JP3991257B2 - Manufacturing method of solar cell module - Google Patents

Manufacturing method of solar cell module Download PDF

Info

Publication number
JP3991257B2
JP3991257B2 JP19152599A JP19152599A JP3991257B2 JP 3991257 B2 JP3991257 B2 JP 3991257B2 JP 19152599 A JP19152599 A JP 19152599A JP 19152599 A JP19152599 A JP 19152599A JP 3991257 B2 JP3991257 B2 JP 3991257B2
Authority
JP
Japan
Prior art keywords
solar cell
power
cell module
terminal box
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19152599A
Other languages
Japanese (ja)
Other versions
JP2001024205A (en
Inventor
正弘 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP19152599A priority Critical patent/JP3991257B2/en
Publication of JP2001024205A publication Critical patent/JP2001024205A/en
Application granted granted Critical
Publication of JP3991257B2 publication Critical patent/JP3991257B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/02013Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising output lead wires elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【0001】
【発明の属する技術分野】
この発明は、電気絶縁性を有するフィルム基板上に形成された太陽電池を、電気絶縁性の保護材により封止するために、太陽電池の受光面側および非受光面側の双方に保護層を設けた太陽電池モジュールの製造方法に関し、特に、太陽電池に接続した電力リード線と電力端子箱との接続方法に関する。
【0002】
【従来の技術】
現在、環境保護の立場から、クリーンなエネルギーの研究開発が進められている。中でも、太陽電池はその資源(太陽光)が無限であること、無公害であることから注目を集めている。同一基板上に形成された複数の太陽電池素子が、直列接続されてなる太陽電池(光電変換装置)の代表例は、薄膜太陽電池である。
【0003】
薄膜太陽電池は、薄型で軽量、製造コストの安さ、大面積化が容易であることなどから、今後の太陽電池の主流となると考えられ、電力供給用以外に、建物の屋根や窓などにとりつけて利用される業務用,一般住宅用にも需要が広がってきている。
【0004】
従来の薄膜太陽電池はガラス基板を用いていたが、軽量化、施工性、量産性においてプラスチックフィルムを用いたフレキシブルタイプの太陽電池の研究開発がすすめられている。このフレキシブル性を生かし、ロールツーロール方式の製造方法により大量生産が可能となった。
【0005】
上記薄膜太陽電池モジュールとして、電気絶縁性を有するフィルム基板上に形成された太陽電池を、電気絶縁性の保護材により封止するために、太陽電池の受光面側および非受光面側の双方に保護層を設けたものが知られている。
【0006】
上記太陽電池モジュールは、保護材がプラスチックのため、ねじれや引っ張り力に対する強度が弱く、このため施工時の外力によって破損したりするおそれがあるので、この問題を解消するために、特許第2651121号や特許第2719114号に記載されたように、太陽電池モジュールの裏面全体に補強板を設けたり、実開昭55−25383号公報に記載のように、非発電領域に補強材と電力リード線を兼用した構造のものが開発されている。
【0007】
さらに、設置が容易でかつコスト低減を図った太陽電池モジュール構造として、太陽電池の受光面側および非受光面側の双方に保護層を設けた太陽電池モジュールにおいて、前記太陽電池の側方に前記保護層を延長して非発電領域を形成し、この非発電領域に、太陽電池モジュール設置用の取付け穴を設けたものが、本願出願人により提案されている(特願平11−172624号参照)。
【0008】
図13および図14は、上記特願平11−172624号に記載された太陽電池モジュールの構造の一例を示し、その電力リード引き出し方法および関連する構造の詳細を、図15および図16に示す。
【0009】
図13,14に示す太陽電池モジュールにおいて、太陽電池1の太陽光入射側である受光面側に、EVAなどを使用した接着層2、並びにETFEなどを使用した防湿層3、EVAにガラス繊維を充填して機械的強度を高めた強化層4、その上にETFEなどを使用した汚損物質付着防止の表面保護層5からなる耐候性保護層としての受光面側保護層6が積層され、太陽電池1を保護している。
【0010】
また太陽光入射側と反対側である非受光側には、接着層7、防水と電気絶縁を兼ねたETFEやポリイミドを使用した絶縁層8、補強層11との接合の役目をなすEVAなどを使用した接着層9が積層されて非受光面側保護層10が形成され、その上に積層された金属製平板などを使用した補強層11が接着されており、上記各層は加圧熱融着ラミネートで一体化されている。
【0011】
本構成に使用する太陽電池1は、結晶系,非結晶系のいずれも使用できるが、特に薄膜基板型の非晶質太陽電池が望ましい。なお、各層のラミネートは、一般に、図14における紙面上部の表面保護層5から順に下方に向かって行われるが、太陽電池1と接着層2は、あらかじめ一体化されている。また、ニーズに応じて、一部の層を省略することができる。
【0012】
さらに、受光面側保護層6、非受光面側保護層10、補強層11は太陽電池1の側方の非発電領域まで延長され、非発電領域には略四角形状の太陽電池1の両側辺に沿って平行的に平箔銅線の電力リード線12が配置され、導電性粘着テープ若しくはハンダ付け平箔銅線の渡り線13で太陽電池1の図示しないプラス極、またはマイナス極にそれぞれ接続されている。
【0013】
また、電力リード線12の端部近傍には、発電した電力を外部に引出す中継をなす電力端子箱14が補強層11に接着、またはネジ止めで固定されており、電力リード線12とケーブル15が接続線16で電気的に接続されて全体として四角形で平板状の太陽電池モジュール50を形成している。
【0014】
ここで、この発明に関わる電力リードの取出し構造について、以下に詳述する。図15は電力端子箱14の断面図で図14とは上下反対に示している。また図16は電力端子箱14のフタ27を外した上面図である。
【0015】
図15,16において、電力リード線12のほぼ直上から補強層11、接着層9、絶縁層8、接着層7を貫通して穴17が開けられ、電力リード線12の表面が露出し、また穴17の上に電力端子箱14の穴18がほぼ同軸上に並ぶように、補強層11に当接してベース台28が配置され、補強層11に接着固定、または図示しないネジで締結固定されている。
【0016】
上記穴17には、例えば銅線を使用した接続線16が挿入され、端部が電力リード線12とハンダ接合されている。接続線16はベース台28の穴18を通ってベース台28の端子台19に導かれ、その端部は端子台19のネジ20で逆流防止ダイオード21のリード線22と共に締結固定される。また逆流防止ダイオード21の他方のリード線23は端子台24に導かれ、ケーブル15の導体芯線25とともにネジ26で締結固定されている。
【0017】
なお、逆流防止ダイオード21は太陽電池1のプラス極側、若しくはマイナス極側のいずれか一方に挿入すれば、その役目を果たすことができるため、不要な場合は外して接続線16を直接、端子台24につなぎ込まれる。
【0018】
また、穴17、穴18には水分侵入による絶縁不良を無くすため、防水・絶縁性の樹脂が充填され、同様に端子台19、24ネジ20、26も防水性樹脂で覆われており、蓋27がベース台28に被せられ、接着もしくは図示しないネジで締結固定されて電力端子箱14を形成している。
【0019】
【発明が解決しようとする課題】
ところで、前記図15および図16に示すような従来の太陽電池モジュールの製造方法、特に電力リード引き出し方法は、以下のような問題点がある。
【0020】
(1)円形若しくは四角形の穴17は、補強層11から接着層7までに切り込みを入れ、穴17内の各層を取り除くことで形成されるが、硬さの異なる層に切り込みを入れる作業が困難である。補強層は予め穴を開けておくことは可能であるが、接着層7の材料であるEVAはラミネート接着時に熱で溶かして融着させるため、穴をあけても塞がってしまい、また柔らかいために切削加工も出来ない。加えて補強層11から接着層7までの高さが、ラミネート時の加圧力、加熱温度、加熱時間でEVAの溶け具合が変化するために必ずしも一定でなく、自動化が非常に困難である。
【0021】
(2)切り込み後、穴17内の各層を取り除く際、接着層7が電力リード線12に接着しているために剥離が困難で、手作業の削り取りは作業性が悪くて非量産的であり、熱で溶融、蒸発させての除去は周りの各層を損傷する。
【0022】
(3)剥離後、接続線16を電力リード線12にハンダ付けする際、上記の剥離が完全に行われずに電力リード線12の剥離面にEVAが残っていると、ハンダ付けが出来ない。強引にハンダ熱でEVAを蒸発させれば、ハンダ付けは可能であるが、接合信頼性が低く、EVAを蒸発させるために長時間、ハンダコテをあてているとその熱で周囲の各層を損傷し、また電力リード線12に伝わった熱で、導電性粘着テープなどの渡り線13と電力リード線12の接触部が損傷して電気接続が損なわれる。
【0023】
(4)電力端子箱14を補強層11に取り付けるため、補強層11から電力リード線12に向かって穴17を開け、上記(3)項のハンダ付けを長時間行うと接着層7、9が溶けて電力リード線12が補強層11に近づく。ここで補強層11が金属性である場合、絶縁層8があるものの熱で劣化して電気絶縁性が損なわれて絶縁抵抗が低下し、最悪時には短絡を起こす。
【0024】
この発明は、上記のような問題点を解消するためになされたもので、本発明の課題は、太陽電池から発電した電力を外部に引出す電力リード線と外部のケーブルとの接合作業が簡便で,信頼性が高く、かつ小型で安価な太陽電池モジュールの製造方法、特に太陽電池モジュールの電力リード引き出し方法を提供することにある。
【0025】
【課題を解決するための手段】
前述の課題を解決するため、請求項1の発明によれば、電気絶縁性を有するフィルム基板と、該フィルム基板上に形成された太陽電池と、太陽電池の受光面側および非受光面側の双方に設けられ、太陽電池を封止するための電気絶縁性の保護部材よりなる保護層と、前記太陽電池の側方に存在し、前記保護層延長形成されている非発電領域形成され、太陽電池に電気的に接続された電力リード線と、受光面側または非受光面側の保護層の上に設けられ、前記電力リード線の引き出しをケーブルと電気的かつ機械的に接続する電力端子箱とを有する太陽電池モジュールの製造方法において、非発電領域の一部に前記保護層を貫通して四角形の一辺を残した略コ字状の切り込み入れて切り込み部を形成する工程と、該切り込み部の保護層と電力リード線と一体的に受光面側または非受光面側に引き起こし、かつ切り込み部先端の保護層剥離て前記電力リード線の先端部を保護層から露出したものとして形成する工程と切り込み部の位置電力端子箱固定する工程とを有することを特徴とする
【0026】
また、請求項2の発明によれば、電気絶縁性を有するフィルム基板と、該フィルム基板上に形成された太陽電池と、太陽電池の受光面側に設けられ、太陽電池を封止するための電気絶縁性の接着層および該接着層の外側に設けられた防湿層と、太陽電池の非受光面側に設けられ、太陽電池を封止するための電気絶縁性の接着層および該接着層の外側に設けられた補強層と、前記太陽電池の側方に存在し、前記防湿層、補強層および各接着層が延長形成されている非発電領域形成され、太陽電池に電気的に接続された電力リード線と、非受光面側の補強層の上に設けられ、前記電力リード線の引き出しをケーブルと電気的かつ機械的に接続する電力端子箱とを有する太陽電池モジュールの製造方法において、非発電領域の一部に前記防湿層および各接着層を貫通して四角形の一辺を残した略コ字状の切り込み入れて切り込み部を形成する工程と、該切り込み部の前記防湿層および各接着層と電力リード線と一体的に非受光面側の補強層側に引き起こし、かつ切り込み部先端の防湿層および各接着層を剥離て前記電力リード線の先端部を防湿層および各接着層から露出したものとして形成する工程と切り込み部の位置電力端子箱固定する工程とを有することを特徴とする
【0027】
さらに、上記請求項2の発明において、前記切り込み部の切り込み位置は、予め開けられた補強層の略四角形の穴の端部からこの穴の中心方向に向かって所定の間隔を有する位置とする(請求項3)。
【0028】
上記方法によれば、従来技術の問題点は解消され、電気的にも機械的にも信頼性が高くかつ電力リード線の外部ケーブルへの接続作業が極めて容易となる。
【0029】
前記太陽電池モジュールの電力リード引き出し方法の太陽電池保護層の実施態様としては、防水,絶縁などの安全性や強度ならびに設置条件その他のニーズに応じて、種々の態様をとり得るが、電力リード引き出し方法との関連において、下記のようにするのが好適である。
【0030】
例えば、請求項2または3に記載の方法において、前記補強層は、金属製平板とするか、もしくは無機繊維または有機繊維で強化した樹脂板とする(請求項4,5)。また、請求項1または5に記載の方法において、前記非発電領域に、太陽電池モジュール設置用の取付け穴を設ける(請求項6)。
【0031】
さらに、好適な電力端子箱の構造としては、種々の態様をとり得るが、前記電力リード引き出し方法との関連において、下記の構成が好適である。
【0032】
例えば、請求項1または2に記載の方法において、前記電力端子箱は略直方体形状で前記切り込み部を内挿するための貫通穴を有し、かつ貫通穴の側壁に略直交して電力を外部に引き出すケーブルに接続された棒状の端子が貫通穴の内部に設けられたものとする(請求項7)。また、前記方法において、太陽電池モジュールを挟んで電力端子箱を設けた側と反対側に当て板を設け、前記電力端子箱とこの当て板とをカシメピンまたはネジで一体的に締結固定する(請求項8)。
【0033】
上記方法によれば、前記電力リード線の先端部の構成を生かしつつ、作業性が良好で、接続部の信頼性も高く、かつ小型で低コストの電力端子箱を備えた太陽電池モジュールの製造方法、特に好適な電力リード引き出し方法が提供できる。
【0034】
また、請求項9の発明によれば、前記請求項7の発明において、前記電力端子箱内に棒状の逆流防止ダイオードを挿入し、このダイオードから左右に伸びたリード線の一方をケーブルの導体芯線に接続し,他方のリード線を棒状の端子とする。これにより、部品点数とコストの低減が図れる。
【0035】
さらに、請求項10の発明によれば、請求項1または2の発明において、前記電力端子箱は略直方体形状で前記切り込み部を内挿するための貫通穴を有し、かつこの貫通穴の一部に端子台を設けてなり、電力を外部に引き出すケーブルに接続されたリード線またはケーブルの芯線と、前記電力リード線の先端部とを前記端子台にネジ止め固定する。上記によれば、ハンダ付け作業が不要となるので、作業性が向上し、また熱による封止保護材の損傷も防止できる。
【0036】
さらにまた、請求項11の発明によれば、請求項1または2の発明において、前記電力端子箱は略直方体形状で前記切り込み部を内挿するための貫通穴を有し、かつこの貫通穴には電力を外部に引き出すケーブルに接続されたコネクタを有してなり、前記電力リード線の先端部をこのコネクタに挿入接続する。上記によれば、さらに作業性が向上し、また熱による封止保護材の損傷も防止できる。
【0037】
【発明の実施の形態】
図面に基づき、本発明の実施の形態について以下に述べる。
【0038】
(実施形態1)
図1ないし6は、請求項1および2の発明に関わる実施例を示すものである。図1は切り込み部を引き起こした斜視図、図2は電力端子箱を透視してケーブルに接続した棒状端子に電力リード線を取付けた斜視図、図3は切り込み部の上面図、図4は図3のB−B断面図、図5は本発明の太陽電池モジュールを連続的に生産した斜視図、図6は図5のC−C断面図である。
【0039】
説明の便宜上、図3ないし6から説明する。太陽電池モジュール150は、太陽電池101の側方に配置された電力リード線102上の補強層103に、略四角形の形状の穴104が予め開けられ、この部分の補強層103が取り除かれて封止保護層105とともに加圧熱融着ラミネートで一体化されたものとして形成されている。
【0040】
ここで封止保護層105は従来技術の図14における受光面側保護層6と非受光面側保護層10をまとめて表示したもので、太陽電池101を封止保護している各層構成は図14と同じである。
【0041】
図3において、穴104の四辺の内、辺106を除き、辺107、108、109から穴104の内側に向かって所定寸法Sだけ離れた位置において、封止保護材105を貫通して切り込み110、111、112を入れ、略コ字状の切り込み部113を形成する。ここで寸法Sは電力リード線102の端辺114、115に到達しない寸法、即ち穴104の辺107と端辺114または辺109と端辺115の間に切り込みが位置するように選ばれる。これは電力リード線102を後述する先端部の剥離部分以外を露出させず、万一、切り込み部113が金属を採用した場合の補強層103に触れても電気短絡しないようにしたもので、また辺107、108、109からも離したのは、補強層103に鉄板を使った場合、補強層103の各辺が空気中に露出し、腐食して補強強度が低下するのを避けるためであり、加えて切り込み110、111、112を機械加工で行う際、カッターの位置ずれや加工部分を機械に取付ける際の誤差で、カッターを損傷したり補強層を傷つけるのを防止するためである。
【0042】
一方、図5、6において、太陽電池モジュール150は、図示しない自動機械により生産効率を高め、多量生産を行うため連続的に帯板状に生産され、切断部120で必要な長さに切断される。この際、切断部120の電力リード線102の端部122は切断機械の刃先に働くせん断力で押されて補強層103に近づき、場合によっては接触する。補強層103側からも同様にせん断時のバリ121が電力リード線102側に発生し、補強層103に金属を用いた場合、電気短絡が生じる。
【0043】
従来の構造ではこれを避けるために電力リード線102を切断部120の手前で一旦切断し、切断部120を越えてから再び接着層2の上に置いていく方法が採用されていた。従ってラミネート工程の手前で、電力リード線102を所定の寸法で切断する工程が必要で、その機械設備も必要になる。加えて太陽電池モジュール150の寸法を変える場合はその都度、切断位置を変える作業が必要となり、煩雑化する。
【0044】
図3に戻り、本発明の構造にして切り込み111で電力リード線102を切断することにより、切り込み111から切断部120の間の電力リード線102は切離され、図6の如き状態になってもなんら問題は生じない。
【0045】
図1、2において、前述のように作った切り込み部113を一点鎖線で示した電力端子箱201を装着する側、図1、2では補強層103側に引き起こし、切り込み部113の先端の封止保護層105を剥離して電力リード線102を露出させ、この電力リード線102の先端部212を電力端子箱201のケーブル210に接続された棒状端子209に巻き付けてハンダ接続する。詳細は実施形態2の項で詳述する。
【0046】
上記方法によれば、従来技術の問題は解決され、電気的にも機械的にも信頼性の高い電力取出し方法とすることができ、また、作業性も向上する。
【0047】
(実施形態2)
請求項7および8の発明に関わる実施例の電力端子箱の構造を図7に示し、図7(a)は上面図、図7(b)は図7(a)におけるD−D断面図、図7(c)は図7(a)におけるはE−E断面図を示す。
【0048】
図7において、太陽電池モジュール150の補強層103の上で、かつ、穴104の上には立方形の電力端子箱201がパッキン202を介して配置され、封止保護層105の上に設けた当て板203とともに太陽電池モジュール150を挟み込んで、一体的にカシメピン204で締結固定されている。電力端子箱201には、穴104と略同軸的に四角形の貫通穴205が補強層103側の面206から対向する面207に向かって開けられており、該貫通穴205の側壁208に略直交して棒状端子209が設けられ、外部に電力を引出すケーブル210と接続している。
【0049】
一方、図1〜4で示した切り込み部113は貫通穴205に挿入され、電力リード線102の先端部212が棒状端子209に巻き付けられ、ハンダ接続されている。そしてこの後、棒状端子209と電力リード線102の先端部212は図示しないコーティング材で表面を覆って電気絶縁と腐食防止処理がなされ、また必要に応じて貫通穴205内に充填材が充填され、電力端子箱201の面207側から蓋211が被せられて接着材などで固定され、貫通穴205が塞がれている。
【0050】
なお、組み立て順序としては、予め電力端子箱201とパッキン202を補強層103に接着剤で仮止めして電力リード線102の先端部212を棒状端子209にハンダ付けした後、当て板203を当てて、太陽電池モジュール150を挟み込み、カシメピン204で締結固定したほうが、貫通穴205の両側から先端部212を棒状端子209に巻きつける作業やハンダ付け作業ができるため、作業性が向上する。また、電力端子箱201は棒状端子209とケーブル210が接続された状態で一体成形品として作られることで低コストが図られている。
【0051】
上記方法によれば、実施形態1の電力リード線の先端部の構成を生かしつつ作業性が良好で、接続部の信頼性も高く、かつ小型・低コストの電力端子箱を提供できる。
【0052】
(実施形態3)
図8は、電力端子箱の別の実施例であって、請求項9の発明に関わる逆流防止ダイオードを内挿した実施例を示すもので、図7におけるD−D断面図を示す。
【0053】
図8において、逆流防止ダイオード301は同軸的に左右に伸びたリード線を有する棒状の形態をなしており、その一方のリード線302はケーブル210に接続されており、他方のリード線303は電力端子箱201の貫通穴205に置かれ、前述の棒状端子209をなしている。リード線303には切り込み部113の電力リード線102の先端部212が巻き付けられ、ハンダ接続されている。
【0054】
本方法によれば、棒状端子209をあらためて用意することなく、リード線303が兼用するため、部品数節減とコスト低減ができる。
【0055】
(実施形態4)
図9,10は、請求項10の発明に関わる電力端子箱201の別の実施例を示すもので、電力リード線102の先端部212とケーブル210との接続をネジ止めとしたものであり、図9は図7(a)におけるD-D断面図、図10はE-E断面図を示す。
【0056】
図9,10において、電力端子箱201の面206側には台座310が貫通穴205の一部を塞ぐように設けられ、台座310には端子台311が配置されている。
【0057】
一方、貫通穴205の塞がれていない穴314を通って切り込み部113が貫通穴205に挿入され、電力リード線102の先端部212とケーブル210に接続されたリード線312がネジ313で端子台113の上で締結固定されている。ここでリード線312は前述の棒状端子209としてもよく、ケーブル210の導体芯線としてもよい。なお、台座310は電力端子箱201と一体であり、ここでは端子台311、ケーブル210、リード線312と一体成形で形成している。
【0058】
方法によればハンダ付け作業をなくすことができて作業性が向上し、ハンダ工具やハンダ材も不用で、熱による封止保護材の損傷も防げる。
【0059】
(実施形態5)
図11,12は、請求項11の発明に関わる電力端子箱201の別の実施例を示すもので、電力リード線102の先端部212とケーブル210との接続を差込みとしたものであり、図11は図7(a)におけるD-D断面図、図12は図11のコネクタと切り込み部を拡大して表したものである。
【0060】
図11,12において、電力端子箱201の面206側には台座320が貫通穴205の一部を塞ぐように設けられ、台座320にはコネクタ321がネジ322で固定されている。コネクタ321はその差込み部323が、貫通穴205の塞がれていない穴325に置かれ、該穴325を通って挿入された切り込み部113の電力リード線102の先端部212が、差込み部323に差し込まれて電気的に接続、固定されている。
【0061】
一方、コネクタ321には図示しないケーブル210に接続されたリード線312が挿入される接続穴324が設けられ、リード線312が挿入された後、カシメやハンダ付けでコネクタ321に固定、電気的に接続される。ここでコネクタ321は、予めリード線312と接続してもよく、その場合はコネクタ321の差込み部323を残し、図示しないケーブル210などと一体成形、固定して電力端子箱201を形成することで、ネジ322を無くすことができる。
【0062】
方法によれば実施形態4で示した構成よりもさらに組み立て作業性が向上し、ハンダ工具やハンダ材も不用で、熱による封止保護材の損傷も防げる。
【0063】
【発明の効果】
この発明によれば前述のように、電気絶縁性を有するフィルム基板と、該フィルム基板上に形成された太陽電池と、太陽電池の受光面側および非受光面側の双方に設けられ、太陽電池を封止するための電気絶縁性の保護部材よりなる保護層と、前記太陽電池の側方に存在し、前記保護層延長形成されている非発電領域形成され、太陽電池に電気的に接続された電力リード線と、受光面側または非受光面側の保護層の上に設けられ、前記電力リード線の引き出しをケーブルと電気的かつ機械的に接続する電力端子箱とを有する太陽電池モジュールの製造方法において、非発電領域の一部に前記保護層を貫通して四角形の一辺を残した略コ字状の切り込み入れて切り込み部を形成する工程と、該切り込み部の保護層と電力リード線と一体的に受光面側または非受光面側に引き起こし、かつ切り込み部先端の保護層剥離て前記電力リード線の先端部を保護層から露出したものとして形成する工程と切り込み部の位置電力端子箱固定する工程とを有することとし、前記電力端子箱は、例えば、略直方体形状で前記切り込み部を内挿するための貫通穴を有し、かつ貫通穴の側壁に略直交して電力を外部に引き出すケーブルに接続された棒状の端子が貫通穴の内部に設けられたものとし、あるいは、前記貫通穴の一部に端子台を設け、電力を外部に引き出すケーブルに接続されたリード線またはケーブルの芯線と、前記電力リード線の先端部とを前記端子台にネジ止め固定したものとしたことにより、全体として、電力リード線と外部のケーブルとの接合作業が簡便で,信頼性が高く、かつ小型で安価な太陽電池モジュールの製造方法を提供することができる。
【図面の簡単な説明】
【図1】 本発明の電力引出し部の斜視図
【図2】 図1の電力引出し部と連携する電力端子箱の透視斜視図
【図3】 本発明の電力引出し部の上面図
【図4】 図3におけるB−B断面図
【図5】 太陽電池モジュールの連続生産品の斜視図
【図6】 図5におけるC−C断面図
【図7】 本発明に関わる電力端子箱の実施例の構成を示す図
【図8】 本発明に関わる電力端子箱の異なる実施例の構成を示す断面図
【図9】 本発明に関わる電力端子箱のさらに異なる実施例の構成を示す断面図
【図10】 図9の実施例の異なる方向の断面図
【図11】 本発明に関わる電力端子箱のさらに異なる実施例の構成を示す断面図
【図12】 図11の実施例におけるコネクタと切り込み部の拡大図
【図13】 従来の太陽電池モジュールの上面図
【図14】 従来の太陽電池モジュールの断面図
【図15】 従来の電力端子箱の断面図
【図16】 従来の電力端子箱の上面図
【符号の説明】
101:太陽電池、102:電力リード線、103:補強層、104:穴、105:封止保護層、110〜112:切り込み、113:切り込み部、150:太陽電池モジュール、201:電力端子箱、203:当て板、204:カシメピン、205:貫通穴、209:棒状端子、210:ケーブル、212:先端部、301:逆流防止ダイオード、310,320:台座、311:端子台、321:コネクタ、323:差し込み部。
[0001]
BACKGROUND OF THE INVENTION
In order to seal a solar cell formed on an electrically insulating film substrate with an electrically insulating protective material, a protective layer is provided on both the light-receiving surface side and the non-light-receiving surface side of the solar cell. More particularly, the present invention relates to a method for connecting a power lead wire connected to a solar cell and a power terminal box.
[0002]
[Prior art]
Currently, clean energy research and development is underway from the standpoint of environmental protection. Among them, solar cells are attracting attention because their resources (sunlight) are infinite and pollution-free. A typical example of a solar cell (photoelectric conversion device) in which a plurality of solar cell elements formed on the same substrate are connected in series is a thin film solar cell.
[0003]
Thin-film solar cells are expected to become the mainstream of solar cells in the future because they are thin and lightweight, inexpensive to manufacture, and easy to increase in area, and are attached to roofs and windows of buildings in addition to power supply. Demand is also expanding for commercial and general residential use.
[0004]
Conventional thin-film solar cells have used glass substrates, but research and development of flexible solar cells using plastic films has been promoted in terms of weight reduction, workability, and mass productivity. Utilizing this flexibility, mass production became possible by the roll-to-roll manufacturing method.
[0005]
As a thin film solar cell module, a solar cell formed on an electrically insulating film substrate is sealed with an electrically insulating protective material on both the light-receiving surface side and the non-light-receiving surface side of the solar cell. Those provided with a protective layer are known.
[0006]
Since the protective material of the solar cell module is plastic, its strength against twisting and pulling force is weak, and therefore it may be damaged by external force during construction. To solve this problem, Japanese Patent No. 2651121 As described in Japanese Patent No. 2719114, a reinforcing plate is provided on the entire back surface of the solar cell module, or, as described in Japanese Utility Model Laid-Open No. 55-25383, a reinforcing material and a power lead wire are provided in the non-power generation region. A structure with a combined structure has been developed.
[0007]
Furthermore, as a solar cell module structure that is easy to install and reduces costs, in a solar cell module in which protective layers are provided on both the light-receiving surface side and the non-light-receiving surface side of the solar cell, the side of the solar cell is The applicant of the present application has proposed that a non-power generation region is formed by extending a protective layer, and a mounting hole for installing a solar cell module is provided in this non-power generation region (see Japanese Patent Application No. 11-172624). ).
[0008]
FIGS. 13 and 14 show an example of the structure of the solar cell module described in the above Japanese Patent Application No. 11-172624, and FIG. 15 and FIG. 16 show the details of the power lead drawing method and the related structure.
[0009]
In the solar cell module shown in FIGS. 13 and 14, on the light-receiving surface side that is the solar light incident side of the solar cell 1, an adhesive layer 2 using EVA, a moisture-proof layer 3 using ETFE, etc., and glass fiber for EVA. A light-receiving surface side protective layer 6 as a weather-resistant protective layer comprising a reinforcing layer 4 filled to increase mechanical strength and a surface protective layer 5 for preventing adhesion of pollutants using ETFE or the like is laminated thereon, and the solar cell 1 is protected.
[0010]
In addition, the non-light-receiving side opposite to the sunlight incident side is provided with an adhesive layer 7, an insulating layer 8 that uses waterproofing and electrical insulation, an insulating layer 8 that uses polyimide, and EVA that serves to join the reinforcing layer 11. The used adhesive layer 9 is laminated to form a non-light-receiving surface side protective layer 10, and a reinforcing layer 11 using a metal flat plate laminated on the non-light-receiving surface side is adhered. Integrated with laminate.
[0011]
The solar cell 1 used in this configuration can be either crystalline or non-crystalline, but a thin film substrate type amorphous solar cell is particularly desirable. Note that the lamination of each layer is generally performed downward in order from the surface protective layer 5 at the top of the paper in FIG. 14, but the solar cell 1 and the adhesive layer 2 are integrated in advance. Moreover, some layers can be omitted according to needs.
[0012]
Furthermore, the light-receiving surface side protective layer 6, the non-light-receiving surface side protective layer 10, and the reinforcing layer 11 are extended to the non-power generation region on the side of the solar cell 1, and both sides of the substantially rectangular solar cell 1 are provided in the non-power generation region. Are connected to a positive electrode (not shown) or a negative electrode (not shown) of the solar cell 1 with a crossover wire 13 of a conductive adhesive tape or a soldered flat foil copper wire. Has been.
[0013]
Further, in the vicinity of the end portion of the power lead wire 12, a power terminal box 14 that relays the generated power to the outside is fixed to the reinforcing layer 11 by bonding or screwing, and the power lead wire 12 and the cable 15 are fixed. Are electrically connected by a connecting line 16 to form a rectangular and flat solar cell module 50 as a whole.
[0014]
Here, the power lead extraction structure according to the present invention will be described in detail below. FIG. 15 is a cross-sectional view of the power terminal box 14, which is shown upside down from FIG. FIG. 16 is a top view of the power terminal box 14 with the lid 27 removed.
[0015]
15 and 16, a hole 17 is formed through the reinforcing layer 11, the adhesive layer 9, the insulating layer 8, and the adhesive layer 7 from almost right above the power lead wire 12, and the surface of the power lead wire 12 is exposed. The base base 28 is disposed in contact with the reinforcing layer 11 so that the holes 18 of the power terminal box 14 are arranged substantially coaxially on the hole 17, and are fixed to the reinforcing layer 11 by adhesion or by fastening with screws (not shown). ing.
[0016]
For example, a connecting wire 16 using a copper wire is inserted into the hole 17, and an end portion thereof is soldered to the power lead wire 12. The connection wire 16 is guided to the terminal block 19 of the base table 28 through the hole 18 of the base table 28, and the end thereof is fastened and fixed together with the lead wire 22 of the backflow prevention diode 21 with the screw 20 of the terminal block 19. The other lead wire 23 of the backflow prevention diode 21 is led to a terminal block 24 and fastened together with a conductor core wire 25 of the cable 15 by a screw 26.
[0017]
Note that the backflow prevention diode 21 can fulfill its role if it is inserted into either the positive electrode side or the negative electrode side of the solar cell 1, so if it is not necessary, it can be removed and the connection line 16 can be directly connected to the terminal. It is connected to the base 24.
[0018]
Further, the hole 17 and the hole 18 are filled with a waterproof / insulating resin in order to eliminate insulation failure due to moisture intrusion, and the terminal block 19, 24 screws 20, 26 are similarly covered with the waterproof resin, and the lid 27 is placed on the base stand 28 and is fastened and fixed by bonding or screws (not shown) to form the power terminal box 14.
[0019]
[Problems to be solved by the invention]
Incidentally, the conventional method for manufacturing a solar cell module as shown in FIGS. 15 and 16, particularly the method for pulling out the power leads, has the following problems.
[0020]
(1) The circular or square hole 17 is formed by cutting from the reinforcing layer 11 to the adhesive layer 7 and removing each layer in the hole 17, but it is difficult to cut the layers having different hardnesses. It is. It is possible to make a hole in the reinforcing layer in advance, but EVA, which is the material of the adhesive layer 7, is melted and fused by heat at the time of laminating, so it is blocked even if it is made, and it is soft Cutting is not possible. In addition, the height from the reinforcing layer 11 to the adhesive layer 7 is not necessarily constant because the melted state of EVA changes depending on the pressing force, heating temperature, and heating time at the time of lamination, and automation is very difficult.
[0021]
(2) When each layer in the hole 17 is removed after the cut, the adhesive layer 7 is adhered to the power lead wire 12, so that it is difficult to peel off, and manual scraping is not workable due to poor workability. Removal by melting and evaporating with heat will damage the surrounding layers.
[0022]
(3) When the connecting wire 16 is soldered to the power lead wire 12 after peeling, if the above-mentioned peeling is not performed completely and EVA remains on the peeling surface of the power lead wire 12, soldering cannot be performed. Soldering is possible if EVA is evaporated by soldering force, but bonding reliability is low. If soldering iron is applied for a long time to evaporate EVA, the surrounding layers are damaged by the heat. In addition, the heat transferred to the power lead wire 12 damages the contact portion between the crossover wire 13 such as a conductive adhesive tape and the power lead wire 12, and the electrical connection is impaired.
[0023]
(4) In order to attach the power terminal box 14 to the reinforcing layer 11, a hole 17 is opened from the reinforcing layer 11 toward the power lead wire 12, and when the soldering in the above (3) is performed for a long time, the adhesive layers 7 and 9 are formed. The power lead wire 12 melts and approaches the reinforcing layer 11. Here, when the reinforcing layer 11 is metallic, although there is the insulating layer 8, it is deteriorated by heat, the electrical insulation is impaired, the insulation resistance is lowered, and at the worst, a short circuit is caused.
[0024]
The present invention has been made in order to solve the above-described problems, and an object of the present invention is to simplify the joining operation between an electric power lead wire for extracting electric power generated from a solar cell and an external cable. It is an object of the present invention to provide a method for manufacturing a solar cell module that is highly reliable, small and inexpensive, and in particular, a method for extracting power leads from the solar cell module.
[0025]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, according to the invention of claim 1, a film substrate having electrical insulation is provided. And the film substrate Solar cell formed on top When, On both the light-receiving surface side and non-light-receiving surface side of the solar cell A protective layer made of an electrically insulating protective member for sealing a solar cell; On the side of the solar cell Exists, The protective layer But Extension Formed Non-power generation area In Formation A power lead wire electrically connected to the solar cell and a protective layer on the light-receiving surface side or the non-light-receiving surface side, and electrically and mechanically connecting the lead of the power lead wire to the cable With power terminal box In a method for manufacturing a solar cell module , Non A substantially U-shaped notch that penetrates the protective layer and leaves one side of the rectangle in a part of the power generation area The Get in A step of forming a cut portion, A protective layer of the cut portion and a power lead wire The Caused integrally on the light-receiving surface side or non-light-receiving surface side And And , Protective layer at the tip of the notch The Peeling Shi The tip of the power lead From the protective layer Form as exposed And the process , The Notch position In Power terminal box The Fixed And a step of performing .
[0026]
According to the invention of claim 2, A film substrate having electrical insulation; a solar cell formed on the film substrate; On the light-receiving surface side of the solar cell Electrical insulation for sealing solar cells Adhesive layer And the adhesive layer Outside Provided Moisture barrier And is provided on the non-light-receiving surface side of the solar cell and is electrically insulating for sealing the solar cell. Adhesive layer And the adhesive layer Outside Provided Reinforcement layer When, On the side of the solar cell Exists, Said Moisture-proof layer, reinforcement layer and each adhesive layer Extension Formed Non-power generation area In Formation A power lead wire electrically connected to the solar cell, and a power terminal box provided on the reinforcing layer on the non-light-receiving surface side and electrically and mechanically connecting the lead of the power lead wire to the cable; Have In a method for manufacturing a solar cell module , Non A substantially U-shaped notch that passes through the moisture-proof layer and each adhesive layer in a part of the power generation area and leaves one side of a square. The Get in A step of forming a cut portion, Of the notch The moisture-proof layer and each adhesive layer And power leads and The Caused integrally on the non-light-receiving surface side reinforcement layer side And And , At the tip of the notch Moisture-proof layer and each adhesive layer Peeling Shi The tip of the power lead From moisture-proof layer and each adhesive layer Form as exposed And the process , The Notch position In Power terminal box The Fixed And a step of performing .
[0027]
Furthermore, in the invention of claim 2, the cut position of the cut portion is a position having a predetermined interval from the end of the substantially square hole of the reinforcing layer that has been opened in advance toward the center of the hole ( Claim 3).
[0028]
According to the above method, the problems of the prior art are solved, the electrical and mechanical reliability is high, and the operation of connecting the power lead wire to the external cable becomes extremely easy.
[0029]
The embodiment of the solar cell protective layer of the power lead drawing method of the solar cell module may take various modes depending on safety and strength such as waterproofing and insulation, installation conditions and other needs. In the context of the method, the following is preferred.
[0030]
For example, in the method according to claim 2 or 3, the reinforcing layer is a metal flat plate or a resin plate reinforced with inorganic fibers or organic fibers (claims 4 and 5). Claim 1 or To 5 In the described method, a mounting hole for installing a solar cell module is provided in the non-power generation region (Claim 6).
[0031]
Further, the power terminal box may have various structures, but the following configuration is preferable in connection with the power lead drawing method.
[0032]
For example, in the method according to claim 1 or 2, the power terminal box has a substantially rectangular parallelepiped shape, and has a through hole for inserting the cut portion, and power is externally orthogonal to the side wall of the through hole. It is assumed that a rod-like terminal connected to the cable to be pulled out is provided inside the through hole. Further, in the method, a contact plate is provided on a side opposite to the side where the power terminal box is provided across the solar cell module, and the power terminal box and the contact plate are integrally fastened and fixed with a caulking pin or a screw (claim) Item 8).
[0033]
According to the above method, manufacturing of a solar cell module including a power terminal box having a small size and a low cost while taking advantage of the configuration of the tip portion of the power lead wire, good workability, high reliability of the connection portion, and Method, particularly suitable power lead extraction method can be provided.
[0034]
According to the invention of claim 9, in the invention of claim 7, a rod-like backflow prevention diode is inserted into the power terminal box, and one of the lead wires extending left and right from the diode is connected to the conductor core wire of the cable. Connect the other lead wire to the rod-shaped terminal. Thereby, the number of parts and cost can be reduced.
[0035]
Furthermore, according to the invention of claim 10, in the invention of claim 1 or 2, the power terminal box has a substantially rectangular parallelepiped shape and has a through hole for inserting the cut portion, and one of the through holes. A terminal block is provided on the terminal, and a lead wire or a cable core wire connected to a cable that draws electric power to the outside and a distal end portion of the power lead wire are fixed to the terminal block with screws. According to the above, since the soldering work becomes unnecessary, workability is improved, and damage to the sealing protective material due to heat can be prevented.
[0036]
Furthermore, according to the invention of claim 11, in the invention of claim 1 or 2, the power terminal box has a substantially rectangular parallelepiped shape and has a through hole for inserting the notch, and the through hole has a through hole. Has a connector connected to a cable that draws power to the outside, and the tip of the power lead wire is inserted and connected to this connector. According to the above, workability is further improved, and damage to the sealing protective material due to heat can be prevented.
[0037]
DETAILED DESCRIPTION OF THE INVENTION
Based on the drawings, embodiments of the present invention will be described below.
[0038]
(Embodiment 1)
1 to 6 show an embodiment relating to the inventions of claims 1 and 2. 1 is a perspective view in which a cut portion is generated, FIG. 2 is a perspective view in which a power lead wire is attached to a rod-like terminal connected to a cable through a power terminal box, FIG. 3 is a top view of the cut portion, and FIG. 3 is a cross-sectional view taken along the line BB in FIG. 3, FIG. 5 is a perspective view in which the solar cell module of the present invention is continuously produced, and FIG. 6 is a cross-sectional view taken along the line CC in FIG.
[0039]
For convenience of explanation, description will be given with reference to FIGS. In the solar cell module 150, the reinforcing layer 103 on the power lead wire 102 disposed on the side of the solar cell 101 is pre-formed with a substantially rectangular hole 104, and this portion of the reinforcing layer 103 is removed and sealed. It is formed as an integrated unit with a heat and pressure protective laminate 105 together with a protective layer 105.
[0040]
Here, the sealing protective layer 105 is the one in which the light-receiving surface side protective layer 6 and the non-light-receiving surface side protective layer 10 in FIG. 14 of the prior art are collectively displayed. 14 is the same.
[0041]
In FIG. 3, except for the side 106 of the four sides of the hole 104, a notch 110 is formed through the sealing protective material 105 at a position away from the sides 107, 108, and 109 by a predetermined dimension S toward the inside of the hole 104. , 111 and 112 are formed, and a substantially U-shaped cut portion 113 is formed. Here, the dimension S is selected such that the not reaching the end sides 114 and 115 of the power lead 102, that is, the notch is located between the side 107 and the end side 114 or the side 109 and the end side 115 of the hole 104. This is because the power lead wire 102 is not exposed except for the peeled portion at the tip, which will be described later, and in the unlikely event that the notch 113 is made of metal, even if it touches the reinforcing layer 103, it will not cause an electrical short circuit. The reason for separating from the sides 107, 108, and 109 is that, when an iron plate is used for the reinforcing layer 103, each side of the reinforcing layer 103 is exposed to the air and corroded to prevent the reinforcing strength from being lowered. In addition, when the cuts 110, 111, and 112 are machined, the cutter is damaged and the reinforcing layer is prevented from being damaged by an error when the cutter is displaced or when a machined portion is attached to the machine.
[0042]
On the other hand, in FIGS. 5 and 6, the solar cell module 150 is continuously produced in a strip shape to increase production efficiency and mass production by an automatic machine (not shown), and is cut to a required length by the cutting unit 120. The At this time, the end portion 122 of the power lead wire 102 of the cutting portion 120 is pushed by the shearing force acting on the cutting edge of the cutting machine, approaches the reinforcing layer 103, and sometimes comes into contact. Similarly, burrs 121 during shearing also occur on the power lead wire 102 side from the reinforcing layer 103 side, and when a metal is used for the reinforcing layer 103, an electrical short circuit occurs.
[0043]
In order to avoid this, the conventional structure employs a method in which the power lead wire 102 is once cut before the cut portion 120 and is placed on the adhesive layer 2 again after passing the cut portion 120. Therefore, before the laminating process, a process of cutting the power lead wire 102 with a predetermined dimension is required, and its mechanical equipment is also required. In addition, each time the dimensions of the solar cell module 150 are changed, an operation for changing the cutting position is required, which is complicated.
[0044]
Returning to FIG. 3, by cutting the power lead wire 102 with the notch 111 in the structure of the present invention, the power lead wire 102 between the notch 111 and the cutting portion 120 is disconnected, and the state as shown in FIG. 6 is obtained. There is no problem.
[0045]
1 and 2, the cut portion 113 made as described above is caused on the side where the power terminal box 201 indicated by a one-dot chain line is attached, and on the reinforcing layer 103 side in FIGS. 1 and 2, and the tip of the cut portion 113 is sealed. The protective layer 105 is peeled off to expose the power lead wire 102, and the tip end portion 212 of the power lead wire 102 is wound around the rod-shaped terminal 209 connected to the cable 210 of the power terminal box 201 to be soldered. Details will be described in the second embodiment.
[0046]
According to the above method, the problems of the prior art are solved, and it is possible to obtain a highly reliable electric power extraction method both electrically and mechanically, and the workability is improved.
[0047]
(Embodiment 2)
FIG. 7 shows a structure of a power terminal box of an embodiment relating to the inventions of claims 7 and 8, FIG. 7 (a) is a top view, FIG. 7 (b) is a DD sectional view in FIG. 7 (a), FIG.7 (c) shows EE sectional drawing in Fig.7 (a).
[0048]
In FIG. 7, a cubic power terminal box 201 is disposed on the reinforcing layer 103 of the solar cell module 150 and on the hole 104 via the packing 202, and is provided on the sealing protective layer 105. The solar cell module 150 is sandwiched together with the backing plate 203 and is integrally fastened and fixed by caulking pins 204. In the power terminal box 201, a rectangular through-hole 205 that is substantially coaxial with the hole 104 is opened from the surface 206 on the reinforcing layer 103 side toward the facing surface 207, and substantially orthogonal to the side wall 208 of the through-hole 205. A rod-shaped terminal 209 is provided and connected to a cable 210 that draws power to the outside.
[0049]
On the other hand, the cut portion 113 shown in FIGS. 1 to 4 is inserted into the through hole 205, and the tip end portion 212 of the power lead wire 102 is wound around the rod-shaped terminal 209 and soldered. Thereafter, the rod-shaped terminal 209 and the tip end portion 212 of the power lead wire 102 are covered with a coating material (not shown) for electrical insulation and corrosion prevention treatment, and the through hole 205 is filled with a filler as necessary. The lid 211 is covered from the surface 207 side of the power terminal box 201 and fixed with an adhesive or the like, and the through hole 205 is closed.
[0050]
As an assembly order, the power terminal box 201 and the packing 202 are temporarily fixed to the reinforcing layer 103 with an adhesive and the tip 212 of the power lead wire 102 is soldered to the rod-shaped terminal 209, and then the contact plate 203 is applied. Thus, when the solar cell module 150 is sandwiched and fastened and fixed by the caulking pin 204, work and soldering work for winding the tip end portion 212 around the rod-shaped terminal 209 from both sides of the through hole 205 can be improved. Further, the power terminal box 201 is manufactured as an integrally molded product in a state where the rod-shaped terminal 209 and the cable 210 are connected, so that low cost is achieved.
[0051]
According to the above method, it is possible to provide a small and low-cost power terminal box with good workability, high reliability of the connecting portion, while utilizing the configuration of the tip portion of the power lead wire of the first embodiment.
[0052]
(Embodiment 3)
FIG. 8 shows another embodiment of the power terminal box, which shows an embodiment in which a backflow prevention diode according to the invention of claim 9 is inserted, and shows a DD cross-sectional view in FIG.
[0053]
In FIG. 8, the backflow prevention diode 301 has a rod shape having a lead wire extending coaxially to the left and right, one lead wire 302 is connected to the cable 210, and the other lead wire 303 is an electric power. It is placed in the through hole 205 of the terminal box 201 and forms the aforementioned rod-shaped terminal 209. The leading end portion 212 of the power lead wire 102 of the cut portion 113 is wound around the lead wire 303 and soldered.
[0054]
According to this method, since the lead wire 303 is also used without preparing the rod-shaped terminal 209 anew, the number of parts can be reduced and the cost can be reduced.
[0055]
(Embodiment 4)
9 and 10 show another embodiment of the power terminal box 201 according to the invention of claim 10, wherein the connection between the tip portion 212 of the power lead wire 102 and the cable 210 is screwed, 9 is a DD cross-sectional view in FIG. 7A, and FIG. 10 is an EE cross-sectional view.
[0056]
9 and 10, a pedestal 310 is provided on the surface 206 side of the power terminal box 201 so as to block a part of the through hole 205, and a terminal block 311 is arranged on the pedestal 310.
[0057]
On the other hand, the cut portion 113 is inserted into the through hole 205 through the hole 314 that is not blocked by the through hole 205, and the lead wire 312 connected to the distal end portion 212 of the power lead wire 102 and the cable 210 is connected to the terminal by the screw 313. Fastened and fixed on the base 113. Here, the lead wire 312 may be the above-described rod-shaped terminal 209 or a conductor core wire of the cable 210. The pedestal 310 is integral with the power terminal box 201, and here is formed by integral molding with the terminal block 311, the cable 210, and the lead wire 312.
[0058]
Book Method According to this, the soldering work can be eliminated, the workability is improved, the solder tool and the solder material are unnecessary, and the damage of the sealing protective material due to heat can be prevented.
[0059]
(Embodiment 5)
FIGS. 11 and 12 show another embodiment of the power terminal box 201 according to the invention of claim 11 in which the connection between the tip portion 212 of the power lead wire 102 and the cable 210 is inserted. 11 is a cross-sectional view taken along the line DD in FIG. 7A, and FIG. 12 is an enlarged view of the connector and the cut portion in FIG.
[0060]
11 and 12, a pedestal 320 is provided on the surface 206 side of the power terminal box 201 so as to block a part of the through hole 205, and a connector 321 is fixed to the pedestal 320 with a screw 322. In the connector 321, the insertion portion 323 is placed in the hole 325 that is not blocked by the through hole 205, and the distal end portion 212 of the power lead wire 102 of the cut portion 113 inserted through the hole 325 is inserted into the insertion portion 323. Is electrically connected and fixed.
[0061]
On the other hand, the connector 321 is provided with a connection hole 324 into which the lead wire 312 connected to the cable 210 (not shown) is inserted. After the lead wire 312 is inserted, the connector 321 is fixed to the connector 321 by caulking or soldering, and electrically Connected. Here, the connector 321 may be connected to the lead wire 312 in advance. In that case, the insertion portion 323 of the connector 321 is left, and the power terminal box 201 is formed by integrally forming and fixing with the cable 210 (not shown). The screw 322 can be eliminated.
[0062]
Book Method As a result, the assembly workability is further improved as compared with the configuration shown in the fourth embodiment, the solder tool and the solder material are unnecessary, and the damage of the sealing protective material due to heat can be prevented.
[0063]
【The invention's effect】
According to the present invention, as described above, the film substrate having electrical insulation. And the film substrate Solar cell formed on top When, On both the light-receiving surface side and non-light-receiving surface side of the solar cell A protective layer made of an electrically insulating protective member for sealing a solar cell; On the side of the solar cell Exists, The protective layer But Extension Formed Non-power generation area In Formation A power lead wire electrically connected to the solar cell and a protective layer on the light-receiving surface side or the non-light-receiving surface side, and electrically and mechanically connecting the lead of the power lead wire to the cable With power terminal box In a method for manufacturing a solar cell module , Non A substantially U-shaped notch that penetrates the protective layer and leaves one side of the rectangle in a part of the power generation area The Get in A step of forming a cut portion, A protective layer of the cut portion and a power lead wire The Caused integrally on the light-receiving surface side or non-light-receiving surface side And And , Protective layer at the tip of the notch The Peeling Shi The tip of the power lead From the protective layer Form as exposed And the process , The Notch position In Power terminal box The Fixed Process The power terminal box has, for example, a substantially rectangular parallelepiped shape and has a through hole for inserting the cut portion, and is connected to a cable that draws power to the outside substantially perpendicular to the side wall of the through hole. Or a lead wire connected to a cable that draws power to the outside and a core of the cable, and the power Since the tip of the lead wire is screwed and fixed to the terminal block, as a whole, the joining work between the power lead wire and the external cable is simple, reliable, small and inexpensive. A method for manufacturing a battery module can be provided.
[Brief description of the drawings]
FIG. 1 is a perspective view of a power drawer portion of the present invention.
FIG. 2 is a perspective view of a power terminal box that cooperates with the power drawer of FIG.
FIG. 3 is a top view of the power drawer of the present invention.
4 is a cross-sectional view taken along the line BB in FIG.
FIG. 5 is a perspective view of a continuous product of solar cell modules.
6 is a cross-sectional view taken along the line CC in FIG.
FIG. 7 is a diagram showing a configuration of an embodiment of a power terminal box according to the present invention.
FIG. 8 is a cross-sectional view showing the configuration of a different embodiment of a power terminal box according to the present invention.
FIG. 9 is a cross-sectional view showing the configuration of still another embodiment of the power terminal box according to the present invention.
10 is a cross-sectional view in a different direction of the embodiment of FIG.
FIG. 11 is a cross-sectional view showing the configuration of still another embodiment of the power terminal box according to the present invention.
12 is an enlarged view of a connector and a cut portion in the embodiment of FIG.
FIG. 13 is a top view of a conventional solar cell module.
FIG. 14 is a cross-sectional view of a conventional solar cell module
FIG. 15 is a cross-sectional view of a conventional power terminal box
FIG. 16 is a top view of a conventional power terminal box.
[Explanation of symbols]
101: solar cell, 102: power lead wire, 103: reinforcing layer, 104: hole, 105: sealing protective layer, 110-112: notch, 113: notch, 150: solar cell module, 201: power terminal box, 203: Batting plate, 204: Caulking pin, 205: Through hole, 209: Rod terminal, 210: Cable, 212: Tip, 301: Backflow prevention diode, 310, 320: Base, 311: Terminal block, 321: Connector, 323 : Insertion part.

Claims (11)

電気絶縁性を有するフィルム基板と、
該フィルム基板上に形成された太陽電池と、
太陽電池の受光面側および非受光面側の双方に設けられ、太陽電池を封止するための電気絶縁性の保護部材よりなる保護層と、
前記太陽電池の側方に存在し、前記保護層延長形成されている非発電領域形成され、太陽電池に電気的に接続された電力リード線と、
受光面側または非受光面側の保護層の上に設けられ、前記電力リード線の引き出しをケーブルと電気的かつ機械的に接続する電力端子箱と
を有する太陽電池モジュールの製造方法において、
非発電領域の一部に前記保護層を貫通して四角形の一辺を残した略コ字状の切り込み入れて切り込み部を形成する工程と、
該切り込み部の保護層と電力リード線と一体的に受光面側または非受光面側に引き起こし、かつ切り込み部先端の保護層剥離て前記電力リード線の先端部を保護層から露出したものとして形成する工程と
切り込み部の位置電力端子箱固定する工程と
を有することを特徴とする太陽電池モジュールの製造方法。
A film substrate having electrical insulation ;
A solar cell formed on the film substrate,
A protective layer provided on both the light-receiving surface side and the non-light-receiving surface side of the solar cell, made of an electrically insulating protective member for sealing the solar cell;
Present in a side of the solar cell, the protective layer is formed on the non-power generation region being extended form, and power leads that are electrically connected to the solar cell,
A power terminal box provided on a protective layer on the light-receiving surface side or the non-light-receiving surface side and electrically and mechanically connecting the lead of the power lead wire to a cable;
In the manufacturing method of the solar cell module having
A step of forming a cut portion by cutting a substantially U-shaped cut that leaves one side of the quadrangle through the protective layer in a part of the non-power generation region ;
It integrally provoked on the light-receiving surface side or the non-light-receiving side and a protective layer and the power leads of the cut portion, and the protective layer the distal end of the power leads to peeling the protective layer of the cut tip forming as exposed from
And fixing the power terminal box on the position of the cutting portions
The manufacturing method of the solar cell module characterized by having .
電気絶縁性を有するフィルム基板と、
該フィルム基板上に形成された太陽電池と、
太陽電池の受光面側に設けられ、太陽電池を封止するための電気絶縁性の接着層および該接着層の外側に設けられた防湿層と、
太陽電池の非受光面側に設けられ、太陽電池を封止するための電気絶縁性の接着層および該接着層の外側に設けられた補強層と、
前記太陽電池の側方に存在し、前記防湿層、補強層および各接着層が延長形成されている非発電領域形成され、太陽電池に電気的に接続された電力リード線と、
非受光面側の補強層の上に設けられ、前記電力リード線の引き出しをケーブルと電気的かつ機械的に接続する電力端子箱と
を有する太陽電池モジュールの製造方法において、
非発電領域の一部に前記防湿層および各接着層を貫通して四角形の一辺を残した略コ字状の切り込み入れて切り込み部を形成する工程と、
該切り込み部の前記防湿層および各接着層と電力リード線と一体的に非受光面側の補強層側に引き起こし、かつ切り込み部先端の防湿層および各接着層を剥離て前記電力リード線の先端部を防湿層および各接着層から露出したものとして形成する工程と
切り込み部の位置電力端子箱固定する工程と
を有することを特徴とする太陽電池モジュールの製造方法。
A film substrate having electrical insulation;
A solar cell formed on the film substrate;
Provided on the light-receiving surface side of the solar cell, an electrically insulating adhesive layer for sealing the solar cell, and a moisture-proof layer provided outside the adhesive layer ;
Provided on the non-light-receiving surface side of the solar cell, an electrically insulating adhesive layer for sealing the solar cell, and a reinforcing layer provided outside the adhesive layer ;
A power lead wire that is present on the side of the solar cell, is formed in a non-power generation region where the moisture-proof layer, the reinforcing layer, and each adhesive layer are extended , and is electrically connected to the solar cell;
A power terminal box provided on the reinforcing layer on the non-light-receiving surface side and electrically and mechanically connecting the lead of the power lead wire to the cable;
In the manufacturing method of the solar cell module having
A step of forming a cut portion by inserting a substantially U-shaped cut that leaves one side of the rectangle penetrating the moisture-proof layer and each adhesive layer in a part of the non-power generation region ;
It integrally provoked the reinforcing layer side of the non-light-receiving surface side and the moisture barrier and the adhesive layer and the power leads of the cut portion, and said peeling off the moisture-proof layer and the adhesive layer of the cut tip forming a tip of the power leads as exposed from the moisture barrier and the adhesive layer,
And fixing the power terminal box on the position of the cutting portions
The manufacturing method of the solar cell module characterized by having .
請求項2に記載の方法において、前記切り込み部の切り込み位置は、予め開けられた補強層の略四角形の穴の端部からこの穴の中心方向に向かって所定の間隔を有する位置としたことを特徴とする太陽電池モジュールの製造方法。  3. The method according to claim 2, wherein the cut position of the cut portion is a position having a predetermined distance from the end of the substantially square hole of the reinforcing layer that has been opened in advance toward the center of the hole. A method for producing a solar cell module. 請求項2または3に記載の方法において、前記補強層は、金属製平板としたことを特徴とする太陽電池モジュールの製造方法。  4. The method of manufacturing a solar cell module according to claim 2, wherein the reinforcing layer is a metal flat plate. 請求項2または3に記載の方法において、前記補強層は、無機繊維または有機繊維で強化した樹脂板としたことを特徴とする太陽電池モジュールの製造方法。  4. The method according to claim 2, wherein the reinforcing layer is a resin plate reinforced with inorganic fibers or organic fibers. 請求項1または5に記載の方法において、前記非発電領域に、太陽電池モジュール設置用の取付け穴を設けたことを特徴とする太陽電池モジュールの製造方法。Method according to claim 1 or 5, wherein the non-power generation region, a method for manufacturing a solar cell module which is characterized in that a mounting hole for installing a solar cell module. 請求項1または2に記載の方法において、前記電力端子箱は略直方体形状で前記切り込み部を内挿するための貫通穴を有し、かつ貫通穴の側壁に略直交して電力を外部に引き出すケーブルに接続された棒状の端子が貫通穴の内部に設けられたことを特徴とする太陽電池モジュールの製造方法。  3. The method according to claim 1, wherein the power terminal box has a substantially rectangular parallelepiped shape and has a through hole for inserting the cut portion, and draws electric power to the outside substantially orthogonal to the side wall of the through hole. A method of manufacturing a solar cell module, wherein a rod-like terminal connected to a cable is provided inside a through hole. 請求項7に記載の方法において、太陽電池モジュールを挟んで電力端子箱を設けた側と反対側に当て板を設け、前記電力端子箱とこの当て板とをカシメピンまたはネジで一体的に締結固定したことを特徴とする太陽電池モジュールの製造方法。  8. The method according to claim 7, wherein a contact plate is provided on a side opposite to the side where the power terminal box is provided across the solar cell module, and the power terminal box and the contact plate are integrally fastened and fixed by caulking pins or screws. A method for manufacturing a solar cell module, comprising: 請求項7に記載の方法において、前記電力端子箱内に棒状の逆流防止ダイオードを挿入し、このダイオードから左右に伸びたリード線の一方をケーブルの導体芯線に接続し,他方のリード線を棒状の端子としたことを特徴とする太陽電池モジュールの製造方法。  8. The method according to claim 7, wherein a rod-shaped backflow prevention diode is inserted into the power terminal box, one of the lead wires extending left and right from the diode is connected to a conductor core wire of the cable, and the other lead wire is rod-shaped. The manufacturing method of the solar cell module characterized by using as a terminal. 請求項1または2に記載の方法において、前記電力端子箱は略直方体形状で前記切り込み部を内挿するための貫通穴を有し、かつこの貫通穴の一部に端子台を設けてなり、電力を外部に引き出すケーブルに接続されたリード線またはケーブルの芯線と、前記電力リード線の先端部とを前記端子台にネジ止め固定したことを特徴とする太陽電池モジュールの製造方法。  The method according to claim 1 or 2, wherein the power terminal box has a substantially rectangular parallelepiped shape and has a through hole for inserting the cut portion, and a terminal block is provided in a part of the through hole. A method of manufacturing a solar cell module, comprising: a lead wire connected to a cable that draws power to the outside or a core wire of the cable; and a distal end portion of the power lead wire fixed to the terminal block with screws. 請求項1または2に記載の方法において、前記電力端子箱は略直方体形状で前記切り込み部を内挿するための貫通穴を有し、かつこの貫通穴には電力を外部に引き出すケーブルに接続されたコネクタを有してなり、前記電力リード線の先端部をこのコネクタに挿入接続したことを特徴とする太陽電池モジュールの製造方法。  3. The method according to claim 1, wherein the power terminal box has a substantially rectangular parallelepiped shape and has a through hole for inserting the cut portion, and the through hole is connected to a cable that draws electric power to the outside. A method for manufacturing a solar cell module, comprising: a connector, wherein a tip end portion of the power lead wire is inserted and connected to the connector.
JP19152599A 1999-07-06 1999-07-06 Manufacturing method of solar cell module Expired - Fee Related JP3991257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19152599A JP3991257B2 (en) 1999-07-06 1999-07-06 Manufacturing method of solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19152599A JP3991257B2 (en) 1999-07-06 1999-07-06 Manufacturing method of solar cell module

Publications (2)

Publication Number Publication Date
JP2001024205A JP2001024205A (en) 2001-01-26
JP3991257B2 true JP3991257B2 (en) 2007-10-17

Family

ID=16276121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19152599A Expired - Fee Related JP3991257B2 (en) 1999-07-06 1999-07-06 Manufacturing method of solar cell module

Country Status (1)

Country Link
JP (1) JP3991257B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359389A (en) * 2001-05-31 2002-12-13 Kitani Denki Kk Terminal box for solar power generation module wiring
JP4687067B2 (en) * 2004-10-26 2011-05-25 富士電機システムズ株式会社 Solar cell module and power lead wire connection method
CN101584050B (en) * 2006-11-21 2013-03-27 Bp北美公司 Cable connectors for a photovoltaic module and method of installing
JP2009196615A (en) * 2008-02-25 2009-09-03 Hitachi Ltd Moving body position detecting system by digital signal
JP5237691B2 (en) * 2008-05-19 2013-07-17 木谷電器株式会社 Electrode wire connection structure of terminal box for solar cell module
JP4948492B2 (en) * 2008-08-08 2012-06-06 木谷電器株式会社 Diode connection structure of terminal box for solar cell module
JP5253249B2 (en) * 2009-03-13 2013-07-31 三洋電機株式会社 Manufacturing method of solar cell module
JP5144612B2 (en) * 2009-08-26 2013-02-13 日清紡メカトロニクス株式会社 Ribbon terminal connection device

Also Published As

Publication number Publication date
JP2001024205A (en) 2001-01-26

Similar Documents

Publication Publication Date Title
US7534956B2 (en) Solar cell module having an electric device
JP4384241B1 (en) Terminal box and solar cell module
EP1081770B1 (en) Thin-film solar cell module and method of manufacturing the same
JP4558070B2 (en) Solar cell module
JP2010510686A (en) Cable connector for solar cell module and installation method thereof
JP3991257B2 (en) Manufacturing method of solar cell module
JP2011054663A (en) Solar cell module
JP3852662B2 (en) Method for extracting power leads from solar cell module
US20110271998A1 (en) Solar cell module and manufacturing method thereof
JP4461607B2 (en) Method for pulling out power leads of solar cell module
JP4432247B2 (en) Solar cell module
JP3972252B2 (en) Solar cell module
JP4687067B2 (en) Solar cell module and power lead wire connection method
JPH11303325A (en) Solar battery module
JP5132646B2 (en) Terminal box and solar cell module
JP2563877Y2 (en) Solar cell module
JP2003017732A (en) Method of leading out power lead of solar battery module
JP2002124693A (en) Solar cell module and manufacturing method thereof
JP4061525B2 (en) Manufacturing method of solar cell module
JP5306490B2 (en) Terminal box and solar cell module
JP2004235189A (en) Solar-cell module
JP2004207584A (en) Solar battery module and its manufacturing method
JP2000223729A (en) Roof and equipment of solar power
JP4432250B2 (en) Wiring method for electronic devices
JP2004011172A (en) Roofing-integrated solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees