JP3968289B2 - 周波数自動制御装置および周波数自動制御方法 - Google Patents

周波数自動制御装置および周波数自動制御方法 Download PDF

Info

Publication number
JP3968289B2
JP3968289B2 JP2002289979A JP2002289979A JP3968289B2 JP 3968289 B2 JP3968289 B2 JP 3968289B2 JP 2002289979 A JP2002289979 A JP 2002289979A JP 2002289979 A JP2002289979 A JP 2002289979A JP 3968289 B2 JP3968289 B2 JP 3968289B2
Authority
JP
Japan
Prior art keywords
frequency
signal
afc
fluctuation
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002289979A
Other languages
English (en)
Other versions
JP2004128861A (ja
Inventor
昭弘 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002289979A priority Critical patent/JP3968289B2/ja
Publication of JP2004128861A publication Critical patent/JP2004128861A/ja
Application granted granted Critical
Publication of JP3968289B2 publication Critical patent/JP3968289B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、周波数制御装置および制御方法に係り、特に、衛星通信に使用する通信信号の周波数変動をディジタル的に抽出して自動的に補正する周波数自動制御装置および周波数自動制御方法に関する。
【0002】
【従来の技術】
衛星通信では、衛星通信システムの中心となる地上局(以下、送信局とする)から衛星に通信信号を送信するアップリンク時の周波数と、衛星から受信側の地上局(以下、受信局とする)に通信信号を送信するダウンリンク時の周波数は異なっており、通信信号を中継する衛星で周波数変換を行っている。しかし、衛星は温度変化の激しい宇宙空間にあるため、衛星内部においてもある程度の温度変動は避けられない。衛星内部の温度変動は、衛星本体に内蔵される局部発振器の発振周波数を変動させる要因となり、ダウリンク時の通信信号の周波数に変換する際に、通信信号の周波数変動が生じる。
【0003】
周波数自動制御(以下AFC:Automatic Frequency Controlと呼ぶ)は、送信局から通信信号を送信し、衛星を介して受信局で通信信号を受信する際に、衛星本体で生じた周波数変換時の周波数変動分を受信局で認識し、自動的に補正することで、選択した通信信号を正しい周波数で受信するものである。
【0004】
こうした通信信号の周波数変動を補正するため、受信局において、受信した通信信号に含まれる連続無変調波のPILOT信号と、受信局で生成された本来の周波数(公称値)を持つPILOT信号との位相比較を行い、2つの位相を合致させることで、受信したPILOT信号の周波数変動分を認識し、認識した周波数変動分を補正していた。
【0005】
図3に、従来の衛星通信において受信局1でなされるAFCの一例を表す説明図を示す。
【0006】
図3に示される受信局1は、送信局(図外)から送信された通信信号を衛星2を中継して受信するアンテナ3と、アンテナ3で受信した通信信号から所望の偏波を分離する偏分波器(以下、Ortho-Mode Transducer:OMTとする)4と、入力された信号の増幅と周波数のダウンコンバートを行う低雑音周波数変換器(以下、Low Noise Converter:LNCとする)5と、LNC5から出力された信号の周波数をさらにダウンコンバートする際に、周波数変動を抑圧して後段の復調手段6で受信する受信周波数に変換するダウンコンバータ(以下、AFCダウンコンバータとする)7とを具備する。
【0007】
AFCダウンコンバータ7は、受信した通信信号の同期をとる位相同期ループ回路(以下、Phase Locked Loop:PLL回路とする)9と、PILOT信号の同期をとる際に位相比較を行う基準信号(以下、位相比較基準信号とする)を与える発振器10とを備える。
【0008】
PLL回路9は、LNC5から出力された信号と周波数逓倍器11から出力された信号とをミキシングするミキサ(乗算器)12と、ミキサ12の出力信号の周波数帯域のみを通過させる帯域通過フィルタ(以下、Band Pass Filter:BPFとする)13と、受信した信号を分配する分配器14と、PILOT信号の周波数帯域のみを通過させる狭帯域の帯域通過フィルタ(以下、PILOT用BPFとする)15と、PILOT用BPF15から出力されたPILOT信号と発振器10から出力された位相比較基準信号とで位相比較する位相比較器16と、ダンプフィルタとしての低域通過フィルタ(以下、Low Pass Filter:LPFとする)17と、電圧制御発振器(以下、Voltage Control Oscillator:VCOとする)18とを備える。
【0009】
図3に示される受信局1でなされる従来のAFCは、復調手段6へ渡す直前のAFCダウンコンバータ7において、周波数ダウンコンバートおよびAFCを行っている。
【0010】
受信局1では、衛星2からダウンリンクされる通信信号をアンテナ3で受信し、OMT4で分離し、LMC5に入力する。LMC5に入力された信号は、信号増幅および1回目の周波数ダウンコンバートがなされる。LMC5から出力された信号は、AFCダウンコンバータ7に入力され、2回目の周波数ダウンコンバートがなされる。
【0011】
AFCダウンコンバータ7は、PLL回路9に備えられるミキサ12、BPF13、分配器14、PILOT用BPF15、位相比較器16、LPF17、VCO18および周波数逓倍器11で、位相同期ループ(Phase Locked Loop)を形成し、PLL回路9が入力される信号の同期をとることで、2回目の周波数ダウンコンバートを行うと同時に衛星2で生じた周波数変動を抑圧するAFCを行っている。従って、AFCダウンコンバータ7は、AFC装置を兼ね備えた特殊なダウンコンバータといえる。
【0012】
AFCダウンコンバータ7は、入力された信号と周波数逓倍器11から出力される信号とをミキサ12でミキシングした後、BPF13を通過させる。AFCダウンコンバータ7に入力された信号は、ミキサ12でのミキシングおよびBPF13の通過により、後段の復調手段6が復調可能な周波数にダウンコンバートされる。BPF13から出力され、周波数がダウンコンバートされた信号は、分配器14で2つの信号に分配され、一方が後段の復調手段6に、他方がPILOT用BPF15に送信される。
【0013】
PILOT用BPF15は、入力された信号からPILOT信号を抽出し、抽出したPILOT信号を位相比較器16に出力する。位相比較器16には、PILOT用BPF15から出力された信号、すなわち、受信局1で受信した通信信号から抽出したPILOT信号と発振器10から出力された位相比較基準信号との2つの信号が入力され、位相比較が行われる。
【0014】
位相比較器16は、位相のずれ分に比例する電圧信号を出力し、出力した電圧信号をLPF17を介してVCO18に入力する。VCO18は、入力される電圧信号に応じて、発振する周波数を変化させて信号を出力する。VCO18から出力される信号は、周波数逓倍器11を介してミキサ12にフィードバックされる。
【0015】
また、上述した従来のAFC以外にも使用されるAFCとしては、復調手段6が備える個々の復調部で、受信する信号がどのくらい周波数変動しているかという周波数変動情報をディジタル的に認識して、個々の復調部自身で周波数変動分を抑圧する方法でAFCを行う方式がある。
【0016】
【発明が解決しようとする課題】
従来のAFCの一例に示したPLL回路9によりAFCを行う方式では、PILOT信号をPLL回路9で位相同期をかけ、位相比較器16の出力でAFCダウンコンバータ7の局部発振器としてのVCO18が発振する発振周波数を制御する必要がある。従って、局部発振器とミキサとを有する標準的なダウンコンバータを適用することが出来ずに、ダウンコンバータにPLL回路9を備えた標準品に比べ割高で特殊なダウンコンバータ(AFCダウンコンバータ7)の適用を余儀なくされる。
【0017】
このため、従来のAFCの一例に示したPLL回路9によりAFCを行う方式では、狭帯域な信号で通信を実現する場合、AFCが可能なAFCダウンコンバータ7、すなわち、PLL回路9を備える特殊なダウンコンバータを適用することになり、受信局1を設置する際のコストが高くなるという問題があった。
【0018】
一方、従来のAFCの一例に示した復調手段6が備えるそれぞれの復調部でAFCを行う方式では、復調手段6が備える各復調部でAFCを実現するAFC手段を有する必要があり、復調手段6内に同様のAFC手段が複数個必要となる。従って、受信局1を設置する際のコスト高くなるという問題があった。
【0019】
また、復調手段6が備えるそれぞれの復調部でAFCを行う方式では、受信した信号の周波数変動が、復調可能な範囲にあることを前提として、復調手段6が備える各復調部でAFCを行うことから、周波数占有帯幅の狭い信号を用いた場合は、誤った周波数を受信しないための配慮が必要となる。従って、誤った周波数を受信しないための複雑な制御手段が必要となり、受信局1を設置する際のコストが高くなるという問題があった。
【0020】
そこで、本発明は、上述した事情を考慮して、受信局で行うAFCをダウンコンバータと独立に行い得るAFC装置を設けることで、周波数のダウンコンバートをAFCダウンコンバータよりコストが安くダウンコンバートのみを行う標準的なダウンコンバータで実現し、受信局を設置する際のコストを低減することを目的とする。
【0021】
また、本発明の他の目的は、復調手段が備えるそれぞれの復調部でAFCを行う方式を採用した場合においても、受信局にAFC装置を備えることで、復調手段が備える各復調部でAFC手段を行うことなく復調を可能にした受信局を構成し、受信局を設置する際のコストを低減するにある。
【0022】
【課題を解決するための手段】
本発明に係る周波数自動制御装置は、上述の課題を解決するため、請求項1に記載されるように、衛星を介した通信を行い、前記衛星本体の局部発振器の変動に起因する周波数変動を連続無変調波であるPILOT信号を用いて抑圧する周波数自動制御装置において、初段のダウンコンバータで周波数をダウンコンバート後の通信信号を受信して、受信した通信信号を分配し、一方を後段のダウンコンバータへ出力し、他方を周波数ダウンコンバートして出力するダウンコンバート手段と、このダウンコンバート手段から出力された他方の信号から前記PILOT信号を用いて周波数変動分を検出する周波数誤差検出手段と、この周波数誤差検出手段で検出した周波数変動分を抑圧する制御信号を生成し、生成した制御信号を初段のダウンコンバータにフィードバックする周波数変動抑圧制御手段とを具備し、前記初段のダウンコンバータから出力される通信信号の周波数変動を定常的に復調可能な範囲内に抑圧することを可能に構成したことを特徴とする。
【0023】
また、上述した課題を解決するために、本発明に係る周波数自動制御装置は、請求項2記載のように、前記周波数誤差検出手段が、前記ダウンコンバート手段の出力信号から前記PILOT信号を検出するレベル検波器と、前記ダウンコンバート手段から出力された信号をアナログ/ディジタル変換するアナログ/ディジタル変換器と、このアナログ/ディジタル変換器から出力された信号の周波数を直接ディジタル的にカウントするカウンタと、このカウンタがカウントするカウント基準信号を生成するカウント基準信号生成手段と、前記カウンタがカウントした前記アナログ/ディジタル変換器から出力された信号の周波数および前記カウント基準信号の周波数の周波数差を検出する周波数誤差検出部を備えることを特徴とする。
【0024】
本発明に係る周波数自動制御方法は、上述した課題を解決するために、請求項3記載のように、衛星を介した通信を行い、前記衛星本体の局部発振器の変動に起因する周波数変動を連続無変調波であるPILOT信号を用いて抑圧する周波数自動制御方法において、受信した通信信号からPILOT信号近傍の周波数帯域を取得する信号取得ステップと、この信号取得ステップで取得した信号からPILOT信号を検出するPILOT信号検出ステップと、このPILOT信号検出ステップで検出したPILOT信号の周波数が基準周波数(公称値)に対しどのくらい変動しているかをディジタル的に検出する周波数変動分検出ステップと、この周波数変動分検出ステップで検出した周波数変動の絶対値が事前に設定した許容周波数変動値εよりも大きいか否かを判断する周波数変動許容判定ステップと、この周波数変動許容判定ステップの判定結果に応じて、制御信号を生成し、生成した制御信号を周波数自動制御装置の前段でダウンコンバートを行う初段のダウンコンバータにフィードバックして、前記初段のダウンコンバータから出力される通信信号の周波数変動を定常的に復調可能な範囲内に抑圧する周波数制御ステップとを備えることを特徴とする。
【0025】
請求項3に記載される前記PILOT信号検出ステップは、前記信号取得ステップで取得した信号内にPILOT信号が含まれない際においては、LNCスイープ処理ステップを実行し、PILOT信号を取得、検出するまでのステップをいう。
【0026】
【発明の実施の形態】
以下、本発明に係る周波数自動制御装置およびその制御方法の実施形態について図面を参照して説明する。
【0027】
図1に本発明に係る周波数自動制御装置の一実施例として適用される周波数自動制御装置(以下、AFC装置とする)20を具備する受信局21の概要を表す説明図を示す。
【0028】
図1に示される受信局21は、送信局(図外)から送信された通信信号を衛星23を中継して受信するアンテナ25と、アンテナ25で受信した通信信号から所望の偏波を分離するOMT(偏分波器)26と、入力される信号の増幅と第1回目の周波数ダウンコンバートを行う初段ダウンコンバータとしてのLNC(低雑音周波数変換器)28と、衛星23で生じた周波数変動を抑圧するAFC装置20と、通信信号を復調可能な周波数帯域までダウンコンバートする後段のダウンコンバータ(以下、単にダウンコンバータとする)29と、通信信号の復調を行う復調手段30とを具備する。
【0029】
受信局21が具備するLNC28は、受信した信号を雑音レベルを抑えて増幅する低雑音増幅器(以下、Low Noise Amplifier:LNAとする)33と、局部発振器として与えられ、入力された信号の周波数をm(mは任意の正数)倍にして出力する周波数逓倍器34と、入力された2つの信号をミキシングする第1のミキサ(乗算器)35と、第1のミキサ35の出力からノイズ成分を除去し、所望の周波数帯域の信号を抽出する第1のBPF36とを備える。
【0030】
受信局21が具備するAFC装置20は、入力された信号の周波数変動分を検出する周波数誤差検出手段38が信号処理可能な周波数までダウンコンバートするダウンコンバート手段39と、周波数誤差検出手段38と、周波数誤差検出手段38で検出した周波数変動分を抑圧する制御信号を生成する周波数変動抑圧制御手段としてのVCO40とを備える。
【0031】
AFC装置20が備えるダウンコンバート手段39は、入力された信号を2つに分配して出力する分配器43と、周波数ダウンコンバート用の局部発振器45と、分配器43から出力された信号の一方と局部発振器45から出力された信号とをミキシングする第2のミキサ(乗算器)46と、第2のミキサ46から出力される信号からノイズ成分を除去し、所望の周波数帯域の信号を抽出する第2のBPF47とを備える。
【0032】
AFC装置20が備える周波数誤差検出手段38は、入力された信号からPILOT信号を検波するレベル検波器50と、入力された信号をアナログ−ディジタル変換(以下、A/D変換とする)するA/D変換器51と、A/D変換後のディジタル信号の周波数を計測するカウンタ52と、カウンタ52がカウントするカウント基準信号を生成するカウント基準信号生成手段としてのカウント基準用発振器53およびカウント基準用発振器53から出力される周波数を1/n(nは任意の正数)にして出力する分周器54と、カウンタ52またはレベル検波器50の出力信号から周波数変動分を検出し、周波数変動分に応じた信号を出力する周波数誤差検出部56とを備える。
【0033】
受信局21が具備するダウンコンバータ29は、ダウンコンバート用の局部発振器としてのシンセサイザ59と、ダウンコンバータ29に入力された信号とシンセサイザ59との信号をミキシングする第3のミキサ(乗算器)60と、ミキサ60から出力される信号からノイズ成分を除去して所望の周波数帯域の信号を取り出す第3のBPF61とを備える標準的なダウンコンバータである。
【0034】
受信局21においてなされる通信信号の受信および信号処理操作について説明する。
【0035】
受信局21では、まず、アンテナ25で通信信号を受信し、OMT26で通信信号から所望の偏波を分離、抽出して、LNC28で第1回目の周波数ダウンコンバートを行う。そして、LNC28から出力される通信信号は、AFC装置20に入力され、AFC装置20が備えるダウンコンバート手段39で通信信号は2つに分配される。ダウンコンバート手段39で2つに分配された通信信号のうち、一方は通信信号の周波数変動分を検出する周波数誤差検出手段38に、他方は後段のダウンコンバータ29に入力される。
【0036】
ダウンコンバート手段39に入力された通信信号は、ダウンコンバート手段39で、周波数誤差検出手段38が周波数変動分を検出可能な周波数帯域まで周波数ダウンコンバートされる。周波数ダウンコンバート後の通信信号は、周波数誤差検出手段38に入力される。周波数誤差検出手段38に入力された通信信号は、周波数誤差検出手段38で入力された通信信号の周波数変動分がディジタル的に抽出される。そして、周波数誤差検出手段38は、抽出した周波数変動分に応じて電圧信号を出力する。
【0037】
周波数誤差検出手段38から出力された電圧信号はVCO40に入力され、VCO40で周波数変動分を抑圧する制御信号が生成される。VCO40生成された制御信号は、LNC28に入力され、周波数逓倍器34を介して第1のミキサ35にフィードバックされる。従って、LNC28から出力される第1回目の周波数ダウンコンバート後の通信信号は、周波数変動分が抑圧された信号となる。
【0038】
また、ダウンコンバータ29に入力された通信信号は、ダウンコンバータ29で第2回目の周波数ダウンコンバートがなされる。ダウンコンバータ29でダウンコンバートされた通信信号は、復調手段30に入力されて復調手段30で復調される。尚、ダウンコンバータ29に入力された通信信号は、周波数変動分が抑圧された信号となっているため、第2回目の周波数ダウンコンバート時および復調手段30での復調時においてはAFCが不要となる。
【0039】
受信局21が具備するLNC28でなされる通信信号の第1回目の周波数ダウンコンバートは、まず、入力された通信信号をLNA33でノイズを低レベルに抑えたまま増幅する。次に、増幅後の通信信号と周波数逓倍器34を介して出力されるAFC装置20からの制御信号とを第1のミキサ35でミキシングする。そして、第1のBPF36でミキシング後の通信信号からノイズを除去して、所望の周波数帯、すなわち、設定したダウンコンバート後の周波数帯域の信号を出力することでなされる。
【0040】
AFC装置20が備えるダウンコンバート手段39は、周波数誤差検出手段38において周波数誤差検出可能な周波数帯域まで通信信号の周波数をダウンコンバートするものである。
【0041】
ダウンコンバート手段39に入力された通信信号は、分配器43で2つに分配され、一方がダウンコンバータ29へ出力される。尚、分配器43に入力される通信信号は、AFC装置20からのフィードバックにより、予め設定された範囲内に周波数変動を抑圧した状態でダウンコンバータ29へ出力される。また、他方は、第2のミキサ46に入力され、分配器43から出力された通信信号と周波数ダウンコンバート用の局部発振器45の出力信号とがミキシングされる。
【0042】
局部発振器45が出力する信号の周波数変動分は、衛星23で周波数変換する際に生じた周波数変動分に対して、十分小さい範囲に抑える必要がある。これは、局部発振器45が出力する信号の周波数変動分を復調手段30の復調可能な周波数変動範囲内に抑えるためである。復調手段30が復調可能な周波数変動範囲は、復調手段30の性能により定まり、復調手段30の変調速度(baud rate)に対し±1%の範囲内である。
【0043】
第2のミキサ46でミキシングされた通信信号は、第2のBPF47に出力され、第2のBPF47でミキシング後の通信信号からノイズを除去して、所望の信号、すなわち、周波数誤差検出手段38において、周波数変動分を検出するためのPILOT信号近傍の周波数帯域の信号が出力される。
【0044】
第2のBPF47は、周波数誤差検出手段38で、受信したPILOT信号の周波数を計測する際に、十分なC/N(Carrier to Noise)とする必要がある。C/Nは、ノイズ成分が少ない程良くなることから、第2のBPF47で通過する信号の周波数帯幅は、1kHz程度の極めて狭帯域に設定する。第2のBPF47から出力された通信信号は、周波数のダウンコンバートがなされて周波数誤差検出手段38に入力される。
【0045】
周波数誤差検出手段38に入力される信号は、A/D変換器51でA/D変換されカウンタ52に入力される。また、カウンタ52には、A/D変換器51から出力されたディジタル信号と同時にカウント基準信号生成手段としてのカウント基準用発振器53から出力されたカウント基準信号が分周器54を介して入力される。カウンタ52では、入力された信号の周波数に相当するパルス数がカウントされる。
【0046】
カウント基準用発振器53から分周器54を介して入力されるカウント基準信号は、カウンタ52がカウントする際の基準となる時間(以下、基準時間とする)を与えるものである。すなわち、分周器54から出力されるパルス数を一定個数カウントする時間を基準時間としてカウントを行っている。
【0047】
カウンタ52でA/D変換器51から出力されたディジタル信号のパルス数を基準時間カウントし、カウントしたパルス数の情報としてのディジタル信号として周波数誤差検出部56に入力される。周波数誤差検出部56は、基準時間においてカウントしたパルス数とカウント基準信号のパルス数(一定値)との差を算出し、算出したパルス数の差から周波数変動分Δfを認識する。周波数誤差検出部56には、許容周波数変動値εを事前に認識させておき、算出した周波数変動分が許容範囲外にある場合、周波数誤差検出部56は、制御信号を生成するための電圧信号を出力する。
【0048】
周波数誤差検出部56から出力された電圧信号は、VCO40に入力される。VCO40に電圧信号が入力されると、電圧信号に応じた制御信号がVCO40から出力される。AFC装置20が備えるVCO40から出力された制御信号は、LNC28が備える周波数逓倍器34を介して第1のミキサ35にフィードバックされる。このフィードバックにより、LNC28から出力される通信信号は周波数変動ある一定範囲内に抑圧されたものとなる。
【0049】
図2にAFC装置20が行う周波数変動分を検出して抑圧する周波数変動抑圧制御処理操作についての処理フロー図を示す。
【0050】
図2によれば、AFC装置20が行う周波数変動抑圧制御処理操作は、AFC装置20の電源がONとなることで開始され、まず、ステップS1で、周波数誤差検出手段38に入力された信号をレベル検波器50で取得する信号取得ステップがなされる。すなわち、ステップS1の信号取得ステップでは、レベル検波器50が周波数誤差検出手段38前段のコンバート手段39に備えられる第2のBPF47を通過した信号を取得する。
【0051】
そして、ステップS1でレベル検波器50が第2のBPF47を通過した信号を取得したら、ステップS2でレベル検波器50が取得した信号内からPILOT信号の有無を検出するPILOT信号検出ステップを行う。PILOT信号の検出は、ノイズレベルよりも十分に高いレベル以上に設定された一定レベル以上の信号を検出することでなされる。
【0052】
ステップS2のPILOT信号検出ステップで、PILOT信号が検出された場合(ステップS2でYESの場合)は、ステップS3に進み、受信し、検出したPILOT信号の周波数が基準となるPILOT信号の公称値周波数からどの位変動があるか、すなわち、周波数変動分Δfを検出する周波数変動分検出ステップを行う。PILOT信号の周波数変動分は、カウンタ52で計測したPILOT信号の周波数とカウント基準信号の周波数(公称値)との差を算出することで求められる。
【0053】
次に、ステップS3の周波数変動分検出ステップが完了すると、ステップS4に進み、ステップS4で、検出した周波数変動分Δfの絶対値(図2では|Δf|と図示)が事前に設定した許容周波数変動値εよりも大きいか否かを判断する周波数変動許容判定ステップがなされる。ステップS4でなされる周波数変動許容判定ステップは、図1に示される周波数誤差検出部56に事前に認識させた許容周波数変動値εと周波数誤差検出部56がステップS3で算出した周波数変動分Δfの絶対値とを比較することでなされる。
【0054】
ステップS4で検出した周波数変動分Δfが許容周波数変動値εよりも小さい場合(ステップS4でYESの場合)は、周波数制御ステップとして、ステップS1に進み、ステップS1以降の処理操作を行う(ループL1)。ループL1におけるステップS4からステップS1に進む処理操作は、図1に示される周波数誤差検出部56、VCO40およびLNC28が備える周波数逓倍器34を経由して第1のミキサ35にフィードバックされる制御信号が0となる状態である。
【0055】
つまり、VCO40は、周波数制御ステップとして、LNC28から出力する通信信号の周波数を現状を維持して出力する制御動作を行うことを意味する。AFC装置20が図2に示されるステップS1〜ステップS4の動作(ループL1)を繰り返す無限ループ状態にある時は、AFC装置20が安定に動作している定常状態にある。
【0056】
また、ステップS2のPILOT信号検出ステップで、PILOT信号が検出された場合(ステップS2でNOの場合)は、ステップS5に進み、ステップS5でLNC局発スイープ処理ステップを行う。
【0057】
LNC局発スイープ処理ステップは、LNC28の局部発振器として第1のミキサ35に入力される周波数逓倍器34の出力をある一定の周波数ピッチで周波数を変化させる処理操作である。LNC局発スイープ処理ステップをより具体的に説明すると、周波数誤差検出部56は、PILOT信号が検出できない場合、周波数誤差検出部56で検出する周波数帯域を変化させることで、PILOT信号の検出を行う。
【0058】
周波数誤差検出部56が検出する周波数帯域を変化させるには、第1の乗算器35に入力する周波数を変化させる必要がある。従って、周波数誤差検出部56は、出力する電圧信号によってVCO40にある一定の周波数ピッチで周波数を変化させて制御信号を発振させて、VCO40で発振した制御信号を周波数逓倍器34を介して第1のミキサ35に周波数を変化させてフィードバックする。ステップS5のLNC局発スイープ処理ステップが完了すると、ステップS1に進み、ステップS1以降の処理操作を繰り返す(ループL2)。
【0059】
一方、ステップS4で検出した周波数変動分Δfが許容周波数変動値εよりも大きい場合(ステップS4でNOの場合)は、ステップS6に進み、周波数制御ステップとしてのLNC局発補正処理ステップを行う。LNC補正処理ステップは、LNC28の局部発振器として第1のミキサ35に入力される周波数逓倍器34の出力をある一定の周波数ピッチで周波数を僅かに変化させて微調整する処理操作である。つまり、LNC補正処理ステップにおいて変化する周波数ピッチは、LNC局発スイープ処理ステップにおいて変化する周波数ピッチよりも細かいピッチである。
【0060】
LNC補正処理ステップは、周波数誤差検出部56が出力する電圧信号によってVCO40にある一定の僅かな周波数ピッチで周波数を変化させて、制御信号を発振させる。VCO40は、周波数制御ステップとして、発振した制御信号を周波数逓倍器34を介して第1のミキサ35に周波数を微調整するようにフィードバックする。ステップS6の処理操作が完了すると、ステップS1に進み、ステップS1以降の処理操作を繰り返す(ループL3)。
【0061】
図2示される周波数変動分抑圧制御処理操作についての処理フローにおいて、ループL2(ステップS1→ステップS2→ステップS5を繰り返すループ)は、狭帯域に設定された第2のBPF47を通過した信号からPILOT信号をサーチして見つける処理ステップであり、ループL3(ステップS1→ステップS2→ステップS6を繰り返すループ)は、PILOT信号の周波数が一定範囲の周波数にあるように制御する処理ステップである。
【0062】
図1に示されるAFC装置20は、図2に示される周波数変動分抑圧制御処理操作によって、衛星23で生じた周波数変動分を抑圧して、LNC28から出力される通信信号の周波数変動を一定範囲内とすることが可能となる。従って、受信局21は、第1回目の周波数ダウンコンバートを行うLNC28およびAFC装置20によりAFCを実現し、第1回目の周波数ダウンコンバート以降の信号処理段階でAFCが不要となる。
【0063】
尚、図1に示されるAFC装置20が備える周波数誤差検出手段38において、周波数誤差検出部56は、ハードウェアとしているが、CPU、記録手段およびメモリを用いて周波数誤差検出部56を構成して、周波数変動分検出ステップ、周波数変動許容判定ステップ、LNC局発スイープ処理ステップおよびLNC局発補正処理ステップを実現するプログラムをCPUで処理させるソフト的な構成でも差し支えない。
【0064】
また、図1に示されるAFC装置20が備える周波数誤差検出手段38において、基準信号生成手段をカウント基準用発振器53および分周器54で構成しているが、分周器54は必ずしも必要ではない。カウント基準用発振器53の発振周波数やカウンタ52の動作周波数を考慮した上で、カウント基準用発振器53のみで構成しても良い。
【0065】
さらに、図1に示される受信局21が具備する復調手段30は、復調のみを行うものに限定されない。本発明の実施の形態においては、復調が可能な手段であればよいので、復調および変調の両方が可能な変調・復調手段であっても差し支えない。
【0066】
以上説明したように、AFC装置20は、衛星23で生じた周波数変動分をAFC装置20がディジタル的に検出し、第1回目の周波数ダウンコンバートを行うLNC28に検出した周波数変動分を抑圧するようなフィードバックをすることで、AFCを実現している。
【0067】
従って、AFC装置20を用いたAFC方法によれば、LNC28でなされる第1回目の周波数ダウンコンバート以降の信号処理段階でAFCが不要となり、受信局21において第2回目の周波数ダウンコンバートを行うダウンコンバータは、ダウンコンバートのみを行い得る標準的なダウンコンバータ29が適用できるので、AFC装置20を用いたAFC方法によれば、受信局を設置する際のコストを低減できる。
【0068】
また、第2回目の周波数ダウンコンバートを行った後に、復調手段が備える各復調部においてAFCを行う方式と比較すれば、AFC装置20を用いることによって、LNC28から出力される信号は、衛星23で生じた周波数変動分が抑圧され、LNC28以降の信号処理段階でAFCが不要となることから、復調手段が備える各復調部においてAFCを実行することなく復調が可能となる。
【0069】
従って、AFC装置20を用いたAFC方法によれば、復調手段についてもAFC機能を持たない復調手段を適用でき、受信局21を設置する際のコストを低減できる。特に、復調手段が備える各復調部においてAFCを行う方式と比較すれば、各復調部においてAFC機能を実現する構成要素が不要となるので、その効果は大きい。
【0070】
さらに、AFC装置20を用いたAFC方法では、受信したPILOT信号の周波数変動分をディジタル的に抽出することで、周波数をダウンコンバートする際の局部発振器の出力にノイズ成分がフィードバックされることなく、安定した周波数のダウンコンバートが可能となる。従って、狭帯域な信号での通信を標準的なダウンコンバータ29で実現できる。
【0071】
【発明の効果】
本発明に係るAFC(周波数自動制御)装置およびAFC方法によれば、受信局で行うAFCをダウンコンバータと独立に行い得るAFC装置を設け、衛星で生じた周波数変動分をAFC装置がディジタル的に検出し、第1回目の周波数ダウンコンバートを行うLNCに検出した周波数変動分をフィードバックをすることで、LNCとAFC装置とでAFCを実現する。従って、LNCでなされる第1回目の周波数ダウンコンバート以降の信号処理段階でAFCが不要となり、第2回目の周波数ダウンコンバートを行うダウンコンバータに標準的なダウンコンバータの適用が可能となり、受信局を設置する際のコストを低減できる。
【0072】
また、本発明に係るAFC装置およびAFC方法によれば、受信局においてLNCとAFC装置とでAFCを実現し、LNCでなされる第1回目の周波数ダウンコンバート以降の信号処理段階でAFCが不要となるので、復調手段が備える各復調部でAFCを行う方式と比較した場合、各復調部でAFCを行うこと無く復調することが可能となる。従って、受信局を設置する際のコストが低減する。
【0073】
さらに、本発明に係るAFC装置およびAFC方法によれば、衛星で生じた周波数変動分をAFC装置がディジタル的に検出し、LNCに検出した周波数変動分をフィードバックをすることでAFCを実現しているので、ノイズ成分がフィードバック系へ反映されず、安定したAFCが実現できる。
【図面の簡単な説明】
【図1】本発明に係るAFC(周波数自動制御)装置を具備する受信局の一実施例を示す構成概要図。
【図2】本発明に係るAFC(周波数自動制御)装置が実行する周波数変動分抑圧制御処理操作の処理手順を説明する処理フロー図。
【図3】従来のAFC(周波数自動制御)装置を具備する受信局の一実施例を示す構成概要図。
【符号の説明】
20 AFC(周波数自動制御)装置
21 受信局
23 衛星
25 アンテナ
26 OMT(偏分波器)
28 LNC(初段のダウンコンバータ:低雑音周波数変換器)
29 ダウンコンバータ(後段のダウンコンバータ)
30 復調手段
33 LNA(低雑音増幅器)
34 周波数逓倍器
35 第1のミキサ(乗算器)
36 第1のBPF(Band Pass Filter)
38 周波数誤差検出手段
39 ダウンコンバート手段
40 VCO(電圧制御発振器)
43 分配器
45 局部発振器
46 第2のミキサ(乗算器)
47 第2のBPF
50 レベル検波器
51 A/D変換器
52 カウンタ
53 カウント基準用発振器(カウント基準信号生成手段)
54 分周器(カウント基準信号生成手段)
56 周波数誤差検出部
59 シンセサイザ(局部発振器)
60 第3のミキサ(乗算器)
61 第3のBPF

Claims (3)

  1. 衛星を介した通信を行い、前記衛星本体の局部発振器の変動に起因する周波数変動を連続無変調波であるPILOT信号を用いて抑圧する周波数自動制御装置において、
    初段のダウンコンバータで周波数をダウンコンバート後の通信信号を受信して、受信した通信信号を分配し、一方を後段のダウンコンバータへ出力し、他方を周波数ダウンコンバートして出力するダウンコンバート手段と、
    このダウンコンバート手段から出力された他方の信号から前記PILOT信号を用いて周波数変動分を検出する周波数誤差検出手段と、
    この周波数誤差検出手段で検出した周波数変動分を抑圧する制御信号を生成し、生成した制御信号を初段のダウンコンバータにフィードバックする周波数変動抑圧制御手段とを具備し、前記初段のダウンコンバータから出力される通信信号の周波数変動を定常的に復調可能な範囲内に抑圧することを可能に構成したことを特徴とする周波数自動制御装置。
  2. 前記周波数誤差検出手段は、前記ダウンコンバート手段の出力信号から前記PILOT信号を検出するレベル検波器と、
    前記ダウンコンバート手段から出力された信号をアナログ/ディジタル変換するアナログ/ディジタル変換器と、
    このアナログ/ディジタル変換器から出力された信号の周波数を直接ディジタル的にカウントするカウンタと、
    このカウンタがカウントするカウント基準信号を生成するカウント基準信号生成手段と、
    前記カウンタがカウントした前記アナログ/ディジタル変換器から出力された信号の周波数および前記カウント基準信号の周波数の周波数差を検出する周波数誤差検出部を備えることを特徴とする請求項1記載の周波数自動制御装置。
  3. 衛星を介した通信を行い、前記衛星本体の局部発振器の変動に起因する周波数変動を連続無変調波であるPILOT信号を用いて抑圧する周波数自動制御方法において、
    受信した通信信号からPILOT信号近傍の周波数帯域を取得する信号取得ステップと、
    この信号取得ステップで取得した信号からPILOT信号を検出するPILOT信号検出ステップと、
    このPILOT信号検出ステップで検出したPILOT信号の周波数が基準周波数(公称値)に対しどのくらい変動しているかをディジタル的に検出する周波数変動分検出ステップと、
    この周波数変動分検出ステップで検出した周波数変動の絶対値が事前に設定した許容周波数変動値εよりも大きいか否かを判断する周波数変動許容判定ステップと、
    この周波数変動許容判定ステップの判定結果に応じて、制御信号を生成し、生成した制御信号を周波数自動制御装置の前段でダウンコンバートを行う初段のダウンコンバータにフィードバックして、前記初段のダウンコンバータから出力される通信信号の周波数変動を定常的に復調可能な範囲内に抑圧する周波数制御ステップとを備えることを特徴とする周波数自動制御方法。
JP2002289979A 2002-10-02 2002-10-02 周波数自動制御装置および周波数自動制御方法 Expired - Fee Related JP3968289B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002289979A JP3968289B2 (ja) 2002-10-02 2002-10-02 周波数自動制御装置および周波数自動制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002289979A JP3968289B2 (ja) 2002-10-02 2002-10-02 周波数自動制御装置および周波数自動制御方法

Publications (2)

Publication Number Publication Date
JP2004128861A JP2004128861A (ja) 2004-04-22
JP3968289B2 true JP3968289B2 (ja) 2007-08-29

Family

ID=32281994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002289979A Expired - Fee Related JP3968289B2 (ja) 2002-10-02 2002-10-02 周波数自動制御装置および周波数自動制御方法

Country Status (1)

Country Link
JP (1) JP3968289B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4656103B2 (ja) * 2007-07-31 2011-03-23 パナソニック株式会社 発振器と、これを用いた受信装置及び電子機器

Also Published As

Publication number Publication date
JP2004128861A (ja) 2004-04-22

Similar Documents

Publication Publication Date Title
US20090207943A1 (en) Semiconductor Circuit Device
US20050272396A1 (en) Angle demodulation apparatus, local oscillation apparatus, angle demodulation method, local oscillation signal generating method, recording medium and computer data signal
JPH0548483A (ja) 周波数変換回路
EP0645882B1 (en) Demodulation of FM carrier
US6725023B2 (en) Radio FM receiver
JP3968289B2 (ja) 周波数自動制御装置および周波数自動制御方法
US7720451B2 (en) Methods and apparatus for calibrating oscillators in a receiver
US6728523B1 (en) Method and apparatus for stabilizing frequency of output signal of relay station in radio communication system
JP4016945B2 (ja) 受信機
JP3898839B2 (ja) 送信機
JP3809703B2 (ja) テレビジョン信号受信回路
JP2877177B2 (ja) 周波数分割多元接続通信方式における受信装置
JP2700972B2 (ja) パイロット信号及びその信号対雑音比検出回路
JPS6157741B2 (ja)
JPS5811143B2 (ja) 送信周波数制御装置
KR20010042028A (ko) 복조기 회로
JPS6089155A (ja) 位相同期方式
JP2005277480A (ja) 受信機
JP3696636B2 (ja) 受信装置
JPS6111012B2 (ja)
JPH09326752A (ja) 移動体通信端末装置
JPH0583310A (ja) 自動周波数制御回路
JP2006203614A (ja) 自動周波数制御装置
JPH0654013A (ja) 受信機の周波数変換回路
JPH05110466A (ja) 周波数変換回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees