead terminal 27 is such that the top end face 27a is aligned with the end face of the opening hole 20a of the reinforcing plate 20 and faces the center of the opening hole 20a in the module assembly state shown in FIG. Set to.
[0026]
The module assembly having the above configuration is performed in the following procedure. That is, in the thin film solar cell 10, the inverted U-shaped lead terminal 27 is installed in advance at the positive electrode and negative electrode positions of the back surface side electrode 10a. In the subsequent module assembling step, the thin-film solar cell 10 with the inverted U-shaped lead terminal 27 and the back surface side protective layer 19 in which the holes 26 are formed are stacked on the light receiving surface side protective layer 15 in this order, and then the reinforcing plate 20 is attached. assemble. In this process, the end surface of the inverted U-shaped lead terminal 27 passes through the hole 26 of the back surface side protective layer 19 and is drawn out to the end surface of the opening hole 20a of the reinforcing plate 20 to form a temporary assembly.
[0027]
Next, the release sheet is overlaid on this temporary assembly and set in a vacuum laminator. The inside of the laminator is deaerated to pressurize the module assembly from above and below, under predetermined heat treatment conditions (heating temperature 150 ° C., heating time 20 Laminate together in minutes). In this laminating process, since the top end surface 27a of the inverted U-shaped lead terminal 27 does not protrude outward from the opening hole 20a of the reinforcing plate 20, the inverted U-shaped lead terminal 27 and the inverted U-shaped lead terminal 27 There is no interference.
[0028]
In this case, as shown in FIG. 3 (b), the top end surface 27a of the inverted U-shaped lead terminal 27 is formed in an arch shape in advance, and the arched top end surface 27a is reinforced in a temporarily assembled state of the module. If it protrudes slightly from the opening hole 20a of the plate 20, when the module temporary assembly is set on a vacuum laminator and a pressure is applied, the arch-shaped top end face 27a is deformed so as to be crushed. It comes in close contact with the release sheet placed under the module. This prevents EVA from adhering to the end face of the inverted U-shaped lead terminal 27 even if the adhesive layer (EVA) 18 (see FIG. 2) of the back surface side protective layer 19 is melted by the heating of the laminating process. A solder joint surface can be secured. Alternatively, a fluororesin adhesive tape may be applied in advance to the top end surface 27a of the inverted U-shaped lead terminal 27 to protect the solder joint surface.
[0029]
Next, after attaching the case of the terminal box 23 to the opening hole 20a of the reinforcing plate 20 to the laminated module, it is exposed to the end face of the opening hole 20a of the reinforcing plate 20 by an automatic soldering device (pulse heat type). The output lead wire 28 is soldered to the top end surface 27a of the inverted U-shaped lead terminal 27 (a solder joint 30 is shown in FIG. 1). The output lead 28 is suitably a copper foil that is 0.035 to 0.2 mm in thickness and 3 mm in width subjected to solder / tin plating in consideration of handling by an automatic soldering apparatus and solder joint strength.
[0030]
After one end of the output lead wire 28 is soldered to the inverted U-shaped lead terminal 27, the other end of the lead wire is connected to the terminal block 23a of the terminal box 23 (soldering or screw fastening). The case is filled with silicone resin, and the solder joint 30 between the inverted U-shaped lead terminal 27 and the output lead wire 28 and the opening hole 20a of the reinforcing plate 20 are sealed to prevent moisture from entering. Finally, the terminal box 23 is covered and the assembly of the solar cell module is completed.
[0031]
[Example 2]
Next, an embodiment corresponding to claim 8 of the present invention will be described with reference to FIG. That is, a product of a solar cell module installed on the roof of a wooden house is required to have a flame-retardant structure for preventing fire spread. From this point of view, the solar cell module is lined with a reinforcing plate 20 made of a steel plate. The flame retardancy is increased. However, in the structure in which the opening hole 20a is opened in the reinforcing plate 20 and the terminal box 23 is attached in order to take out the solar cell output, the opening portion of the opening hole 20a becomes a weak point of fire spread.
[0032]
Therefore, in this embodiment, the non-flammable glass nonwoven fabric 31 is provided in the gap between the opening hole 20a of the reinforcing plate 20 and the inverted U-shaped lead terminal 27 protruding into the opening hole 20a in the temporarily assembled state of the module. Filled.
[0033]
According to this structure, the glass nonwoven fabric 31 prevents fire spread through the opening 20a of the reinforcing plate 20, and also electrically contacts the inverted U-shaped lead terminal 27 and the opening hole 20a of the reinforcing plate 20. The reliability of the solar cell module is improved by serving as an insulating material to prevent.
[0034]
【The invention's effect】
As described above, according to the present invention, the light-receiving surface and the back surface of the thin-film solar cell are sealed with a protective layer, and further, a metal reinforcing plate is lined on the back surface-side protective layer, and then the back surface of the reinforcing plate. A terminal box was provided, and internal wiring was provided between the positive electrode and negative electrode of the thin-film solar cell and the terminal box through the opening hole of the reinforcing plate and the hole opened in the back side protective layer in communication with the terminal box. in the solar cell module, and align the holes established the inverted U-shaped lead terminals on the back-side electrode surface of the thin-film solar cell, it is made to face the top end surface of the inverted U-shaped lead terminals to the opening hole of the reinforcing plate By arranging the output lead wire between the top end surface and the terminal block of the terminal box,
Compared to the conventional internal wiring structure in which the lead wires are wired after the module is laminated, and the lead wire is inserted into the opening hole of the metal reinforcing plate and soldered at the bottom of the opening hole. The wiring can be automated easily. In addition, when soldering the inverted U-shaped lead terminal and the output lead wire, it is not necessary to insert a soldering tool into the opening hole, so the influence of heat applied from the tool to the protective layer is small. Thus, it is possible to effectively avoid electrical insulation defects caused by melting of the adhesive layer (EVA) facing the opening hole. Moreover, even if the adhesive layer melts and closes the opening hole in the laminating process in which the protective layer and the reinforcing plate are laminated and integrated with the thin film solar cell, the opening of the inverted U-shaped lead terminal is blocked. In addition to the convenience of the lead wiring work, the solder joint surface is exposed through the end face of the opening hole of the reinforcing plate, so there will be no hindrance to the subsequent wiring work of the output lead wire. A solar cell module with high electrical and mechanical reliability can be provided.
[0035]
Moreover, according to the structure of Claim 7 which filled the nonflammable glass nonwoven fabric between the opening hole of the reinforcing plate and the inverted U-shaped lead terminal, the solar cell module is installed on the roof of a wooden house or the like. This is effective in ensuring electrical insulation as well as preventing fire spread.
[Brief description of the drawings]
[1] of the inverted U-shaped lead terminals in exploded view FIG. 3 FIG. 1 of the thin-film solar cell module in a cross-section view FIG. 1; FIG representing the internal wiring structure of a solar cell module according to Example 1 of the present invention (A), (b) is an external perspective view of different embodiments. FIG. 4 is an attachment structure diagram of an inverted U-shaped lead terminal installed on the back side electrode of the thin film solar cell in FIG. a) is a back view thereof, and (b) is a cross-sectional view of a laminated tape for fixing lead terminals. FIG. 5 is a cross-sectional view showing an internal wiring structure of a solar cell module according to Embodiment 2 of the present invention. FIG. 7 is a cross-sectional view taken along the line XX in FIG. 6. FIG. 8 is an enlarged cross-sectional view of the terminal box portion in FIG. 7. FIG. 9 is a structural explanatory view of the thin-film solar cell.
DESCRIPTION OF SYMBOLS 10 Thin film solar cell 15 Light-receiving surface side protective layer 19 Back surface side protective layer 20 Reinforcing plate 20a Opening hole 23 Terminal box 23a Terminal block 26 Hole 27 Reverse U-shaped lead terminal 27a Top end surface 27b Both end legs 28 Output lead wire 29 Laminated tape 29a Conductive adhesive tape 29b Metal tape 29c Insulating tape 30 Solder joint 31 Glass nonwoven fabric

Claims (7)

薄膜太陽電池の受光面および裏面を保護層で封止し、さらに裏面側保護層に金属製の補強板を裏打ちした上で該補強板の裏面に端子ボックスを設け、該端子ボックスに連通して前記補強板の開口穴および裏面側保護層に開口した穴を通して薄膜太陽電池の+極,−極電極と端子ボックスとの間に内部配線を施した太陽電池モジュールにおいて、
前記穴に位置を合わせて薄膜太陽電池の裏面側電極面に逆U字状リード端子を設置し、該逆U字状リード端子の頂部端面を補強板の開口穴に臨ませて配置し、前記頂部端面と端子ボックスの端子台との間に出力リード線を配線したことを特徴とする太陽電池モジュール。
The light-receiving surface and back surface of the thin-film solar cell are sealed with a protective layer, and further, a metal reinforcing plate is lined on the back surface-side protective layer, and then a terminal box is provided on the back surface of the reinforcing plate, and communicated with the terminal box. In the solar cell module in which the internal wiring is provided between the positive electrode of the thin film solar cell, the positive electrode, and the terminal box through the opening hole of the reinforcing plate and the hole opened in the back surface side protective layer,
Align the holes established the inverted U-shaped lead terminals on the back-side electrode surface of the thin-film solar cell, place the top end face of the inverted U-shaped lead terminals to face the opening hole of the reinforcing plate, the An output lead wire is wired between the top end face and the terminal block of the terminal box.
逆U字状リード端子と端子ボックスの端子台との間に配線した出力リード線を、リード端子の頂部端面に半田接合したことを特徴とする請求項1に記載の太陽電池モジュール。 2. The solar cell module according to claim 1, wherein an output lead wire wired between the inverted U-shaped lead terminal and the terminal block of the terminal box is soldered to the top end face of the lead terminal. 逆U字状リード端子が半田・錫メッキを施したバー状の銅箔もしくは銅箔に導電性粘着剤を塗布した銅箔粘着テープを逆U字状に折り曲げ形成してなり、その頂部端面を出力リード線の接合部としてその外形サイズを補強板の開口穴より小さく設定したことを特徴とする請求項1または2に記載の太陽電池モジュール。It will be formed by bending a copper foil adhesive tape which inverted U-shaped lead terminal is coated with a conductive adhesive composition into bars of copper foil or copper foil which has been subjected to solder-tinned inverted U-shape, the top end surface The solar cell module according to claim 1 or 2, wherein an outer size of the output lead wire is set smaller than an opening hole of the reinforcing plate. 逆U字状リード端子の高さを、該逆U字状リード端子の頂部端面が補強板の開口穴端面と略一致するように設定したことを特徴とする請求項1ないし3のいずれか1項に記載の太陽電池モジュール。The height of the inverted U-shaped lead terminal, any one of the top end face of the inverted U-shaped lead terminals claims 1, characterized in that configured to match substantially the opening hole end surface of the reinforcing plate 3 1 The solar cell module according to item. 逆U字状リード端子の頂部端面をアーチ状に形成し、アーチ状の端面が補強板の開口穴端面から突き出すようにしたことを特徴とする請求項4に記載の太陽電池モジュール。5. The solar cell module according to claim 4, wherein the top end surface of the inverted U-shaped lead terminal is formed in an arch shape , and the arch-shaped end surface protrudes from the end surface of the opening hole of the reinforcing plate. 逆U字状リード端子の両端脚部を薄膜太陽電池の裏面側電極面に重ね合わせ、前記両端脚部を導電性粘着テープ/金属テープ/絶縁テープからなる積層テープを介して電極面に導電的に固定したことを特徴とする請求項1ないし5のいずれか1項に記載の太陽電池モジュール。 The opposite leg portions of the inverted U-shaped lead terminal are superimposed on the back side electrode surface of the thin film solar cell, and the both end leg portions are electrically connected to the electrode surface via a laminated tape made of conductive adhesive tape / metal tape / insulating tape. The solar cell module according to claim 1, wherein the solar cell module is fixed to the solar cell module. 逆U字状リード端子と補強板の開口穴および裏面側保護層に開口した穴との間の隙間に不燃性のガラス不織布を充填したことを特徴とする請求項1ないしのいずれか1項に記載の太陽電池モジュール。Any one of claims 1 to 6, characterized in that the gap between the open hole in the opening hole and the back surface side protective layer of the inverted U-shaped lead terminals and the reinforcing plate were filled with incombustible glass nonwoven The solar cell module according to.
JP2003118367A 2003-04-23 2003-04-23 Solar cell module Expired - Fee Related JP3972252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003118367A JP3972252B2 (en) 2003-04-23 2003-04-23 Solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003118367A JP3972252B2 (en) 2003-04-23 2003-04-23 Solar cell module

Publications (2)

Publication Number Publication Date
JP2004327592A JP2004327592A (en) 2004-11-18
JP3972252B2 true JP3972252B2 (en) 2007-09-05

Family

ID=33497925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003118367A Expired - Fee Related JP3972252B2 (en) 2003-04-23 2003-04-23 Solar cell module

Country Status (1)

Country Link
JP (1) JP3972252B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3138001A1 (en) * 2022-07-18 2024-01-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Lightweight photovoltaic module comprising a composite reinforcement frame

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110214735A1 (en) 2008-11-07 2011-09-08 3M Innovative Properities Company Conductive laminated assembly
JP2012195409A (en) * 2011-03-16 2012-10-11 Fuji Electric Co Ltd Solar cell module and manufacturing method of the same
JP5632800B2 (en) * 2011-06-24 2014-11-26 株式会社カネカ Manufacturing method of solar cell module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3138001A1 (en) * 2022-07-18 2024-01-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Lightweight photovoltaic module comprising a composite reinforcement frame
EP4310924A1 (en) * 2022-07-18 2024-01-24 Commissariat À L'Énergie Atomique Et Aux Énergies Alternatives Lightweight photovoltaic module with composite reinforcement frame

Also Published As

Publication number Publication date
JP2004327592A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
US7534956B2 (en) Solar cell module having an electric device
JP5323250B2 (en) Solar cell module and manufacturing method thereof
US20100012172A1 (en) Photovoltaic Modules Manufactured Using Monolithic Module Assembly Techniques
JP3099604B2 (en) Flexible photoelectric conversion module, its connection method and its manufacturing apparatus
JP2010510686A (en) Cable connector for solar cell module and installation method thereof
WO2010061844A1 (en) Solar battery module and method for manufacturing same
JP5905475B2 (en) Solar cell module with connecting element
JP2006294646A (en) Method of attaching terminal box for solar cell
JP3121811B1 (en) Thin film solar cell module and method of manufacturing the same
US20120090680A1 (en) Solar cell module and method for manufacturing solar cell module
JP5191406B2 (en) Manufacturing method of solar cell module
JP3972252B2 (en) Solar cell module
JP3991257B2 (en) Manufacturing method of solar cell module
JP2010283231A (en) Solar cell module and method of manufacturing the same
JP3852662B2 (en) Method for extracting power leads from solar cell module
JP4432247B2 (en) Solar cell module
JP5306490B2 (en) Terminal box and solar cell module
JP2003133570A (en) Method of manufacturing solar battery module
JP4461607B2 (en) Method for pulling out power leads of solar cell module
JP4687067B2 (en) Solar cell module and power lead wire connection method
JP3121810B1 (en) Thin film solar cell module and method of manufacturing the same
JP5132646B2 (en) Terminal box and solar cell module
JP2009206231A (en) Solar cell module, and manufacturing method thereof
JP2003017732A (en) Method of leading out power lead of solar battery module
JP4061525B2 (en) Manufacturing method of solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees