JP3970478B2 - ビタビ等化器および送信データ系列判定方法 - Google Patents
ビタビ等化器および送信データ系列判定方法 Download PDFInfo
- Publication number
- JP3970478B2 JP3970478B2 JP19314899A JP19314899A JP3970478B2 JP 3970478 B2 JP3970478 B2 JP 3970478B2 JP 19314899 A JP19314899 A JP 19314899A JP 19314899 A JP19314899 A JP 19314899A JP 3970478 B2 JP3970478 B2 JP 3970478B2
- Authority
- JP
- Japan
- Prior art keywords
- path
- metric
- transmission
- branch
- data sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Error Detection And Correction (AREA)
- Detection And Prevention Of Errors In Transmission (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
Description
【発明の属する技術分野】
本発明は、自動車電話等の移動体通信に用いられる受信機の等化器に関するものであり、特に、ビタビアルゴリズムに基づいて保有するデータ系列の中から最も精度の高い送信データ系列を判定するビタビ等化器および送信データ系列判定方法に関するものである。
【0002】
【従来の技術】
以下、従来のビタビ等化器および送信データ系列判定方法について説明する。たとえば、自動車電話をはじめとする無線通信においては、マルチパス伝搬によりデータシンボルに対して無視できないような遅延波が生じることがある。このような遅延波が生じた場合、符号シンボルにわたって干渉が生じるということから、この現象は、符号間干渉と呼ばれる。この符号間干渉を克服するための受信技術として、たとえば、等化技術がある。
【0003】
図5は、ビタビアルゴリズムにおけるデータ系列の候補にしたがって伝送路特性を推定するタイプのビタビ等化器を示すブロック図である。このタイプのビタビ等化器は、たとえば、H. Kubo他著:「An adaptive maximum-likelihood sequence estimator for fast time-varying intersymbol interference channels」(IEEE Trans.Commun.,pp.1872−1880,1994)や、H. Kubo他著:「Adaptive maximum-likelihood sequence estimation by means of combined equalization and decoding in fading environments」(IEEE JSAC,pp.102−109,1995)に詳細に述べられている。
【0004】
図5において、1は受信信号入力端子であり、2は判定値出力端子であり、3は枝メトリック作成回路であり、4A,4B,…,4CはN個(Nは自然数)のACS回路であり、5A,5B,…,5CはN個の伝送路更新回路であり、6は記憶回路であり、7は判定値作成回路である。
【0005】
また、図6は、従来のビタビ等化器を構成する枝メトリック作成回路3の一部を示すブロック図である。図6において、1は受信信号入力端子であり、8はデータ系列入力端子であり、9は伝送路特性入力端子であり、10は枝メトリック出力端子、11は推定伝送路モデルであり、12は2乗誤差作成回路である。
【0006】
以下、図5に示すビタビ等化器および送信データ系列判定方法に関する基本事項に関して説明する。まず、ビタビアルゴリズムを採用するビタビ等化器では、複数の異なったデータ系列のパターンを保有する。以降、これを状態と呼ぶ。また、上記ビタビ等化器では、二つの状態の時間遷移からデータ系列が一意的に決定されることになる。以降、これを枝と呼ぶ。さらに、図5に示すビタビ等化器は、前記状態に対応して、それぞれ、伝送路特性の推定値を保有する、という特徴がある。
【0007】
なお、枝を連続してつなげたものがパスと呼ばれ、さらに、このパスに対応した枝メトリックを累積加算したものがパスメトリックと呼ばれる。また、ビタビアルゴリズムについては、橋本猛他著:「Viterbiアルゴリズムの一般化について」(電子通信学会論文誌(A),pp.1064−1071,1983)により、一般化されており、この一般化ビタビアルゴリズムを用いた場合もビタビ等化器の一種として取り扱う。
【0008】
まず、枝メトリック作成回路3では、枝の数分の枝メトリックを作成する。図6においては、たとえば、一つの枝に対する枝メトリック作成回路が示されている。具体的にいうと、まず、推定伝送路モデル11では、各枝に対応する1時刻過去の状態を保有する記憶回路6から、1時刻過去の推定伝送路特性と枝により決定されているデータ系列とを受け取り、受信信号のレプリカを作成する。そして、2乗誤差作成回路12では、受信信号と受信信号のレプリカとの2乗誤差を作成して、これを枝メトリックとして出力する。
【0009】
つぎに、ACS(加算・比較・選択)回路4A〜4Bでは、それぞれ、現状態に対応する複数の枝メトリックを枝メトリック作成回路3から受け取り、さらに、それぞれ、1時刻過去のパスメトリックを記憶回路6から入力し、以下の処理を行う。まず、各ACS回路では、受け取った1時刻過去のパスメトリックに枝メトリックを加算し、現時刻のパスメトリックを作成する(加算処理)。つぎに、加算処理によって得られる複数のパスメトリックを比較する(比較処理)。最後に、最も信頼度の高いパスメトリック、すなわち、最小のパスメトリックを選択し、同時に、このパスメトリックに対応するデータ系列(パス)も選択する(選択処理)。
【0010】
その後、伝送路更新回路5A〜5Cでは、受信信号および選択されたパスに対応する1時刻過去の推定伝送路特性と、パスメトリックと、を記憶回路6から受け取り、推定伝送路特性およびパスメトリックを更新後、再度記憶回路6に出力する。このように、記憶回路6では、各状態に対応する推定伝送路特性、パスメトリック、およびパスを記憶する。最後に、判定値作成回路7では、記憶回路6から、各状態に対応するパスメトリックとパスを受け取り、その中から最も信頼度の高い状態のパス、すなわち、最小のパスメトリックが得られるデータ系列を判定値(送信データ系列)として出力する。
【0011】
以上、従来のビタビ等化器では、上記に示す方法により、精度の高い送信データ系列を推定している。
【0012】
図7は、1シンボル周期の遅延波が存在する上記伝送路モデル11の一例を示す図である。ここでは、遅延のない信号を直接波と呼び、1シンボル周期だけ遅延した信号を遅延波と呼ぶことにする。
【0013】
図7に示すとおり、従来のビタビ等化器では、無線通信におけるフェージングにより各波の信号電力が独立して変動することになり、たとえば、両波の電力が等電力であるような「2波伝送路モデル」、遅延波の信号電力が消失した「1波伝送路モデル(1)」、および直接波の信号電力が消失した「1波伝送路モデル(2)」などが発生する。
【0014】
【発明が解決しようとする課題】
しかしながら、上記、従来のビタビ等化器では、以下に示すような問題があった。ここでは、実際の伝送路が上記図7に示す「1波伝送路モデル(1)」であった場合、すなわち、図8(a)のモデルを例として説明する。なお、図8は、この場合の枝メトリックの作成例を示す図である。また、ここでは、ビタビ等化器の推定伝送路を2タップのモデルとする。
【0015】
図8に示す例の場合、推定伝送路モデルは、図8(b)に示す「1波伝送路モデル(1)」の場合(推定伝送路(1))と、(c)に示す「1波伝送路モデル(2)」の場合(推定伝送路(2))が生じる。このとき、推定伝送路(1)に実伝送路と同一のデータ系列(0100110?の順)を入力すると、図8(b)では、実伝送路と同じ出力が出るため、枝メトリック(実伝送路出力と推定伝送路1出力の2乗誤差)は、すべて0となる。一方、推定伝送路2に実伝送路のデータ系列を1シンボル遅らせたデータ系列(?0100110の順)を入力しても、実伝送路と同じ出力が出るため、枝メトリックはすべて0となる。そして、従来のビタビ等化器では、上記のように求められたパスメトリックの最も小さいデータ系列を判定値(送信データ系列)として出力する。
【0016】
しかしながら、このような場合、従来のビタビ等化器(判定値作成回路7)では、推定伝送路(1)の出力データと推定伝送路(2)の出力データが同一となるため、すなわち、各枝メトリックが同一となるため、どちらを判定値とするかを決定することができない。また、現実的には、ビタビ等化器の判定値出力が、実伝送路と同時刻のデータと1時刻遅延されたデータとがランダム(判定値の途中で変化する場合もある)に出力されることになり、それに伴って判定値の精度が大幅に低下することになる。
【0017】
このように、従来のビタビ等化器では、無線通信におけるフェージング等の変動により実際の伝送路の特定タップ係数が小さくなると、判定値の精度が大幅に低下する、という問題があった。なお、ここでいうタップ係数とは、たとえば、図8に示す推定伝送路モデル内の‘1'‘0'の数字を示す。
【0018】
本発明は、上記に鑑みてなされたものであって、実際の伝送路における特定タップ係数が小さくなった場合でも、安定して精度の高い判定値(送信データ系列)を出力可能なビタビ等化器および送信データ系列判定方法を得ることを目的とする。
【0019】
【課題を解決するための手段】
上述した課題を解決し、目的を達成するために、本発明にかかるビタビ等化器にあっては、ビタビアルゴリズムに基づいて、アルゴリズム中の異なったデータ候補に対して、それぞれ異なった伝送路推定を行い、枝メトリックを累積加算したパスメトリックの最も小さいパスを送信データ系列として出力する構成とし、受信信号と、各枝に対応する1時刻過去の推定伝送路特性および枝により決定されているデータ系列、に基づいて、受信信号のレプリカを作成するレプリカ生成手段(後述する実施の形態の推定伝送路モデル11に相当)と、前記受信信号と前記レプリカとの2乗誤差を作成する2乗誤差作成手段(2乗誤差作成回路12に相当)と、前記1時刻過去の推定伝送路特性を入力とし、伝送路特性のパターンに応じて所定のバイアス値を作成するバイアス値作成手段(バイアス値作成回路14に相当)と、前記2乗誤差と前記バイアス値とを加算して、その加算値を枝メトリックとして出力する加算手段(加算回路13に相当)と、を備えることを特徴とする。
【0020】
この発明によれば、レプリカ生成手段に入力される伝送路特性のパターンに応じて、バイアス値作成手段にてバイアス値を出力するかどうかを決定する。たとえば、伝送路特性の直接波成分が0の場合、所定のバイアス値を付加し、直接波成分が1の場合、バイアス値を付加しない。これにより、直接波成分が1の場合の枝メトリックが最小となり、すなわち、両方の場合において枝メトリックが同一になることがなくなるため、枝メトリックを容易に決定できる。
【0021】
つぎの発明にかかるビタビ等化器にあっては、さらに、複数のデータ系列のパターンである状態毎に存在し、現状態の複数の枝メトリックに、それぞれ現状態の1時刻過去のパスメトリックを加算することにより現時刻のパスメトリックを生成し、その生成された複数のパスメトリックを比較することにより、最小のパスメトリックおよびそのパスメトリックに対応するパスを選択する加算/比較/選択手段(ACS回路4A,4B,…,4Cに相当)と、前記加算/比較/選択手段による処理に基づいて、推定伝送路特性およびパスメトリックを更新する伝送路更新手段(伝送路更新回路5A,5B,…,5Cに相当)と、前記複数の加算/比較/選択手段にて選択されたパスメトリックとパスを受け取り、その中から最もパスメトリックの小さいパスを送信データ系列として出力する送信データ系列出力手段(記憶回路5、判定値作成回路7に相当)と、を備えることを特徴とする。
【0022】
この発明によれば、レプリカ生成手段に入力される伝送路特性のパターンに応じて、バイアス値作成手段にてバイアス値を出力するかどうかを決定するため、状態に応じた複数の枝メトリックが同一になることがない。そして、複数の加算/比較/選択手段から出力に基づいて、送信データ系列出力手段が、最もパスメトリックの小さいパスを送信データ系列として出力する。
【0023】
つぎの発明にかかるビタビ等化器において、前記バイアス値作成手段は、予め設定されるスレッショルド値以下の伝送路特性を0に固定するスレッショルド判定手段(スレッショルド判定回路16に相当)と、前記スレッショルド判定手段からの出力に基づいて、前記伝送路特性の直接波成分が0の場合、所定のバイアス値を出力するバイアス値出力手段(バイアス値決定回路17に相当)と、を備えることを特徴とする。
【0024】
この発明によれば、たとえば、伝送路特性を受け取り、予め決めておいたスレッショルド値より小さい場合、その伝送路特性を0に固定する。そして、前記伝送路特性の直接波成分が0に固定された場合にだけバイアス値を出力する。これにより、直接波と遅延波の枝メトリックの差が明確になる。
【0025】
つぎの発明にかかる送信データ系列判定方法にあっては、ビタビアルゴリズムに基づいて、アルゴリズム中の異なったデータ候補に対して、それぞれ異なった伝送路推定を行い、枝メトリックを累積加算したパスメトリックの最も小さいパスを送信データ系列として出力する処理として、受信信号と、各枝に対応する1時刻過去の推定伝送路特性および枝により決定されているデータ系列、に基づいて、受信信号のレプリカを作成するレプリカ生成ステップと、前記受信信号と前記レプリカとの2乗誤差を作成する2乗誤差作成ステップと、前記1時刻過去の推定伝送路特性を入力とし、伝送路特性のパターンに応じて所定のバイアス値を作成するバイアス値作成ステップと、前記2乗誤差と前記バイアス値とを加算して、その加算値を枝メトリックとして出力する加算ステップと、を含むことを特徴とする。
【0026】
この発明によれば、レプリカ生成ステップにおいて入力される伝送路特性のパターンに応じて、バイアス値作成ステップにてバイアス値を出力するかどうかを決定する。たとえば、伝送路特性の直接波成分が0の場合、所定のバイアス値を付加し、直接波成分が1の場合、バイアス値を付加しない。これにより、直接波成分が1の場合の枝メトリックが最小となり、すなわち、両方の場合において枝メトリックが同一になることがなくなるため、枝メトリックを容易に決定できる。
【0027】
つぎの発明にかかる送信データ系列判定方法にあっては、さらに、複数のデータ系列のパターンである状態毎の処理として、現状態の複数の枝メトリックに、それぞれ現状態の1時刻過去のパスメトリックを加算することにより現時刻のパスメトリックを生成し、その生成された複数のパスメトリックを比較することにより、最小のパスメトリックおよびそのパスメトリックに対応するパスを選択する加算/比較/選択ステップと、前記加算/比較/選択ステップに基づいて、推定伝送路特性およびパスメトリックを更新する伝送路更新ステップと、前記複数の加算/比較/選択ステップにて選択されたパスメトリックとパスを受け取り、その中から最もパスメトリックの小さいパスを送信データ系列として出力する送信データ系列出力ステップと、を含むことを特徴とする。
【0028】
この発明によれば、レプリカ生成ステップにおいて入力される伝送路特性のパターンに応じて、バイアス値作成ステップにてバイアス値を出力するかどうかを決定するため、状態に応じた複数の枝メトリックが同一になることがない。そして、状態毎に行われる加算/比較/選択処理結果に基づいて、送信データ系列出力ステップにて最もパスメトリックの小さいパスを送信データ系列として出力する。
【0029】
つぎの発明にかかる送信データ系列判定方法において、前記バイアス値作成ステップは、予め設定されるスレッショルド値以下の伝送路特性を0に固定するスレッショルド判定ステップと、前記スレッショルド判定ステップによる出力に基づいて、前記伝送路特性の直接波成分が0の場合、所定のバイアス値を出力するバイアス値出力ステップと、を含むことを特徴とする。
【0030】
この発明によれば、たとえば、伝送路特性を受け取り、予め決めておいたスレッショルド値より小さい場合、その伝送路特性を0に固定する。そして、前記伝送路特性の直接波成分が0に固定された場合にだけバイアス値を出力する。これにより、直接波と遅延波の枝メトリックの差が明確になる。
【0031】
【発明の実施の形態】
以下に、本発明にかかるビタビ等化器および送信データ系列判定方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
【0032】
図1は、本発明にかかるビタビ等化器における枝メトリック作成回路の一部を示すブロック図である。なお、本発明にかかるビタビ等化器の全体構成は、従来技術にて説明した図5の構成と同様であり、本発明とは、枝メトリック作成部3の構成が異なる。したがって、先に説明したビタビ等化器と同一の構成については、同一の符号を付して説明を省略する。
【0033】
図1において、1は受信信号入力端子であり、8はデータ系列入力端子であり、9は伝送路特性入力端子であり、10は枝メトリック出力端子であり、11は推定伝送路モデルであり、12は2乗誤差作成回路であり、13は加算回路であり、14はバイアス値作成回路である。
【0034】
また、図2は、上記枝メトリック作成回路11の一部におけるバイアス値作成回路を示すブロック図である。図2において、9は伝送路特性入力端子であり、15はバイアス値出力端子であり、16はスレッショルド判定回路であり、17はバイアス値決定回路である。
【0035】
以下、本発明のビタビ等化器を構成する枝メトリック作成回路3の動作を図1および図2にしたがって説明する。まず、枝メトリック作成回路3では、枝の数分の枝メトリックを作成する。図1においては、たとえば、一つの枝に対する枝メトリック作成回路が示されている。具体的にいうと、まず、推定伝送路モデル11では、各枝に対応する1時刻過去の状態を保有する記憶回路6から、1時刻過去の推定伝送路特性と枝により決定されているデータ系列とを受け取り、受信信号のレプリカを作成する。そして、2乗誤差作成回路12では、受信信号と受信信号のレプリカとの2乗誤差を作成して、これを出力する。
【0036】
また、バイアス値作成回路14では、記憶回路6から1時刻過去の推定伝送路特性を受け取り、後述する所定の場合に、枝メトリックに付加するためのバイアス値を作成する。最後に、加算回路13では、このバイアス値を、場合に応じて2乗誤差作成回路12で作成された2乗誤差値に加算して、最終的な枝メトリック値として出力する。
【0037】
ここで、バイアス値作成回路14の詳細な動作を図2にしたがって説明する。スレッショルド判定回路16では、記憶回路6からの伝送路特性を受け取り、予め決めておいたスレッショルド値より小さいタップ係数を0に固定する。この動作は、たとえば、図3に示すスレッショルド判定に相当する。すなわち、図3(a)に示すモデル(1)は、タップ係数電力がスレッショルド値以下の‘1'のデータを0に固定し、図3(b)に示すモデル(2)は、‘0'‘2'のデータを0に固定し、図3(c)に示すモデル(3)は、‘1'‘2'のデータを0に固定する。
【0038】
このようにして、特定伝送路特性のデータを0に固定することにより、バイアス値決定回路17では、スレッショルド判定された伝送路特性を入力とし、たとえば、先頭のタップ係数が0の場合、バイアス値を付加し、それ以外は、バイアス値を付加しない、という動作を行う。すなわち、図3においては、モデル(2)だけにバイアス値が付加されることになる。
【0039】
以下、本実施の形態における送信データ系列判定方法を詳細に説明する。たとえば、実際の伝送路が図4(a)に示す1波伝送路モデルであった場合を例として説明する。なお、図4は、この場合の枝メトリックの作成例を示す図である。また、ここでは、ビタビ等化器の推定伝送路を2タップのモデルとする。
【0040】
図4に示す例の場合、推定伝送路モデルは、図4(b)に示す「1波伝送路モデル(1)」の場合(推定伝送路(1))と、(c)に示す「1波伝送路モデル(2)」の場合(推定伝送路(2))が生じる。なお、本実施の形態では、図3に基づいて、「推定伝送路1がバイアス値の付加なし」、「推定伝送路2がバイアス値を付加(ここでは、バイアス値を1とする)あり」、と判定される。
【0041】
このとき、推定伝送路(1)に実伝送路と同一のデータ系列(0100110?の順)を入力すると、図4(b)では、実伝送路と同じ出力が出るため、枝メトリック(実伝送路出力と推定伝送路1出力の2乗誤差)は、すべて0となる。一方、推定伝送路2に実伝送路のデータ系列を1シンボル遅らせたデータ系列(?0100110の順)を入力すると、実伝送路と同様の出力が出るが、枝メトリックにバイアス値:1が加算されるため、枝メトリックはすべて1となる。
【0042】
その後、従来のビタビ等化器では、先に説明した従来技術同様、求められたパスメトリックの最も小さいデータを判定値(送信データ系列)として出力するため、推定伝送路1の入力データを安定して送信データ系列として出力することになる。
【0043】
このように、本実施の形態では、実際の伝送路の特定タップ係数が小さくなった場合においても、すなわち、上記のように、特定のタップ係数が0になった場合においても、安定して精度の高い判定値、すなわち、精度の高い送信データ系列を出力することができる。
【0044】
【発明の効果】
以上、説明したとおり、本発明によれば、レプリカ生成手段に入力される伝送路特性のパターンに応じて、バイアス値作成手段にてバイアス値を出力するかどうかを決定する。たとえば、伝送路特性の直接波成分が0の場合、所定のバイアス値を付加し、直接波成分が1の場合、バイアス値を付加しない。これにより、直接波成分が1の場合の枝メトリックが最小となり、すなわち、両方の場合において枝メトリックが同一になることがなくなるため、枝メトリックを容易に決定でき、それに伴って、安定して精度の高い送信データ系列を出力することが可能なビタビ等化器を得ることができる、という効果を奏する。
【0045】
つぎの発明によれば、レプリカ生成手段に入力される伝送路特性のパターンに応じて、バイアス値作成手段にてバイアス値を出力するかどうかを決定するため、状態に応じた複数の枝メトリックが同一になることがない。そして、複数の加算/比較/選択手段から出力に基づいて、送信データ系列出力手段が、最もパスメトリックの小さいパスを送信データ系列として出力する。これにより、特定の伝送路特性が0になった場合でも、安定して精度の高い判定値、すなわち、精度の高い送信データ系列を出力することができる、という効果を奏する。
【0046】
つぎの発明によれば、たとえば、伝送路特性を受け取り、予め決めておいたスレッショルド値より小さい場合、その伝送路特性を0に固定する。そして、前記伝送路特性の直接波成分が0に固定された場合にだけバイアス値を出力する。これにより、直接波と遅延波の枝メトリックの差が明確になるため、後続の加算/比較/選択手段による処理の精度を大幅に向上させることができる、という効果を奏する。
【0047】
つぎの発明によれば、レプリカ生成ステップにおいて入力される伝送路特性のパターンに応じて、バイアス値作成ステップにてバイアス値を出力するかどうかを決定する。たとえば、伝送路特性の直接波成分が0の場合、所定のバイアス値を付加し、直接波成分が1の場合、バイアス値を付加しない。これにより、直接波成分が1の場合の枝メトリックが最小となり、すなわち、両方の場合において枝メトリックが同一になることがなくなるため、枝メトリックを容易に決定でき、それに伴って、安定して精度の高い送信データ系列を判定可能な送信データ系列判定方法を得ることができる、という効果を奏する。
【0048】
つぎの発明によれば、レプリカ生成ステップにおいて入力される伝送路特性のパターンに応じて、バイアス値作成ステップにてバイアス値を出力するかどうかを決定するため、状態に応じた複数の枝メトリックが同一になることがない。そして、状態毎に行われる加算/比較/選択処理結果に基づいて、送信データ系列出力ステップにて最もパスメトリックの小さいパスを送信データ系列として出力する。これにより、特定の伝送路特性が0になった場合でも、安定して精度の高い判定値、すなわち、精度の高い送信データ系列を出力することができる、という効果を奏する。
【0049】
つぎの発明によれば、たとえば、伝送路特性を受け取り、予め決めておいたスレッショルド値より小さい場合、その伝送路特性を0に固定する。そして、前記伝送路特性の直接波成分が0に固定された場合にだけバイアス値を出力する。これにより、直接波と遅延波の枝メトリックの差が明確になるため、後続の加算/比較/選択ステップによる処理の精度を大幅に向上させることができる、という効果を奏する。
【図面の簡単な説明】
【図1】 本発明にかかるビタビ等化器における枝メトリック作成回路の一部を示すブロック図である。
【図2】 枝メトリック作成回路11の一部におけるバイアス値作成回路を示すブロック図である。
【図3】 スレッショルド判定を説明するための図である。
【図4】 本実施の形態における枝メトリックの作成例を示す図である。
【図5】 従来におけるビタビ等化器の構成を示す図である。
【図6】 従来におけるビタビ等化器を構成する枝メトリック作成回路の一部を示すブロック図である。
【図7】 1シンボル周期の遅延波が存在する伝送路モデルの一例を示す図である。
【図8】 従来におけるビタビ等化器の問題点を説明するための図である。
【符号の説明】
1 受信信号入力端子、2 判定値出力端子、3 枝メトリック作成回路、4A,4B,4C ACS回路、5A,5B,5C 伝送路更新回路、6 記憶回路、7 判定値作成回路、8 データ系列入力端子、9 伝送路特性入力端子、10 枝メトリック出力端子、11 推定伝送路モデル、12 2乗誤差作成回路、13 加算回路、14 バイアス値作成回路、15 バイアス値出力端子、16 スレッショルド判定回路、17 バイアス値決定回路。
Claims (4)
- ビタビアルゴリズムに基づいて、アルゴリズム中の異なったデータ候補に対して、それぞれ異なった伝送路推定を行い、枝メトリックを累積加算したパスメトリックの最も小さいパスを送信データ系列として出力するビタビ等化器において、
各枝に対応する1時刻過去の推定伝送路特性および枝により決定されているデータ系列に基づいて、受信信号のレプリカを作成するレプリカ生成手段と、
受信信号と前記レプリカとの2乗誤差を作成する2乗誤差作成手段と、
前記1時刻過去の推定伝送路特性を入力とし、予め設定されるスレッショルド値以下の伝送路特性を0に固定するスレッショルド判定を行い、当該スレッショルド判定結果に基づき前記伝送路特性の直接波成分が0の場合に、所定のバイアス値を作成するバイアス値作成手段と、
前記2乗誤差と前記バイアス値とを加算して、その加算値を枝メトリックとして出力する加算手段と、
を備えることを特徴とするビタビ等化器。 - さらに、複数のデータ系列のパターンである状態毎に存在し、現状態の複数の枝メトリックに、それぞれ現状態の1時刻過去のパスメトリックを加算することにより現時刻のパスメトリックを生成し、その生成された複数のパスメトリックを比較することにより、最小のパスメトリックおよびそのパスメトリックに対応するパスを選択する加算/比較/選択手段と、
前記加算/比較/選択手段による処理に基づいて、推定伝送路特性およびパスメトリックを更新する伝送路更新手段と、
前記複数の加算/比較/選択手段にて選択されたパスメトリックとパスを受け取り、その中から最もパスメトリックの小さいパスを送信データ系列として出力する送信データ系列出力手段と、
を備えることを特徴とする請求項1に記載のビタビ等化器。 - ビタビアルゴリズムに基づいて、アルゴリズム中の異なったデータ候補に対して、それぞれ異なった伝送路推定を行い、枝メトリックを累積加算したパスメトリックの最も小さいパスを送信データ系列として出力するビタビ等化器における送信データ系列判定方法にあっては、
各枝に対応する1時刻過去の推定伝送路特性および枝により決定されているデータ系列に基づいて、受信信号のレプリカを作成するレプリカ生成ステップと、
受信信号と前記レプリカとの2乗誤差を作成する2乗誤差作成ステップと、
前記1時刻過去の推定伝送路特性を入力とし、予め設定されるスレッショルド値以下の伝送路特性を0に固定するスレッショルド判定を行い、当該スレッショルド判定結果に基づき前記伝送路特性の直接波成分が0の場合に、所定のバイアス値を作成するバイアス値作成ステップと、
前記2乗誤差と前記バイアス値とを加算して、その加算値を枝メトリックとして出力する加算ステップと、
を含むことを特徴とする送信データ系列判定方法。 - さらに、複数のデータ系列のパターンである状態毎の処理として、現状態の複数の枝メトリックに、それぞれ現状態の1時刻過去のパスメトリックを加算することにより現時刻のパスメトリックを生成し、その生成された複数のパスメトリックを比較することにより、最小のパスメトリックおよびそのパスメトリックに対応するパスを選択する加算/比較/選択ステップと、
前記加算/比較/選択ステップに基づいて、推定伝送路特性およびパスメトリックを更新する伝送路更新ステップと、
前記複数の加算/比較/選択ステップにて選択されたパスメトリックとパスを受け取り、その中から最もパスメトリックの小さいパスを送信データ系列として出力する送信データ系列出力ステップと、
を含むことを特徴とする請求項3に記載の送信データ系列判定方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19314899A JP3970478B2 (ja) | 1999-07-07 | 1999-07-07 | ビタビ等化器および送信データ系列判定方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19314899A JP3970478B2 (ja) | 1999-07-07 | 1999-07-07 | ビタビ等化器および送信データ系列判定方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001024525A JP2001024525A (ja) | 2001-01-26 |
JP3970478B2 true JP3970478B2 (ja) | 2007-09-05 |
Family
ID=16303095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19314899A Expired - Lifetime JP3970478B2 (ja) | 1999-07-07 | 1999-07-07 | ビタビ等化器および送信データ系列判定方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3970478B2 (ja) |
-
1999
- 1999-07-07 JP JP19314899A patent/JP3970478B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001024525A (ja) | 2001-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4579472B2 (ja) | Dcオフセット補償を伴う等化 | |
US5530725A (en) | Diversity receiver for dispersive channels, combining reliability-weighed signals | |
US5586128A (en) | System for decoding digital data using a variable decision depth | |
US5579344A (en) | Adaptive maximum likelihood sequence estimation apparatus and adaptive maximum likelihood sequence estimation method | |
JP2669350B2 (ja) | 状態数可変最尤系列推定器 | |
KR100425893B1 (ko) | 수신기 및 적응 등화 처리 방법 | |
WO1996016483A9 (en) | A system for decoding digital data using a variable decision depth | |
EP0895384B1 (en) | Sequence estimation method and sequence estimator | |
WO2000039972A1 (en) | Enhanced method for adaptive equalization technique in mobile wireless systems | |
US6304599B1 (en) | Adaptive equalizer and adaptive equalization scheme | |
EP0508407B1 (en) | Maximum likelihood sequence estimation for rapidly varying mobile radio communication channels | |
US6314148B1 (en) | Synchronization tracking method | |
JP3970478B2 (ja) | ビタビ等化器および送信データ系列判定方法 | |
JP3424723B2 (ja) | 適応等化器 | |
EP0895383B1 (en) | Channel impulse response estimator for a Viterbi equalizer | |
JP3970545B2 (ja) | 受信機および受信方法 | |
US6292510B1 (en) | Automatic equalization method and automatic equalizer | |
Joo et al. | Adaptive MLSE receiver: hybrid of per-survivor processing and tentative decision MLSE | |
JP2894406B2 (ja) | 最尤系列推定装置 | |
JP2591241B2 (ja) | 適応型ダイバーシティ受信装置 | |
Ng et al. | Bandwidth-efficient pilot-symbol-aided technique for multipath-fading channels | |
JPH06177928A (ja) | 検波器 | |
JP2004228712A (ja) | 受信機 | |
JPH1051363A (ja) | ビタビ等化器 | |
JPH07235917A (ja) | ダイバーシチ受信機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040907 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070313 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070423 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070605 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070606 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3970478 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100615 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110615 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120615 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130615 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |