JP2003017732A - Method of leading out power lead of solar battery module - Google Patents

Method of leading out power lead of solar battery module

Info

Publication number
JP2003017732A
JP2003017732A JP2001201397A JP2001201397A JP2003017732A JP 2003017732 A JP2003017732 A JP 2003017732A JP 2001201397 A JP2001201397 A JP 2001201397A JP 2001201397 A JP2001201397 A JP 2001201397A JP 2003017732 A JP2003017732 A JP 2003017732A
Authority
JP
Japan
Prior art keywords
solar cell
power lead
lead wire
internal wiring
protection member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001201397A
Other languages
Japanese (ja)
Inventor
Yujiro Watanuki
勇次郎 綿貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001201397A priority Critical patent/JP2003017732A/en
Publication of JP2003017732A publication Critical patent/JP2003017732A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of leading out power leads of a solar battery module by which the internal wiring of the solar battery can be led out and electrically connected easily to the outside with high insulation reliability and, in addition, without causing an appearance problem. SOLUTION: Lead wires composed of metal foil covered with an electrical insulating material and having exposed sections at both ends are used as the positive and negative power lead wires 40 of a solar battery module. The lead wires 40 are laid on the main surface of a rear-surface protective member 36 to bridge the space between a position where the positive and negative electrodes of a solar battery 1 exit and another position where a terminal box 20 exists. One exposed ends of the metal foil constituting the positive and negative power lead wires 40 are electrically connected to the positive and negative electrodes of the internal wiring of the battery 1, respectively, through the protective member 36 and an adhesive resin sealant (adhesive layer) 37. The other exposed ends of the metal foil are electrically connected to power lead-out terminals provided in the terminal box 20. After connection, the electric connections are insulated with an electrical insulating material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、表面保護部材と
裏面保護部材との間に、複数個の太陽電池素子を直列接
続した太陽電池を接着性樹脂封止材により封止してな
り、前記太陽電池の正極および負極の内部配線を、正負
各1本の電力リード線により前記裏面保護部材上に設け
た端子箱内の電力引き出し端子に電気的に接続してなる
太陽電池モジュールの電力リード引き出し方法に関す
る。
TECHNICAL FIELD The present invention relates to a solar cell in which a plurality of solar cell elements are connected in series between a front surface protection member and a back surface protection member and is sealed with an adhesive resin sealing material. Power lead extraction of a solar cell module in which internal wirings of the positive electrode and the negative electrode of the solar cell are electrically connected to a power extraction terminal in a terminal box provided on the back surface protection member by one positive and one negative power lead wire, respectively. Regarding the method.

【0002】[0002]

【従来の技術】現在、環境保護の立場から、クリーンな
エネルギーの研究開発が進められている。中でも、太陽
電池はその資源(太陽光)が無限であること、無公害で
あることから注目を集めている。同一基板上に形成され
た複数の太陽電池素子が、直列接続されてなる太陽電池
(光電変換装置)の代表例は、薄膜太陽電池である。
2. Description of the Related Art Currently, from the standpoint of environmental protection, research and development of clean energy is in progress. Above all, solar cells are attracting attention because of their unlimited resources (sunlight) and no pollution. A typical example of a solar cell (photoelectric conversion device) in which a plurality of solar cell elements formed on the same substrate are connected in series is a thin film solar cell.

【0003】薄膜太陽電池は、薄型で軽量、製造コスト
の安さ、大面積化が容易であることなどから、今後の太
陽電池の主流となると考えられ、電力供給用以外に、建
物の屋根や窓などにとりつけて利用される業務用,一般
住宅用にも需要が広がってきている。
Thin-film solar cells are considered to become the mainstream of solar cells in the future because they are thin and lightweight, have low manufacturing costs, and can easily be made large in area. In addition to supplying power, roofs and windows of buildings are also considered. Demand is also expanding for commercial and residential use, which are used by attaching to such things.

【0004】従来の薄膜太陽電池はガラス基板を用いて
いたが、軽量化、施工性、量産性においてプラスチック
フィルムを用いたフレキシブルタイプの太陽電池の研究
開発がすすめられている。このフレキシブル性を生か
し、ロールツーロール方式の製造方法により大量生産が
可能となった。
Although a conventional thin film solar cell uses a glass substrate, research and development of a flexible solar cell using a plastic film has been promoted in terms of weight reduction, workability and mass productivity. Taking advantage of this flexibility, mass production became possible by the roll-to-roll manufacturing method.

【0005】上記薄膜太陽電池の構成および製造方法の
一例は、例えば特開平10−233517号公報や特願
平11−19306号に記載されている。
An example of the structure and manufacturing method of the above-mentioned thin-film solar cell is described in, for example, Japanese Patent Application Laid-Open No. 10-233517 and Japanese Patent Application No. 11-19306.

【0006】図11は、構造の理解の容易化のために、
薄膜太陽電池の構成を簡略化して斜視図で示したもので
ある。図11において、基板61の表面に形成した単位
光電変換素子62および基板61の裏面に形成した接続
電極層63は、それぞれ複数の単位ユニットに完全に分
離され、それぞれの分離位置をずらして形成されてい
る。このため、素子62のアモルファス半導体部分であ
る光電変換層65で発生した電流は、まず透明電極層6
6に集められ、次に該透明電極層領域に形成された集電
孔67を介して背面の接続電極層63に通じ、さらに該
接続電極層領域で素子の透明電極層領域の外側に形成さ
れた直列接続用の接続孔68を介して上記素子と隣り合
う素子の透明電極層領域の外側に延びている下電極層6
4に達し、両素子の直列接続が行われている。
FIG. 11 shows a structure for facilitating the understanding of the structure.
1 is a perspective view showing a simplified structure of a thin film solar cell. In FIG. 11, the unit photoelectric conversion element 62 formed on the front surface of the substrate 61 and the connection electrode layer 63 formed on the back surface of the substrate 61 are each completely separated into a plurality of unit units, and are formed by shifting their respective separation positions. ing. Therefore, the electric current generated in the photoelectric conversion layer 65, which is the amorphous semiconductor portion of the element 62, is first applied to the transparent electrode layer 6
6 and then to the connection electrode layer 63 on the back side through the current collecting holes 67 formed in the transparent electrode layer region, and further formed outside the transparent electrode layer region of the device in the connection electrode layer region. Lower electrode layer 6 extending outside the transparent electrode layer region of the element adjacent to the above element through the connection hole 68 for serial connection
4, and both elements are connected in series.

【0007】前記薄膜太陽電池を複数個組み合わせ、電
気絶縁保護材で覆って、薄膜太陽電池モジュールを構成
する。この薄膜太陽電池モジュールとして、電気絶縁性
を有するフィルム基板上に形成された太陽電池を、内部
配線とともに、電気絶縁性の保護材により封止するため
に、太陽電池の受光面側および非受光面側の双方に表面
保護部材と裏面保護部材とを設けたものが知られてい
る。
A plurality of the thin film solar cells are combined and covered with an electric insulating protective material to form a thin film solar cell module. As this thin-film solar cell module, a solar cell formed on a film substrate having electrical insulation is sealed with an electrically insulating protective material together with internal wiring. It is known that a front surface protection member and a back surface protection member are provided on both sides.

【0008】図6は、例えば、本願と同一出願人によっ
て特願平11−160782号に開示された前記太陽電
池モジュールの一例を示し、(a)は透視平面図、(b)
は(a)におけるX−X断面図である。図6に示す太陽
電池モジュールにおいて、所定の間隔をおいて並べられ
た太陽電池ユニット1u(あらかじめ受光面側に、EV
A(エチレンビニルアセテート)からなる接着剤23を
仮ラミネートし、所定寸法に裁断したもの)は、その両
外側に配置される、例えばSn/Cu/Sn材料からなる、金属
箔である内部配線22と、太陽電池ユニット1uの裏面電
極と接続する導電性粘着剤付きAl箔/PET(ポリエ
チレンテレフタレート)である補助配線25と共に、接
着剤(EVA)23を介して、メッシュ状プラスチック
繊維26および耐候性の高いフッ素フィルム、例えばE
TFE(エチレン・四フッ化エチレン共重合体)製の防
湿フィルム24でラミネートされ、受光側と反対側(非
受光側)はEVA3を介してETFEフィルム24がラ
ミネートされて封止される。
FIG. 6 shows an example of the solar cell module disclosed in Japanese Patent Application No. 11-160782 by the same applicant as the present application, in which (a) is a perspective plan view and (b) is a plan view.
FIG. 7A is a cross-sectional view taken along line XX in (a). In the solar cell module shown in FIG. 6, the solar cell units 1u arranged at a predetermined interval (preliminarily on the light receiving surface side, EV
The adhesive 23 made of A (ethylene vinyl acetate) is temporarily laminated and cut to a predetermined size), and the internal wiring 22 made of, for example, Sn / Cu / Sn material, which is a metal foil, is disposed on both outer sides thereof. And the auxiliary wiring 25, which is an Al foil / PET (polyethylene terephthalate) with a conductive adhesive that is connected to the back electrode of the solar cell unit 1u, together with the adhesive (EVA) 23, the mesh plastic fiber 26 and the weather resistance. High fluorine film, eg E
It is laminated with a moisture-proof film 24 made of TFE (ethylene / tetrafluoroethylene copolymer), and the side opposite to the light receiving side (non-light receiving side) is laminated with the ETFE film 24 via EVA 3 and sealed.

【0009】上記のようにラミネートされたものを、1
50℃で真空加熱処理し、EVAの架橋硬化を行い、E
TFEを接着し、かつ全体をEVAで樹脂封止する。こ
れにより、太陽電池ユニット1u、補助配線25および
内部配線22間の電気的接続の安全性も確保する。上記
の長尺のラミネートフィルムから、図6のCC部で裁断
して、所定数の太陽電池ユニット1uを含む太陽電池モ
ジュールMを得る。
[0009] One laminated as described above
Vacuum heat treatment at 50 ℃, cross-linking and curing EVA, E
TFE is adhered and the whole is resin-sealed with EVA. Thereby, the safety of the electrical connection between the solar cell unit 1u, the auxiliary wiring 25, and the internal wiring 22 is also secured. A solar cell module M including a predetermined number of solar cell units 1u is obtained by cutting the long laminated film at the CC portion of FIG.

【0010】前記太陽電池モジュールにおいて、表面保
護部材と裏面保護部材の各材質や、また保護層の構成
は、目的に応じて、種々の変形がある。表面保護部材に
は、前述のようにガラス板が使用されることもある。
In the solar cell module, each material of the surface protection member and the back surface protection member and the structure of the protection layer have various modifications depending on the purpose. A glass plate may be used as the surface protection member as described above.

【0011】また、太陽電池モジュールの電力リードの
外部への引き出し方法としても、種々の方法がある。例
えば図7ないし10は、本願と同一出願人によって特願
2000−82269号に記載された前記太陽電池モジ
ュールの一例を示し、図7は太陽電池モジュールの平面
図、図8は図7におけるA−A断面図、図9は電力リー
ド引き出し部の先端部を切り込み部において引き起こし
た状態の斜視図、図10はケーブルに接続した棒状端子
に、電力リード引き出し部の先端部外部リード線接続部
材を取付けた状態の斜視図を示す。
There are various methods for extracting the power leads of the solar cell module to the outside. For example, FIGS. 7 to 10 show an example of the solar cell module described in Japanese Patent Application No. 2000-82269 by the same applicant as the present application, FIG. 7 is a plan view of the solar cell module, and FIG. 8 is A- in FIG. A sectional view, FIG. 9 is a perspective view showing a state in which the tip portion of the power lead lead portion is raised at the notch portion, and FIG. 10 is a rod-shaped terminal connected to the cable, and the tip lead external lead wire connecting member of the power lead lead portion is attached. The perspective view of the opened state is shown.

【0012】図7,8に示す太陽電池モジュールにおい
ては、太陽電池1の太陽光入射側である受光面側に、E
VAなどを使用した接着層2、並びにETFEなどを使
用した防湿層3、EVAにガラス繊維を充填して機械的
強度を高めた強化層4、その上にETFEなどを使用し
た汚損物質付着防止の表面保護層5からなる耐候性保護
層としての受光面側保護層6が積層され、太陽電池1を
保護している。
In the solar cell module shown in FIGS. 7 and 8, E is provided on the light receiving surface side of the solar cell 1 which is the sunlight incident side.
An adhesive layer 2 using VA or the like, a moisture-proof layer 3 using ETFE or the like, a reinforcing layer 4 in which EVA is filled with glass fiber to enhance mechanical strength, and an ETFE or the like is used to prevent adhesion of fouling substances. A light receiving surface side protective layer 6 as a weather resistant protective layer composed of the surface protective layer 5 is laminated to protect the solar cell 1.

【0013】また太陽光入射側と反対側である非受光側
には、接着層7、防水と電気絶縁を兼ねたETFEやポ
リイミドを使用した絶縁層8、補強層11との接合の役
目をなすEVAなどを使用した接着層9が積層されて非
受光面側保護層10が形成され、その上に積層された金
属製平板などを使用した補強層11が接着されており、
上記各層は加圧熱融着ラミネートで一体化されている。
The non-light-receiving side, which is the side opposite to the sunlight-incident side, serves to join the adhesive layer 7, the insulating layer 8 made of ETFE or polyimide having both waterproof and electric insulation, and the reinforcing layer 11. The non-light-receiving surface side protective layer 10 is formed by laminating the adhesive layer 9 using EVA or the like, and the reinforcing layer 11 using a metal flat plate or the like laminated thereon is adhered thereto.
The above layers are integrated by a pressure heat fusion laminate.

【0014】さらに、受光面側保護層6、非受光面側保
護層10、補強層11は太陽電池1の側方の非発電領域
まで延長され、非発電領域には略四角形状の太陽電池1
の両側辺に沿って平行的に平箔銅線の内部配線12が配
置され、導電性粘着テープ若しくはハンダ付け平箔銅線
の渡り線(前述の補助配線)13で太陽電池1の図示し
ないプラス極、またはマイナス極にそれぞれ接続されて
いる。
Further, the light-receiving surface side protective layer 6, the non-light-receiving surface side protective layer 10, and the reinforcing layer 11 are extended to the non-power generation region on the side of the solar cell 1, and the non-power generation region has a substantially rectangular solar cell 1.
Internal wirings 12 of flat foil copper wires are arranged in parallel along both side edges of the solar cell 1 with conductive adhesive tape or soldered flat foil copper wire crossover wires (the above-mentioned auxiliary wiring) 13 and not shown in the drawing. It is connected to the pole or the negative pole, respectively.

【0015】また、内部配線12の端部近傍には、発電
した電力を外部に引出す中継をなす電力端子箱14が補
強層11に接着、またはネジ止めで固定されており、内
部配線12とケーブル15が接続線16で電気的に接続
されて全体として四角形で平板状の太陽電池モジュール
50を形成している。
In the vicinity of the end of the internal wiring 12, a power terminal box 14 for relaying the generated power to the outside is fixed to the reinforcing layer 11 by bonding or screwing, and the internal wiring 12 and the cable are fixed. 15 are electrically connected by a connecting line 16 to form a quadrangular and flat solar cell module 50 as a whole.

【0016】図9および10は、前記図7および8の太
陽電池モジュールの電力リード引き出し方法を改良し、
電力を外部に引出す内部配線と外部のケーブルとの接合
作業が簡便で、絶縁の信頼性が高い太陽電池モジュール
の電力リード引き出し方法に関する(詳細は、前記特願
2000−82269号参照)。
FIGS. 9 and 10 improve the method of drawing out the power leads of the solar cell module of FIGS.
The present invention relates to a method for drawing out a power lead of a solar cell module, which has a simple operation of joining an internal wiring for drawing out electric power to an external cable and has high insulation reliability (for details, see Japanese Patent Application No. 2000-82269).

【0017】図9における電力リードとしての外部リー
ド線接続部材51および剥離部材90は、保護層70の
中に埋設された状態となっており、内部配線を電気的に
外部に引き出すに際して、保護層70に専用カッターを
用いてコの字型に切り込みを入れ、その部分の外部リー
ド線接続部材51を保護層70と共に上に引き上げた
後、外部リード線接続部材51上の剥離部材90を除去
し、接続部分を露出させ、図10に示すケーブル210
の棒状端子209に半田付けを行う。図9の斜視図にお
いて、113は切り込み部を、103は補強層を示す。
また、図10の斜視図において、201は電力端子箱を
示す。
The external lead wire connecting member 51 as a power lead and the peeling member 90 in FIG. 9 are in a state of being embedded in the protective layer 70, and when the internal wiring is electrically pulled out to the outside, the protective layer. After making a U-shaped cut in 70 using a dedicated cutter and pulling up the external lead wire connecting member 51 at that portion together with the protective layer 70, the peeling member 90 on the external lead wire connecting member 51 is removed. , The cable 210 shown in FIG.
The rod-shaped terminals 209 are soldered. In the perspective view of FIG. 9, 113 is a notch and 103 is a reinforcing layer.
Moreover, in the perspective view of FIG. 10, 201 shows a power terminal box.

【0018】ところで、前述の太陽電池モジュールの電
力リード引き出し方法において、内部配線は、太陽電池
の有効受光面の外側に配設されているが、有効受光面の
面積を増大するために、内部配線を太陽電池の有効受光
面の内側に配置し、さらに太陽電池と接着剤保護層との
間に、電気絶縁層を介して電力リード線を配設して、前
記内部配線と端子箱内の外部端子とをこの電力リード線
を介して電気的に接続する方法も採用されている。
By the way, in the above-described method for drawing out the power leads of the solar cell module, the internal wiring is arranged outside the effective light-receiving surface of the solar cell, but in order to increase the area of the effective light-receiving surface, the internal wiring is Is disposed inside the effective light-receiving surface of the solar cell, and a power lead wire is further disposed between the solar cell and the adhesive protective layer via an electric insulation layer so that the internal wiring and the outside of the terminal box A method of electrically connecting a terminal to this terminal through this power lead wire is also adopted.

【0019】上記のような電力リード引き出し方法に関
わる太陽電池モジュールの模式的構成を、図5に示す。
図5(b)は平面図、図5(a)は図5(b)における
A−A断面図を示す。
FIG. 5 shows a schematic structure of a solar cell module relating to the above-mentioned method of drawing out power leads.
5 (b) is a plan view and FIG. 5 (a) is a sectional view taken along line AA in FIG. 5 (b).

【0020】図5(a)に示すように、太陽電池1の太
陽光入射側には、ガラス板からなる表面保護部材38を
使用し、反対側には裏面保護部材36としてA1箔入り
フツ素樹脂フィルムを使用し、接着層37としてEVA
を使用し、加圧熱融着ラミネートにより一体化して、太
陽電池モジュール30を形成している。
As shown in FIG. 5 (a), a front surface protection member 38 made of a glass plate is used on the sunlight incident side of the solar cell 1 and a back surface protection member 36 is formed on the opposite side as a fluorine foil containing A1 foil. EVA is used as the adhesive layer 37 using a resin film.
And is integrated by pressure heat fusion lamination to form the solar cell module 30.

【0021】また、太陽電池モジュール30の略中央部
に、内部配線に電気的に接続した電力リード線40の引
き出し部48を設け、電力端子箱20まで引き出して、
図示しない外部端子に電気的に接続する。この電力端子
箱20は、フィルム裏面保護部材36上に接着固定して
設ける。正極および負極の2本の電力リード線40は、
前記電力リード線の引き出し部48から、太陽電池のパ
ターニングの図示しない分離ラインに沿って、太陽電池
モジュール周辺部に向けて配設し、電力リード線40の
他端を、太陽電池の内部配線の正負の電極部に接続す
る。
Further, a lead-out portion 48 of the power lead wire 40 electrically connected to the internal wiring is provided in the substantially central portion of the solar cell module 30, and is pulled out to the power terminal box 20.
It is electrically connected to an external terminal (not shown). The power terminal box 20 is provided by being adhesively fixed on the film back surface protection member 36. The two power lead wires 40 of the positive electrode and the negative electrode are
The power lead wire lead-out portion 48 is arranged toward the solar cell module peripheral portion along a separation line (not shown) for patterning the solar cell, and the other end of the power lead wire 40 is connected to the internal wiring of the solar cell. Connect to the positive and negative electrode parts.

【0022】さらに、電カリード線40としては、通
常、半田コート銅箔、錫コート銅箔等が使用されるが、
この電カリード線40は、太陽電池1の裏面接続電極層
上を通過するため、幅寸法の比較的小さいEVAスペー
サー71を、太陽電池1と電力リード線40との間に電
力リード線40に沿って挿入し、両者間の絶縁を確保す
るようにしている。
Further, as the electric lead wire 40, solder-coated copper foil, tin-coated copper foil, etc. are usually used.
Since the electric lead wire 40 passes over the back surface connection electrode layer of the solar cell 1, an EVA spacer 71 having a relatively small width dimension is provided between the solar cell 1 and the electric power lead wire 40 along the electric power lead wire 40. Are inserted to ensure insulation between the two.

【0023】[0023]

【発明が解決しようとする課題】ところで、前記図5に
示す従来の太陽電池モジュールの電力リード引き出し方
法においては、以下のような問題点がある。
By the way, the conventional method for drawing out the power leads of the solar cell module shown in FIG. 5 has the following problems.

【0024】前述のように、EVAスペーサーを、太
陽電池の裏面接続電極層と電力リード線との間に挿入し
絶縁処理をしているが、EVAの膜厚が比較的厚いため
モジュール化後、太陽電池に凸凹や段差が発生し、外観
上好ましくない問題があった。
As described above, the EVA spacer is inserted between the back surface connection electrode layer of the solar cell and the power lead wire for insulation treatment. However, since the EVA film is relatively thick, after the modularization, The solar cell has irregularities and steps, which is not desirable in appearance.

【0025】比較的厚いEVAスペーサーを使用して
いるにも拘わらず、幅寸法の比較的小さいEVAスペー
サー71がモジュール化時の加熱により溶けて、EVA
の絶縁層が欠落する部分が生じ、電カリード線と裏面接
続電極層とが接触して絶縁不良が発生する問題があっ
た。
Despite the use of a comparatively thick EVA spacer, the EVA spacer 71 having a comparatively small width is melted by heating at the time of modularization, and the EVA spacer 71 is melted.
There is a problem that the insulating layer is missing and the electric lead wire comes into contact with the back surface connection electrode layer to cause insulation failure.

【0026】電カリード線を裏面接続電極層上に設置
し、その後、他の材料を組立てる際、電カリード線とE
VAスペーサーが動いてしまい、設置するのに時間がか
かり、作業効率が悪い問題があった。
When the electric lead wire is placed on the back surface connection electrode layer and then other materials are assembled, the electric lead wire and the E
Since the VA spacer moved, it took time to set it, and there was a problem that work efficiency was poor.

【0027】太陽電池には、前述のように、集電孔お
よび直列接続用の接続孔が形成されている。電カリード
線を、前述のように、太陽電池のパターニング分離ライ
ンに沿って、中央部の引き出し部から太陽電池モジュー
ル周辺部に向けて配設した場合、電カリード線は、前記
接続孔の上を通過することになる。この電カリード線を
太陽電池モジュールの受光面側からみた時、前記接続孔
の部分が白く見えてしまい、外観上好ましくない問題が
あった。
As described above, the solar cell has a current collecting hole and a connecting hole for series connection. As described above, when the electric lead wire is arranged along the patterning separation line of the solar cell from the central lead-out portion toward the solar cell module peripheral portion, the electric lead wire is placed above the connection hole. Will pass through. When this electric lead wire is viewed from the light-receiving surface side of the solar cell module, the connection hole portion looks white, which is an undesirable external appearance.

【0028】この発明は、上記のような問題点を解消す
るためになされたもので、本発明の課題は、太陽電池の
内部配線の外部への電気的引き出し作業が簡便で、かつ
絶縁の信頼性が高く、さらに外観上の問題の発生がない
太陽電池モジュールの電力リード引き出し方法を提供す
ることにある。
The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to easily carry out an electrical drawing operation of an internal wiring of a solar cell to the outside and to have a reliable insulation. It is to provide a method for drawing out a power lead of a solar cell module, which has high performance and does not cause a problem in appearance.

【0029】[0029]

【課題を解決するための手段】前述の課題を解決するた
め、この発明によれば、表面保護部材と裏面保護部材と
の間に、複数個の太陽電池素子を直列および/または並
列に接続した太陽電池を接着性樹脂封止材により封止し
てなり、前記太陽電池の正極および負極の内部配線を、
正負各1本の電力リード線により前記裏面保護部材上に
設けた端子箱内の電力引き出し端子に電気的に接続して
なる太陽電池モジュールの電力リード引き出し方法にお
いて、前記電力リード線として、周囲が電気絶縁性材料
により被覆され、かつ両端に被覆のない露出部を有する
金属箔からなるフレキシブルなリード線を用い、この電
力リード線を、前記裏面保護部材の主面上に、前記太陽
電池の正極および負極が存在する位置と前記端子箱が存
在する位置との間を橋渡しするように配設し、前記正負
各1本の電力リード線の金属箔の露出部の一端を、前記
裏面保護部材および接着性樹脂封止材を貫通させて前記
太陽電池の内部配線の正極および負極に電気的に接続
し、他端を、前記端子箱内の電力引き出し端子に電気的
に接続した後、前記電気的接続部を電気絶縁材料により
絶縁処理することとする(請求項1の発明)。
In order to solve the above problems, according to the present invention, a plurality of solar cell elements are connected in series and / or in parallel between a front surface protection member and a back surface protection member. The solar cell is sealed with an adhesive resin sealing material, and the internal wiring of the positive electrode and the negative electrode of the solar cell is
In the method for drawing out the power lead of the solar cell module, which is electrically connected to the power draw terminal in the terminal box provided on the back surface protection member by one positive and one negative power lead wire, the power lead wire is surrounded by A flexible lead wire made of a metal foil covered with an electrically insulating material and having exposed portions at both ends is used, and the power lead wire is provided on the main surface of the back surface protection member and the positive electrode of the solar cell. And a position where the negative electrode is present and a position where the terminal box is present are arranged so as to bridge, and one end of the exposed portion of the metal foil of each one of the positive and negative power leads is connected to the back surface protection member and After passing through the adhesive resin sealing material and electrically connected to the positive electrode and the negative electrode of the internal wiring of the solar cell, the other end is electrically connected to the power extraction terminal in the terminal box, And it is insulated by electrically insulating material gas connections (invention of claim 1).

【0030】前記のように、電力リード線を裏面保護部
材の主面上の所定の位置に配設してから、電気的接続作
業を行なうので、EVAスペーサー等の絶縁の位置精度
を気にせずに電気的接続作業ができるので、組立て作業
が容易となる。また、電力リード線を、太陽電池モジュ
ール内から裏面保護部材の外側に配置したので、絶縁の
信頼性が向上するとともに、凹凸や段差が生ずる美観上
の問題も解消する。
As described above, since the electric connection work is performed after the power lead wire is arranged at a predetermined position on the main surface of the back surface protection member, the positional accuracy of insulation of the EVA spacer or the like is not taken into consideration. Since the electrical connection work can be performed, the assembling work becomes easy. Further, since the power lead wire is arranged from inside the solar cell module to the outside of the back surface protection member, the reliability of insulation is improved and the aesthetic problem of unevenness and steps is eliminated.

【0031】なお、前記端子箱は、モジュール中央部に
1個、あるいは両端2ケ所に正負1個づつ設置すること
ができる。モジュール中央部へ取付ける場合は、コスト
ダウンが可能である。また、接続部の前記電気的露出部
の電気的絶縁処理が、事前に必要な場合には、樹脂封止
材料等をあらかじめ塗布して絶縁処理を行うこともでき
る。これにより絶縁の信頼性がさらに向上する。
It should be noted that one terminal box can be installed in the central portion of the module, or one positive and negative terminals can be installed at two locations on both ends. The cost can be reduced when the module is attached to the central part. In addition, when the electrical insulation treatment of the electrically exposed portion of the connection portion is necessary in advance, the resin sealing material or the like may be applied in advance to perform the insulation treatment. This further improves the reliability of insulation.

【0032】前記請求項1の発明の実施態様として、下
記請求項2ないし5の発明が好ましい。即ち、請求項1
記載の太陽電池モジュールの電力リード引き出し方法に
おいて、前記橋渡しする電力リード線は、両面テープま
たは接着剤により、前記裏面保護部材の主面上に固着す
る(請求項2の発明)。これにより、電気的接続作業が
より簡便となる。
As an embodiment of the invention of claim 1, the following inventions of claims 2 to 5 are preferable. That is, claim 1
In the solar cell module power lead extraction method described above, the bridging power lead wire is fixed to the main surface of the back surface protection member by a double-sided tape or an adhesive (the invention of claim 2). This makes the electrical connection work easier.

【0033】また、請求項1または2記載の太陽電池モ
ジュールの電力リード引き出し方法において、前記電力
リード線の金属箔の露出部の一端を、太陽電池の内部配
線の正極および負極に電気的に接続する部分は、太陽電
池を接着性樹脂封止材により一旦封止後に、当該前記裏
面保護部材および接着性樹脂封止材の電力リード線貫通
部分を部分的に除去し、内部配線を部分的に露出させた
後、前記電気的接続を行なうこととする(請求項3の発
明)。これにより、接着性樹脂封止材による封止の作業
性が向上する。
Further, in the method of drawing out the power leads of the solar cell module according to claim 1 or 2, one end of the exposed portion of the metal foil of the power lead wire is electrically connected to the positive electrode and the negative electrode of the internal wiring of the solar cell. After sealing the solar cell with the adhesive resin encapsulant once, the part to be penetrated through the power lead wire of the back surface protection member and the adhesive resin encapsulant is partially removed, and the internal wiring is partially removed. After the exposure, the electrical connection is made (the invention of claim 3). This improves the workability of sealing with the adhesive resin sealing material.

【0034】さらに、前記請求項3に記載の太陽電池モ
ジュールの電力リード引き出し方法において、前記電力
リード線貫通部分には、前記一旦封止時に剥離可能なス
ペーサを接着性樹脂封止材中に埋め込み、このスペーサ
を剥離することにより内部配線を部分的に露出させるこ
ととする(請求項4の発明)。これにより、前記裏面保
護部材および接着性樹脂封止材の電力リード線貫通部分
の部分的除去作業が容易となる。
Furthermore, in the method of drawing out the power leads of the solar cell module according to claim 3, a spacer that can be peeled off at the time of sealing is embedded in an adhesive resin sealing material in the power lead wire penetrating portion. The internal wiring is partially exposed by peeling off the spacer (invention of claim 4). This facilitates the partial removal work of the power lead wire penetrating portion of the back surface protection member and the adhesive resin sealing material.

【0035】さらにまた、前記請求項3に記載の太陽電
池モジュールの電力リード引き出し方法における電気的
接続は、熱影響による絶縁損傷を防止するために、通
常、パルスヒート方式の半田付けで行なうが、熱影響に
よる絶縁損傷をさらに軽減する観点から、下記請求項5
の発明が好ましい。即ち、前記電力リード線の一端と内
部配線との電気的接続は、前記一端および内部配線の当
該接続部に設けた雄雌の嵌合式接続手段により行なうこ
ととする。これにより、ワンタッチで接続が可能とな
り、作業性がさらに向上する。詳細は後述する。
Furthermore, the electrical connection in the method of drawing out the power leads of the solar cell module according to claim 3 is usually performed by pulse heating type soldering in order to prevent insulation damage due to thermal influence. From the viewpoint of further reducing insulation damage due to heat, the following claim 5
Invention is preferable. That is, the electrical connection between one end of the power lead wire and the internal wiring is made by the male and female fitting type connection means provided at the connection portion of the one end and the internal wiring. As a result, connection can be made with a single touch, further improving workability. Details will be described later.

【0036】[0036]

【発明の実施の形態】図面に基づき、本発明の実施例に
ついて以下に述べる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0037】図1ないし図4は、この発明の実施例を示
し、図1ないし図4において、図5の部材と同一機能を
有する部材には同一番号を付して、詳細説明を省略す
る。
1 to 4 show an embodiment of the present invention. In FIGS. 1 to 4, members having the same functions as those of FIG. 5 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0038】図1は、図5の従来の太陽電池モジュール
に対応する図であり、図1(a)および(b)は、太陽
電池モジュールの裏面側から見た模式的平面図である。
図1(c)は、図1(a)におけるA−A断面図を示
す。なお、図1(a)は、図1(c)における部材36
および37を除去した状態における裏面側平面図であ
る。
FIG. 1 is a view corresponding to the conventional solar cell module of FIG. 5, and FIGS. 1 (a) and 1 (b) are schematic plan views seen from the back surface side of the solar cell module.
FIG. 1C shows a cross-sectional view taken along the line AA in FIG. Note that FIG. 1A shows the member 36 in FIG.
It is a rear surface side top view in the state which removed 37 and 37.

【0039】さらに、図2は、図1(a)の模式的平面
図を若干詳細にした上で、太陽電池素子の接続状態およ
び電流の流れを説明する図である。また、図3は、電力
リード線の構造とその太陽電池への接続状態を説明する
図であって、図3(a)は、電力リード線の概略斜視
図、図3(b)は、太陽電池内部配線と電力リード線の
露出部の一端との接続構成の模式的断面図を示す。図4
は、図3とは異なる接続状態を説明する図である。
Further, FIG. 2 is a diagram for explaining the connection state of the solar cell elements and the flow of current, after making the schematic plan view of FIG. 1 (a) a little more detailed. 3A and 3B are views for explaining the structure of the power lead wire and the connection state to the solar cell. FIG. 3A is a schematic perspective view of the power lead wire, and FIG. FIG. 3 is a schematic cross-sectional view showing a connection configuration between internal battery wiring and one end of an exposed portion of a power lead wire. Figure 4
FIG. 4 is a diagram illustrating a connection state different from that in FIG. 3.

【0040】まず、図1に示すように、表面保護部材と
してのガラス板38上に太陽電池モジュール受光面側の
接着層37(EVA)と、この上に太陽電池1を2枚所
定の位置にセット後、導電性粘着剤からなる補助配線3
5により、太陽電池1間を直列接続する。
First, as shown in FIG. 1, an adhesive layer 37 (EVA) on the light receiving surface side of the solar cell module is provided on a glass plate 38 serving as a surface protection member, and two solar cells 1 are provided at predetermined positions on the adhesive layer 37 (EVA). After setting, auxiliary wiring 3 made of conductive adhesive
5, the solar cells 1 are connected in series.

【0041】この場合太陽電池は、例えば、図2に示す
ような電気的な接続構成とする。左右の前記2枚の太陽
電池は、それぞれ4分割されており、4分割された各太
陽電池は、それぞれ複数個のユニットセル(太陽電池素
子)が直列接続されている。4分割された太陽電池は、
それぞれ電気的に並列となっており、左右の太陽電池間
は、補助配線35により、直列に接続されている。左右
の+側および−側の共有導体49は、電力リード線40
の一端にそれぞれ接続される。電流の流れは、図中、矢
印で示す。
In this case, the solar cell has, for example, an electrical connection structure as shown in FIG. The two left and right solar cells are each divided into four, and each of the four divided solar cells has a plurality of unit cells (solar cell elements) connected in series. The solar cell divided into four is
The solar cells are electrically parallel to each other, and the left and right solar cells are connected in series by an auxiliary wiring 35. The left and right shared conductors 49 on the + side and − side are connected to the power lead wire 40.
Is connected to one end of each. The current flow is indicated by an arrow in the figure.

【0042】前記電力リード線40としては、後述する
図3に示すように、周囲が電気絶縁性材料40bにより
被覆され、かつ両端に被覆のない露出部を有する金属箔
40aからなるフレキシブルなリード線とする。この電
力リード線40を、図1(b)(c)に示すように、裏
面保護部材36の主面上に、太陽電池の正極および負極
が存在する位置(図1における電力リード線引き出し部
48)と端子箱20が存在する位置との間を橋渡しする
ように配設する。
As the power lead wire 40, as shown in FIG. 3 which will be described later, a flexible lead wire composed of a metal foil 40a whose periphery is covered with an electrically insulating material 40b and which has exposed portions at both ends which are not covered. And As shown in FIGS. 1B and 1C, the power lead wire 40 is located at a position where the positive electrode and the negative electrode of the solar cell are present on the main surface of the back surface protection member 36 (the power lead wire lead portion 48 in FIG. 1). ) And the position where the terminal box 20 is present are arranged so as to bridge them.

【0043】前記正負各1本の電力リード線40の金属
箔の露出部40aの一端を、図1(c)に示すように、
前記裏面保護部材36および接着性樹脂封止材の接着層
37を貫通させて、太陽電池1の内部配線としての正極
および負極の共有導体49に電気的に接続し、他端を、
端子箱20内の図示しない電力引き出し端子に電気的に
接続する。その後、前記電気的接続部を電気絶縁材料に
より絶縁処理する。
As shown in FIG. 1C, one end of the exposed portion 40a of the metal foil of each of the positive and negative power lead wires 40 is
The back surface protection member 36 and the adhesive layer 37 of the adhesive resin encapsulant are penetrated to electrically connect to the positive and negative shared conductors 49 as internal wiring of the solar cell 1, and the other end is
It is electrically connected to a power lead terminal (not shown) in the terminal box 20. Then, the electrical connection portion is insulated with an electrically insulating material.

【0044】次に、太陽電池内部配線と電カリード線の
露出部の一端部との接続構成について、図3により詳述
する。図3(a)は電力リード線の斜視図を、(b)は
接続構成の模式的断面図を示すが、(b)図における太
陽電池モジュールは、接続構成の説明の便宜上、その層
構造を一部簡略化して示す。
Next, the connection structure between the internal wiring of the solar cell and the one end of the exposed portion of the lead wire will be described in detail with reference to FIG. 3A shows a perspective view of a power lead wire, and FIG. 3B shows a schematic cross-sectional view of a connection structure. However, the solar cell module in FIG. 3B has a layer structure for convenience of explanation of the connection structure. A part is simplified and shown.

【0045】図3(a)に示すように、電力リード線4
0は、例えばブチルゴムにより絶縁処理され、その両端
部に、約10mm長さの導体(金属箔)の露出部40a
を有する。電力リード線40と接続する太陽電池モジュ
ール30の導体接続部45において、図1に示す接着層
37と裏面保護部材36とが、部分的に除去され、この
部分において、電力リード線の露出部40aが、内部配
線としての共有導体49にパルスヒート方式半田付け装
置により半田付けされる。
As shown in FIG. 3A, the power lead wire 4
0 is insulated by butyl rubber, for example, and the exposed portions 40a of the conductor (metal foil) having a length of about 10 mm are provided at both ends thereof.
Have. In the conductor connecting portion 45 of the solar cell module 30 connected to the power lead wire 40, the adhesive layer 37 and the back surface protection member 36 shown in FIG. 1 are partially removed, and in this portion, the exposed portion 40a of the power lead wire. However, it is soldered to the shared conductor 49 as the internal wiring by the pulse heat type soldering device.

【0046】次に、露出部40a以外は両面テープ39
により、太陽電池モジュール30の裏面保護部材に接着
固定される。最後に、電力リード線40の他端の露出部
40aを、図示しない端子箱の外部端子に半田接続後、
端子箱内および前記半田接続部に、シリコン樹脂材料を
注入・硬化させて、水分浸入防止を兼ねた絶縁処理を行
い、端子箱に蓋を取り付けて太陽電池モジュールを完成
する。
Next, the double-sided tape 39 except for the exposed portion 40a
Thus, it is adhesively fixed to the back surface protection member of the solar cell module 30. Finally, after connecting the exposed portion 40a at the other end of the power lead wire 40 to an external terminal of a terminal box (not shown),
A silicon resin material is injected and cured in the terminal box and the solder connection portion to perform an insulating treatment also for preventing moisture intrusion, and a lid is attached to the terminal box to complete the solar cell module.

【0047】電力リード線の金属箔としては、熱電解銅
箔または圧延銅箔が用いられ、その厚さは25〜100
μmの範囲が好ましい。25μm以下の場合、接続時に
切断する恐れがある。銅箔はそのままか、あるいは半田
メッキや錫メツキしたものが用いられる。また、金属箔
の周囲の絶縁材料は、ブチルゴムの他にエチレンプロピ
レンゴム、塩化ビニル樹脂等が適用できる。
As the metal foil of the power lead wire, a thermoelectrolytic copper foil or a rolled copper foil is used, and its thickness is 25 to 100.
The range of μm is preferred. If the thickness is 25 μm or less, the connection may be broken. The copper foil may be used as it is, or may be solder-plated or tin-plated. Further, as the insulating material around the metal foil, ethylene propylene rubber, vinyl chloride resin or the like can be applied in addition to butyl rubber.

【0048】上記接続構成によれば、前記従来技術の問
題は解消され、電気的にも機械的にも信頼性の高い電力
リード引き出し構造が得られ、また、作業性が極めて向
上する。
According to the above connection structure, the problems of the prior art are solved, an electrically and mechanically reliable power lead drawing structure is obtained, and workability is significantly improved.

【0049】次に、図4は、電力リードの太陽電池への
異なる接続方法を模式的に示す。図4(a)は電力リー
ド線の斜視図を、(b)は接続構成の模式的断面図を示
すが、(b)図における太陽電池モジュールは、図3と
同様に、接続構成の説明の便宜上、その層構造を一部簡
略化して示す。
Next, FIG. 4 schematically shows different connection methods of the power lead to the solar cell. 4 (a) is a perspective view of the power lead wire, and FIG. 4 (b) is a schematic cross-sectional view of the connection configuration. The solar cell module in FIG. 4 (b) is similar to FIG. For convenience, the layered structure is partially simplified.

【0050】この実施例において、電力リード線におけ
る金属箔の露出部40aは、嵌合式接続手段の雄46b
を備え、太陽電池モジュール30の導体接続部45は、
嵌合式接続手段の雌46aを備える。前記雄46bを雌
46aに嵌合することにより、機械的および電気的な接
続を行なう。それ以外は、前記実施例1と同様とする。
図4に示す実施例によれば、半田付けに比べて電気的接
続作業における熱的損傷を受けにくいので絶縁の信頼性
の向上が図れ、また、作業性も向上する。
In this embodiment, the exposed portion 40a of the metal foil in the power lead wire is the male 46b of the fitting type connecting means.
And the conductor connecting portion 45 of the solar cell module 30 is
The female 46a of the fitting type connection means is provided. By fitting the male 46b into the female 46a, mechanical and electrical connection is made. Other than that, it is the same as the first embodiment.
According to the embodiment shown in FIG. 4, the reliability of insulation is improved and the workability is also improved because it is less susceptible to thermal damage in the electrical connection work as compared with soldering.

【0051】(比較例)電カリード線40の銅箔42と
して100μm膜厚の半田メツキ銅箔を用い、前記図5
に示すように、太陽電池1の裏面接続電極層上に、絶縁
材としてのEVAスペーサー71を所定の大きさに切断
・挿入し、太陽電池1の裏面電極部とは半田コテにて半
田付けして太陽電池モジュールを作製した。外観上EV
Aスペーサー71を挿入した配線部の凸凹がはっきり分
かる状態であった。
(Comparative Example) As the copper foil 42 of the electric lead wire 40, a solder-plated copper foil having a film thickness of 100 μm was used, and the copper foil 42 shown in FIG.
As shown in, an EVA spacer 71 as an insulating material is cut and inserted into a predetermined size on the back surface connection electrode layer of the solar cell 1 and soldered to the back surface electrode portion of the solar cell 1 with a soldering iron. To produce a solar cell module. EV in appearance
The unevenness of the wiring portion in which the A spacer 71 was inserted was clearly visible.

【0052】上記図3および図4の実施例ならびに比較
例の方法により製作した太陽電池モジュールについて、
高温高湿(85℃、95%RH)試験を500時間行なった。
その結果、実施例では、外観の変化は無く、電気的不良
(絶縁不良)等の発生も見られなかった。一方、比較例
においても電気的不良等の発生はなかったが、外観上凸
凹部がさらに大きくなった。
Regarding the solar cell modules manufactured by the methods of the examples and comparative examples of FIGS. 3 and 4 above,
A high temperature and high humidity (85 ° C., 95% RH) test was conducted for 500 hours.
As a result, in the examples, there was no change in the appearance and no electrical failure (insulation failure) or the like was observed. On the other hand, even in the comparative example, no electrical failure or the like occurred, but the convex and concave portions became larger in appearance.

【0053】[0053]

【発明の効果】この発明によれば前述のように、表面保
護部材と裏面保護部材との間に、複数個の太陽電池素子
を直列および/または並列に接続した太陽電池を接着性
樹脂封止材により封止してなり、前記太陽電池の正極お
よび負極の内部配線を、正負各1本の電力リード線によ
り前記裏面保護部材上に設けた端子箱内の電力引き出し
端子に電気的に接続してなる太陽電池モジュールの電力
リード引き出し方法において、前記電力リード線とし
て、周囲が電気絶縁性材料により被覆され、かつ両端に
被覆のない露出部を有する金属箔からなるフレキシブル
なリード線を用い、この電力リード線を、前記裏面保護
部材の主面上に、前記太陽電池の正極および負極が存在
する位置と前記端子箱が存在する位置との間を橋渡しす
るように配設し、前記正負各1本の電力リード線の金属
箔の露出部の一端を、前記裏面保護部材および接着性樹
脂封止材を貫通させて前記太陽電池の内部配線の正極お
よび負極に電気的に接続し、他端を、前記端子箱内の電
力引き出し端子に電気的に接続した後、前記電気的接続
部を電気絶縁材料により絶縁処理することにより、太陽
電池内部配線の外部への引き出しおよび電気的接続作業
が簡便で、かつ絶縁の信頼性が高く、さらに外観上の問
題の発生がない太陽電池モジュールの電力リード引き出
し方法を提供することができる。
As described above, according to the present invention, a solar cell having a plurality of solar cell elements connected in series and / or in parallel between the front surface protection member and the back surface protection member is sealed with an adhesive resin. The positive and negative internal wirings of the solar cell are electrically connected to the power lead-out terminals in the terminal box provided on the back surface protection member with one positive and one negative power lead wire, respectively. In the method for extracting the power lead of the solar cell module, the flexible lead wire is used as the power lead wire, which is made of a metal foil whose periphery is covered with an electrically insulating material and which has exposed portions at both ends with no coating. A power lead wire is arranged on the main surface of the back surface protection member so as to bridge between the position where the positive electrode and the negative electrode of the solar cell are present and the position where the terminal box is present. One end of the exposed portion of the metal foil of each one positive and negative power lead wire is electrically connected to the positive electrode and the negative electrode of the internal wiring of the solar cell by penetrating the back surface protection member and the adhesive resin sealing material, After the other end is electrically connected to the power lead terminal in the terminal box, the electrical connection portion is insulated with an electrically insulating material, so that the internal wiring of the solar cell is pulled out and electrically connected. It is possible to provide a method for drawing out the power leads of the solar cell module, which is simple, has high reliability of insulation, and has no appearance problem.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例に関わる太陽電池モジュール
の模式的構成図
FIG. 1 is a schematic configuration diagram of a solar cell module according to an embodiment of the present invention.

【図2】図1の太陽電池モジュールにおける太陽電池素
子の接続状態および電流の流れを説明する図
FIG. 2 is a diagram for explaining a connection state of solar cell elements and a current flow in the solar cell module of FIG.

【図3】この発明に関わる電力リードの構造とその太陽
電池への接続状態を説明する図
FIG. 3 is a diagram for explaining a structure of a power lead according to the present invention and a connection state of the power lead to a solar cell.

【図4】図3とは異なる太陽電池への接続例を説明する
FIG. 4 is a diagram illustrating an example of connection to a solar cell different from that in FIG.

【図5】従来の電力リード引き出し方法に関わる太陽電
池モジュールの模式的構成図
FIG. 5 is a schematic configuration diagram of a solar cell module relating to a conventional power lead drawing method.

【図6】従来の太陽電池モジュールの構成の一例を示す
FIG. 6 is a diagram showing an example of the configuration of a conventional solar cell module.

【図7】図6とは異なる従来の太陽電池モジュールの構
成の一例を示す平面図
FIG. 7 is a plan view showing an example of a configuration of a conventional solar cell module different from that of FIG.

【図8】図7の太陽電池モジュールの断面図8 is a cross-sectional view of the solar cell module of FIG.

【図9】電力引き出し部先端部を切り込み部において引
き起こした状態の斜視図
FIG. 9 is a perspective view showing a state in which the leading end portion of the power extraction portion is raised at the cut portion.

【図10】ケーブルに接続した棒状端子に外部リード線
接続部材を取付けた状態の斜視図
FIG. 10 is a perspective view showing a state where an external lead wire connecting member is attached to a rod-shaped terminal connected to a cable.

【図11】従来の太陽電池の構成を示す斜視図FIG. 11 is a perspective view showing a configuration of a conventional solar cell.

【符号の説明】[Explanation of symbols]

1:太陽電池、20:端子箱、30:太陽電池モジュー
ル、35:補助配線、36:裏面保護部材、37:接着
層、38:ガラス板、40:電力リード線、40a:金
属箔、40b:電気絶縁性材料、45:導体接続部、4
6a:嵌合式接続手段の雌、46b:嵌合式接続手段の
雄、49:共有導体。
1: solar cell, 20: terminal box, 30: solar cell module, 35: auxiliary wiring, 36: back surface protection member, 37: adhesive layer, 38: glass plate, 40: power lead wire, 40a: metal foil, 40b: Electrically insulating material, 45: conductor connecting portion, 4
6a: female of fitting type connecting means, 46b: male of fitting type connecting means, 49: shared conductor.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 表面保護部材と裏面保護部材との間に、
複数個の太陽電池素子を直列および/または並列に接続
した太陽電池を接着性樹脂封止材により封止してなり、
前記太陽電池の正極および負極の内部配線を、正負各1
本の電力リード線により前記裏面保護部材上に設けた端
子箱内の電力引き出し端子に電気的に接続してなる太陽
電池モジュールの電力リード引き出し方法において、 前記電力リード線として、周囲が電気絶縁性材料により
被覆され、かつ両端に被覆のない露出部を有する金属箔
からなるフレキシブルなリード線を用い、この電力リー
ド線を、前記裏面保護部材の主面上に、前記太陽電池の
正極および負極が存在する位置と前記端子箱が存在する
位置との間を橋渡しするように配設し、 前記正負各1本の電力リード線の金属箔の露出部の一端
を、前記裏面保護部材および接着性樹脂封止材を貫通さ
せて前記太陽電池の内部配線の正極および負極に電気的
に接続し、他端を、前記端子箱内の電力引き出し端子に
電気的に接続した後、前記電気的接続部を電気絶縁材料
により絶縁処理することを特徴とする太陽電池モジュー
ルの電力リード引き出し方法。
1. Between the front surface protection member and the back surface protection member,
A solar cell in which a plurality of solar cell elements are connected in series and / or in parallel is sealed with an adhesive resin sealing material,
Connect the positive and negative internal wiring of the solar cell to positive and negative
In a method for drawing out a power lead of a solar cell module, which is electrically connected to a power lead-out terminal in a terminal box provided on the back surface protection member by a power lead wire, the surroundings of the power lead wire are electrically insulating. A flexible lead wire which is covered with a material and is made of a metal foil having exposed portions at both ends is used, and the power lead wire is provided on the main surface of the back surface protection member, and the positive electrode and the negative electrode of the solar cell are It is arranged so as to bridge between the existing position and the position where the terminal box exists, and one end of the exposed portion of the metal foil of each one of the positive and negative power lead wires is connected to the back surface protection member and the adhesive resin. The sealing material is penetrated to electrically connect to the positive electrode and the negative electrode of the internal wiring of the solar cell, and the other end is electrically connected to the power lead terminal in the terminal box, and then the electrical Power lead drawer method of a solar cell module, which comprises insulated by electrically insulating material connection portion.
【請求項2】 前記橋渡しする電力リード線は、両面テ
ープまたは接着剤により、前記裏面保護部材の主面上に
固着することを特徴とする請求項1記載の太陽電池モジ
ュールの電力リード引き出し方法。
2. The method of drawing out the power lead of the solar cell module according to claim 1, wherein the bridging power lead wire is fixed on the main surface of the back surface protection member with a double-sided tape or an adhesive.
【請求項3】 前記電力リード線の金属箔の露出部の一
端を、太陽電池の内部配線の正極および負極に電気的に
接続する部分は、太陽電池を接着性樹脂封止材により一
旦封止後に、当該前記裏面保護部材および接着性樹脂封
止材の電力リード線貫通部分を部分的に除去し、内部配
線を部分的に露出させた後、前記電気的接続を行なうこ
とを特徴とする請求項1または2記載の太陽電池モジュ
ールの電力リード引き出し方法。
3. The solar cell is temporarily sealed with an adhesive resin encapsulant at a portion where one end of the exposed portion of the metal foil of the power lead wire is electrically connected to the positive electrode and the negative electrode of the internal wiring of the solar cell. The electrical connection is made after the power lead wire penetrating portions of the back surface protection member and the adhesive resin sealing material are partially removed to partially expose the internal wiring. Item 3. A method for extracting a power lead of a solar cell module according to Item 1 or 2.
【請求項4】 前記電力リード線貫通部分には、前記一
旦封止時に剥離可能なスペーサを接着性樹脂封止材中に
埋め込み、このスペーサを剥離することにより内部配線
を部分的に露出させることを特徴とする請求項3記載の
太陽電池モジュールの電力リード引き出し方法。
4. A spacer which can be peeled at the time of sealing is embedded in an adhesive resin sealing material in the power lead wire penetrating portion, and the internal wiring is partially exposed by peeling the spacer. The method for drawing out a power lead of a solar cell module according to claim 3.
【請求項5】 前記電力リード線の一端と内部配線との
電気的接続は、前記一端および内部配線の当該接続部に
設けた雄雌の嵌合式接続手段により行なうことを特徴と
する請求項3記載の太陽電池モジュールの電力リード引
き出し方法。
5. The electrical connection between one end of the power lead wire and the internal wiring is performed by male and female fitting type connection means provided at the connection portion of the one end and the internal wiring. A method for drawing out a power lead of the described solar cell module.
JP2001201397A 2001-07-02 2001-07-02 Method of leading out power lead of solar battery module Pending JP2003017732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001201397A JP2003017732A (en) 2001-07-02 2001-07-02 Method of leading out power lead of solar battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001201397A JP2003017732A (en) 2001-07-02 2001-07-02 Method of leading out power lead of solar battery module

Publications (1)

Publication Number Publication Date
JP2003017732A true JP2003017732A (en) 2003-01-17

Family

ID=19038366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001201397A Pending JP2003017732A (en) 2001-07-02 2001-07-02 Method of leading out power lead of solar battery module

Country Status (1)

Country Link
JP (1) JP2003017732A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270648A (en) * 2007-04-24 2008-11-06 Honda Motor Co Ltd Solar cell module
JP2011151192A (en) * 2010-01-21 2011-08-04 Sharp Corp Solar cell, solar cell with interconnector, and manufacturing method thereof
JP2012151209A (en) * 2011-01-18 2012-08-09 Nippon Avionics Co Ltd Soldering method of power collection wiring material of solar cell, soldering apparatus, and heater tool
US8633406B2 (en) 2010-06-30 2014-01-21 First Solar, Inc. Moisture resistant cord plate for a photovoltaic module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270648A (en) * 2007-04-24 2008-11-06 Honda Motor Co Ltd Solar cell module
JP2011151192A (en) * 2010-01-21 2011-08-04 Sharp Corp Solar cell, solar cell with interconnector, and manufacturing method thereof
US8633406B2 (en) 2010-06-30 2014-01-21 First Solar, Inc. Moisture resistant cord plate for a photovoltaic module
JP2012151209A (en) * 2011-01-18 2012-08-09 Nippon Avionics Co Ltd Soldering method of power collection wiring material of solar cell, soldering apparatus, and heater tool

Similar Documents

Publication Publication Date Title
EP1801889B1 (en) Thin-film solar cell module and method of manufacturing the same
JP5268596B2 (en) Solar cell module and manufacturing method thereof
JP4558070B2 (en) Solar cell module
JP2000068542A (en) Laminated thin film solar battery module
JP3099604B2 (en) Flexible photoelectric conversion module, its connection method and its manufacturing apparatus
JP2009130020A (en) Solar cell panel and method of manufacturing the same
JP5191406B2 (en) Manufacturing method of solar cell module
JP3991257B2 (en) Manufacturing method of solar cell module
JP2010283231A (en) Solar cell module and method of manufacturing the same
JP4461607B2 (en) Method for pulling out power leads of solar cell module
US20200091857A1 (en) Solar roof tile free of back encapsulant layer
JP2003017732A (en) Method of leading out power lead of solar battery module
JP2003133570A (en) Method of manufacturing solar battery module
JP4432247B2 (en) Solar cell module
JP3852662B2 (en) Method for extracting power leads from solar cell module
JP3605998B2 (en) Solar cell module and method of manufacturing the same
US20120298167A1 (en) Structure and manufacturing of solar panels for a kind of solar shingles
JP2001068715A (en) Building material integral type solar cell module
JP3972233B2 (en) Solar cell module
JP3972252B2 (en) Solar cell module
JP2003282922A (en) Method of manufacturing solar cell module
JP4061525B2 (en) Manufacturing method of solar cell module
JP5339295B2 (en) Solar cell module and manufacturing method thereof
JP2003124482A (en) Method for manufacturing solar battery module
CN111540799B (en) Photovoltaic module with flexible structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060914

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081016

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081016

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090602