JP3964473B2 - ディジタルビデオ信号デコーダでの切り捨て誤差の補償のための装置 - Google Patents
ディジタルビデオ信号デコーダでの切り捨て誤差の補償のための装置 Download PDFInfo
- Publication number
- JP3964473B2 JP3964473B2 JP34414395A JP34414395A JP3964473B2 JP 3964473 B2 JP3964473 B2 JP 3964473B2 JP 34414395 A JP34414395 A JP 34414395A JP 34414395 A JP34414395 A JP 34414395A JP 3964473 B2 JP3964473 B2 JP 3964473B2
- Authority
- JP
- Japan
- Prior art keywords
- truncation
- data
- offset
- filter
- error
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/44—Receiver circuitry for the reception of television signals according to analogue transmission standards
- H04N5/455—Demodulation-circuits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/41—Structure of client; Structure of client peripherals
- H04N21/426—Internal components of the client ; Characteristics thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/60—Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/14—Picture signal circuitry for video frequency region
- H04N5/21—Circuitry for suppressing or minimising disturbance, e.g. moiré or halo
- H04N5/211—Ghost signal cancellation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/14—Picture signal circuitry for video frequency region
- H04N5/16—Circuitry for reinsertion of dc and slowly varying components of signal; Circuitry for preservation of black or white level
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Picture Signal Circuits (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
- Analogue/Digital Conversion (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Description
【発明の属する技術分野】
本発明はディジタル信号処理の分野に関し、特に、たとえばテレビジョン信号デコーダに用いられるディジタル フィルタリングに関する。
【0002】
なお、本明細書の記述は本件出願の優先権の基礎たる米国特許出願第08/365,721号(1994年12月28日出願)の明細書の記載に基づくものであって、当該米国特許出願の番号を参照することによって当該米国特許出願の明細書の記載内容が本明細書の一部分を構成するものとする。
【0003】
【従来の技術】
現代の地上または衛星ディジタルテレビジョン伝送チャネルは高度にバンド幅が制約されている。つまり、バンド幅を可能なかぎり大きく保つために複雑な変調技術を使用する必要がある。これらの複雑な変調技術の使用のすべてに存在する共通要因はテレビジョン受信機の復調工程で雑音とチャネルひずみを最小化する必要性である。これは正確な信号の復元を確保するのに必要なことである。ディジタルテレビジョン受信機でチャネルひずみを最小化するにはしばしば等化(equalization)ネットワークやデゴースト(deghosting)ネットワークの使用を必要とする。これらのネットワークでは通常ディジタル フィルタリングや数値算術乗算を含んだほかの信号処理が使われる。たとえば長さ‘m’ビットの係数と長さ‘n’ビットのデータを掛け合わせて長さ‘m+n’ビットのデータが生成される。フィルタネットワークでは‘m+n’ビットのデータバスの幅を使用するのはしばしば実用的ではないし高価である。実際、データは数ビットで表されるように通常は切り捨てられ(truncated) 、最下位のビットは捨てられる。
【0004】
【発明が解決しようとする課題】
しかしながら、データ値が切り捨てられると、平均切り捨て誤差がデータに入る。
【0005】
ひとつの切り捨てステージ(stage) に対するこの誤差の平均値は切り捨てられた値の最下位のビット(Least Significant Bit(LSB))の1.5倍に等しくなる。切り捨て誤差はその結果得られる一連のデータ値の中でDC(直流)バイアスとして現れ、データを順に処理する切り捨てステージの数に比例して増加する。たとえば、‘Y’の切り捨てステージの後、その結果得られるデータ中の平均DCオフセット成分(以下オフセット誤差と言う)は以下に与えられる。
【0006】
【数1】
オフセット誤差=Y*LSB/2
ここでLSBは切り捨てられた数の最下位のビットである。
【0007】
この結果は切り捨てステージをとうしてデータの一定のスケーリング(scaling) を仮定している。もし処理中切り捨てが異なったスケーリングで行われると、データ中のオフセット誤差は変えられる。そしてオフセット誤差は各ステージの切り捨て誤差の合計に等しくなる。しかし、各ステージの切り捨て誤差は各ステージのスケール係数(Scale factor)とLSB/2切り捨て誤差との積に等しい。
【0008】
一定のスケーリングを仮定してオフセット誤差が切り捨てステージの数に比例するという事実は誤差の集積(accumulation)がおこることを意味する。ディジタルフィルタを含んだテレビジョン受信機のように非常にたくさんの数の一連の切り捨て処理を行うこれらのシステムでとくに誤差の集積がおこりやすい。誤差の集積は受信システムの信号対雑音比を減少させ、その結果受信機の動作を劣化させる。
【0009】
本発明の原理に従った装置によりオフセット誤差により引き起こされる切り捨てで生じる信号の劣化のコスト効果回避(cost-effective avoidance)を実現した。また、この装置によりデータが切り捨てられるごとに丸め演算を行なう複雑さ、困難さおよび費用が回避される。さらに、この装置は次世代高品位テレビジョン受信機と関連システムのような民生品においてとくに有益である。
【0010】
【課題を解決するための手段】
本発明にもとずく装置によりディジタル信号処理においておこる切り捨てで引き起こされる誤差が補償される。本発明者は、ひとつあるいはそれより多い切り捨ての結果データに生じるオフセット誤差の補償は処理されるデータに補償値を加えることにより実現できることを認めた。開示した実施例では、補償を実現するように処理されたデータに加算されるDC(直流)オフセット補償値を供給する制御ネットワークが装置で使われる。
【0011】
1つ以上の補償値を選び使用してよい。たとえば、いろいろな構成が可能なシステムで切り捨てのステージの数が選択可能な場合これをおこなってよい。そしてつかわれる補償値は選択されるシステム構成にしたがって選択できる。
【0012】
使われる補償値はシステムでおこる切り捨ての数とタイプの知識からあらかじめ決められる、すなわち補償値は、測定できる。
【0013】
【発明の実施の形態】
図1は、次世代テレビジョン受信機の等化器機能で使うことのできるタイプのディジタル処理システムを示す。図3に関連して述べるが伝送されたテレビジョン信号は入力処理回路10で受信されて処理される。その後、入力処理回路10から出力されたディジタルビデオ(映像)データはさらにディジタル信号フィルタ20でろ波される。
【0014】
フィルタ20は、FIR(Finite Impulse Response)フィルタの形で、その各々が乗算器22、加算器24および遅延器26を含む複数の部分を具備する。たとえば、切り捨てはフィルタ20のなかの各乗算器でおこりえる。
【0015】
長さがmビットの複素数あるいは実数のフィルタ係数(CN…C2,C1)は長さがnビットのデータと乗算されて長さがm+nビットのデータが各乗算器の出力側に生成される。フィルタ内でm+nビットのデータバスの長さを使うことはしばしば非実用的で高価である。実際、より少ないビットで表わされるように、データはしばしば切り捨てられて、最下位のビットが捨てられて切り捨てデータが生成される。
【0016】
しかし、もし一連のデータ値が切り捨てられると、平均切り捨て誤差がデータに入る。ひとつの切り捨てステージに対するこの誤差の平均値は切り捨てられた値の最下位のビット(LSB)の1.5倍に等しくなる。各ステージで起こる切り捨て誤差はランダムでありまたゼロと切り捨て値のひとつのLSBとの間にあるという事実の結果としてこの平均値が生じる。したがって、各ステージでの切り捨て誤差の平均値は切り捨て値のLSBの1.5倍である。切り捨て誤差は切り捨てに続いて一連のデータ値のなかにDCバイアスとして現れ、データを順に処理する切り捨てステージの数に比例して増加する。たとえば、‘Y’の切り捨てステージの後、その結果としてのデータ中の平均DCオフセット( オフセット誤差) は以下に与えられる。
【0017】
【数2】
オフセット誤差=Y*LSB/2
ここでLSBは切り捨てられた数の最下位のビットである。
【0018】
この結果は切り捨てステージをとうしてデータのスケーリングを一定であると仮定している。すなわち切り捨てられた2進数の最下位のビットは各切り捨てステージで同じ値を表す。たとえば、シフトを使い効果的にデータに係数2,4,8…等を掛けたり割ったりする処理からデータの一定のスケーリングと反対の可変のスケーリングを生じることができる。このとき切り捨てられた2進数の最下位のビットは各切り捨てステージで異なる値を表わす。この例では切り捨てられた2進数の最下位のビットは係数2,4,8…等により異なることができる。したがって、処理中異なったスケーリングで切り捨てが行こなわれると、データ中のオフセット誤差は変えられる。データのスケーリングが一定でないとオフセット誤差は各ステージでの切り捨て誤差の合計に等しくなる。しかし、各ステージでの切り捨て誤差はLSB/2切り捨て誤差に各ステージでの適宜なスケール係数を掛けた積に等しい。特定の切り捨てステージでの適宜なスケール係数とは公称(nominal)(非スケールド(non-scaled))データに関連して各ステージでのデータに掛けた係数である。最後の例では、特定の切り捨てステージでの適宜なスケール係数は、非スケールドデータに関連したデータに掛けたり/割ったりするのに使う2,4,8…等の係数である。
【0019】
定常状態でフィルタ20から出力されたろ波されたデータは入力データと各種定数係数(CN…C2,C1)との積の合計を含む。したがって、フィルタ20から出力されたデータは各乗算ステージの切り捨て誤差の合計を含む。それゆえ、各切り捨てステージで一定のデータのスケーリングを仮定すると、フィルタ20のオフセット誤差は切り捨て誤差の蓄積の結果であり、また切り捨てステージの数に比例する。
【0020】
本発明者は、フィルタ20からの出力データにおけるオフセット誤差の補償は処理されるデータに補償値を加えることにより実現できることを認めた。
【0021】
さらに、補償が必要なオフセット誤差がフィルタ20の係数とフィルタ20で処理されたデータに関して時不変DC信号であるので、補償値はフィルタ20の信号処理経路のどこへでも加えることができる。図1では、DCオフセット補償値( 以下補償値という) をフィルタ20内の入力に最も近い加算素子の別の使用しない入力に加えることによりオフセット誤差の補償をおこなう。かわりに、たとえばこの値をフィルタ20に外部から加えることができる。この場合、補償値をフィルタ20の入力または出力データに加えるように外部加算回路を配置できる。
【0022】
フィルタ20内で加えられる補償値は、メモリ40(たとえばレジスタ)によって供給される。またメモリ40はRAMあるいは読みおよび書きアドレス機能をもったほかの記憶装置でもよい。ひとつの実施例では、補償値はフィルタ20内で生じる切り捨ての数やタイプの知識からあらかじめ決める事ができる。
【0023】
たとえば、フィルタ20がYの切り捨てステージを含み各切り捨てで一定のデータのスケーリングを使うものと仮定すると、出力データ(Y*LSB/2)のオフセット誤差はメモリ40に負の形で記憶され補償値を供給する。この補償値は入力加算器24nを介して処理されたデータに加えられ補償を実現する。補償値は加算点とフィルタの出力との間の既知のゲイン関係のあるどの点で処理されたデータ経路に加えてもよい。図1で、加算器24nの加算点はフィルタの出力に一定の不変のゲイン関係を備え、また処理中はデータの一定のスケーリングがある。
【0024】
補償値の大きさはフィルタ20の切り捨てステージの数とスケーリングに依存する。図1に示すように、別の数の切り捨てステージをもつ別のフィルタ構成が可能な場合、別のDCオフセット補償値が必要になる。このような場合、たとえば、データローダ&フィルタ制御ネットワーク50によりフィルタのステージの数とフィルタ20で使われる係数の値が形成される。この目的のために、ネットワーク50により、システム構成信号に応じてフィルタ20の構成を決定する制御信号が生成される。制御ネットワーク50は、離散型2進ロジックレベル出力としての制御信号を供給するプログラムされたマイクロプロセッサがこのましい。この制御信号によりフィルタ20は2つの別のフィルタ構成を表し、たとえば、構成はフィルタタップの数および関連するフィルタの係数の値(CN…C2,C1)で異なる。各フィルタタップの部分は加算器24、遅延器26および乗算器素子22(関連する係数入力を持つ乗算素子)を含む。
【0025】
フィルタ20の構成間のスイッチングはマルチプレクサ装置で実現できる。制御信号ロジックレベルに応じて、マルチプレクサはフィルタ20の所定の部分をバイパスし、入力信号をフィルタ20のある部分から離した経路を進ませ、これらの別の経路の信号を別のフィルタ20の部分の入力に印加する。マルチプレクサはまた制御信号に応じて別の係数値(CN…C2,C1)をメモリ(図示せず)からフィルタ20の希望のマルチプレクサに供給する。このようにして、簡単なマルチプレクサ切り替え信号経路により別のフィルタ構成が実現する。この理由は2つの選択可能なフィルタ構成が含まれるマルチプレクサの数で異なり、たとえば構成もそれらの切り捨てステージの数で異なる。これは、べつの補償値が各構成で必要とされることを意味する。
【0026】
制御ネットワーク50は制御信号を使いフィルタ20の構成が決定しまたフィルタ20の構成と互換性のある補償値をメモリ40に記憶する。制御ネットワーク50によりシステム制御信号に応じてこれらの機能(functions) が実行され、このシステム制御信号は2進ロジックレベル入力信号としてプログラムされた外部のマイクロプロセッサ(図示せず)から制御ネットワークへ供給される。システム構成信号自体は、たとえばフィルタ20への入力信号が変調される方法を感知することにより決められる。このような変調は、知られているように直交振幅変調(QAM)を含んだパルス振幅変調(PAM)、残留側波帯変調(VSB)およびディジタル直交位相シフトキーイング(QPSK)の変形を含む。システム構成信号はさらに、たとえば装置内でおこるチャネル歪みのタイプにより決められる。
【0027】
制御ネットワーク50により選択されたフィルタ20の構成に関連した適宜な補償値がメモリ60から読まれ、その後この値はメモリ40に記憶される。
【0028】
メモリ60は1つ以上の補償値を記憶でき、制御ネットワーク50内では、たとえばマイクロプロセッサに関連したRAMでもよい。この例ではシステム構成信号の2進(2−レベル)の状態に応じて2つの異なった補償値が供給される。
【0029】
各値はそれぞれ選択されたフィルタ20の構成に関連している。
【0030】
ろ波された、誤差を補償されたフィルタ20の出力はいろいろな機能(functions) を組み込める出力プロセッサ30により処理される。デジィタルテレビジョン受信機との関連において、たとえば、図3に関連して記載するように、これらの機能はデスクランブリング(descrambling)とデコーデング(decoding)の機能を含むことができる。
【0031】
図1の好ましい実施例では1つ以上のフィルタ構成を補償する方法を示しているが、より簡単な実施が可能である。ただひとつの所定のフィルタ構成が含まれる場合、ひとつの所定の補償値がメモリ40に記憶され、制御ネットワーク50とメモリ60は必要とされない。図1のほかの素子とそれらに関連する機能は上記と同じである。
【0032】
補償値が切り捨てステージ以外の機能で生じたDCシフトを補償するために選択される場合、図1の実施例のほかの変形例もおこりえる。たとえば、上記の方法により処理すべきデータにそれぞれ−LBS/4と−2LSBの値を加えることによりLBS/4または2LSBに等しいDCオフセットを導入する機能ブロックを補償できる。
【0033】
本発明の他の実施例は図2で示されている。図2では、DC(直流)オフセット補償値は測定によって得ることができる。対照的に、図1では、DCオフセット補償値はシステム構成の知識から、特に信号処理中に生じる切り捨ての個数およびタイプから予め定められる。図2は図1にはないオフセット誤差測定ネットワーク95を含んでいる。しかし、図2の入力プロセッサ10、フィルタ20、出力プロセッサ30およびメモリ40は図1の同様に命名されたネットワークに対応している。
【0034】
図1の実施例のごとく図2では、入力プロセッサ10からのデジタル映像データはデジタル信号フィルタ20により濾波される。フィルタ20の濾波された出力はさらに出力プロセッサ30により処理される。しかし、図2では、フィルタ20の出力信号は、また測定ネットワーク95に送られる。これはネットワーク95がフィルタ20の出力信号でのオフセット誤差を測定するのを可能にしている。ネットワーク95は、またオフセット誤差の負の値を誘導し、この値を補償値としてメモリ40に記憶する。補償値はフィルタ20内のデータに加算され、図1の実施例と関連して前述されたように補償を行う。
【0035】
オフセット誤差を測定する前に、メモリ40に記憶された補償値はまずゼロにセットされる。これは測定さるべきオフセット誤差がメモリ40に記憶されたどのような以前の補償値によっても影響されないことを保証している。濾波された出力自体がDC(直流)分を含んだ場合は、それで補償値をこの期待されたDC分の負の値にセットされる。その後、フィルタ20の出力はフィルタ20の処理によって導入されたオフセット誤差だけを含む。これは、フィルタ20によって導入されたDC分だけが必要により測定されたことを保証する。この初期化手順は、図2で示したようなメモリリセット信号に応じて実行される。リセット信号は、プログラミングされたマイクロプロセッサ(図示せず)のような制御ネットワークにより、例えばパワーアップのシステムリセットに応じて供給される。補償値はリセット信号の発生の際だけ供給することができる。その代わりに、補償値は、特定なシステムの要求により、定期的測定に基づいて定期的に得ることができる。
【0036】
次に、オフセット誤差を含んでいるフィルタ20の出力信号はネットワーク95により低域濾波され、オフセット誤差に近似するDC値を供給する。低域濾波された信号が次にサンプリングされ、測定されたオフセット誤差が供給される。測定の開始から十分な時間が経過した後、サンプリングが実行されサンプルされた値の適切な安定性および正確性を保証する。サンプリングのタイミングは図2で示されるようなタイミング信号で決定される。タイミング信号は、プログラミングされたマイクロプロセッサ(図示せず)のような制御ネットワークにより、パワーオン(源オン)状態に応じて供給され、例えばリセット信号から誘導することができる。その様な場合には、タイミング信号はリセット信号の現れた後、プログラミングされた時間遅延に続いてマイクロプロセッサによって供給され得る。測定されたオフセット誤差を得るための他の方法も可能である。例えば、これらはプログラミングされたマイクロプロセッサを用いることで連続データ値からオフセット誤差を計算することを含む。この計算では十分に大きい連続データ値の平均を計算して、公知の如く、データのDCオフセット値に近似する。
【0037】
次に、ネットワーク95は、測定されたオフセット誤差の負の値を誘導し、この値を補償値としてメモリ40に記憶する。最後に、補償値はフィルタ20によって処理されたデータに加算され、図1と関連して前述されたように補償を行う。
【0038】
切り捨て誤差を補償するための前述された方法は直交振幅変調(QAM)信号のようなパルス振幅変調(PAM)信号をイコライズするシステムにおいては特別に有利である。そのような信号は、公知の如く、実−仮想面上に格子のような図形で配置される記号点の配置(Constellation) により定める。図3では記載されるようにこのタイプのイコライザを組み入れている。前述された方法による切り捨て誤差のための補償は、個々の配置の点と関連した確率的(random)軌道誤差を減少する。
【0039】
図3はイコライザネットワーク120を含む次世代テレビ受信機の一部のブロック図であり、そのイコライザネットワークは本発明の原理によるフィルタを用いている。アンテナ110によって受信されたQAM信号のような送信されたテレビ信号は入力プロセッサ115に供給される。典型的には、入力プロセッサ115は受信された信号を低周波数帯にダウンコンバーティングするチューナおよびIF(中間周波)ステージを含んでいる。それは、また、例えば自動利得制御、濾波、およびタイミング/クロック回復ネットワークを含んでもよい。これらの機能は、公知であり、例えばDigital Communication, Lee and Messerschmidt(Kluwer Academic press, Boston, MA, USA, 1988)の参照テキストに記述されている。
【0040】
装置115からの出力信号は装置118で復調され、変調された入力信号からベースバンドデータを回復させる。次に、復調された出力データはイコライザ120によりイコライズされディジタル的に濾波される。これは、公知の如く、雑音及および干渉を減少すると共にデータチャネルでの歪み補償することを目的としている。データはディジタルフィルタマルチプライヤエレメント(digital filter multiplier elements)内と、装置120内の他の処理ステージでの両方で処理している間に切り捨てられる。DCオフセット補償は、図1に関連して記載された如く、本発明の原理によってイコライザ装置120に供給される。図3で示されるエレメントの他のシステム構成もまた可能である。例えば、システム構成は復調器の前にイコライザ装置を位置づけることも可能である。
【0041】
装置120から復調され、等化され、およびDCオフセット補償された出力データは、例えばリード−ソロモン・デコーダでもよいデコーダ125によってデコードされる。次に、装置125からの補正されたデータパケットは転送プロセッサ130に供給され、その転送プロセッサは各データパケットのヘッダを調べ音声(audio)および映像(video)データを識別する。転送プロセッサ130は音声および映像出力データを装置135内の適切なデコーダに転送する。装置135からのデコードされた音声および映像データは音声プロセッサ145およびテレビ映像プロセッサ140の各々に供給される。プロセッサ145および140は装置150による再生に適した方法で音声および映像データをフォーマットする。
【0042】
本発明は次世代テレビ映像信号処理システムとの関係で記載されているが、本発明の原理は切り捨てが行われるディジタル信号処理に包括的に適用できることを理解すべきである。同様に、テレビ受信機に用いられる場合は、DCオフセット補償は、イコライザ機能に制限はされないが、例えば復調機のようなテレビ受信機内の他の機能に適用することもできる。また、図1のメモリ60は、補償が幾つかの異なるフィルタ構成で必要とされる場合には、幾つかの補償値を記憶しなければならない。
【図面の簡単な説明】
【図1】本発明の原理を使ったディジタルフィルタを含むブロック図である。
【図2】本発明に基ずき、処理されたデータ内のオフセット誤差から引き起こされる切り捨てを測定する装置を示す図である。
【図3】本発明の原理を使う事のできる等化器を含む次世代テレビジョン受信機の一部のブロック図である。
【符号の説明】
10 入力処理回路
20 ディジタルFIRフィルタ
30 出力プロセッサ
40,60 メモリ
50 データ・ローダ&フィルタ制御ネットワーク
Claims (3)
- 入力信号を処理する複数個のデータ切り捨てステージであって各々がDCオフセット切り捨て誤差を呈する複数個のデータ切り捨てステージの信号経路を有するディジタル信号処理ネットワークを含むシステムにおいて、蓄積されたDCオフセット切り捨て誤差の関数としてのDCオフセット補償値を生成する手段であって前記蓄積されたDCオフセット切り捨て誤差の大きさが前記切り捨てステージの個数の関数である手段と、前記DCオフセット補償値を前記信号経路に加えて前記誤差の値を減少する手段とを具えたことを特徴とする装置。
- 各々がDCオフセット切り捨て誤差を呈する複数個の切り捨てステージの信号経路であって蓄積されたDCオフセット切り捨て誤差を呈する信号経路を有するディジタル信号処理ネットワークを含むシステムにおいて、DCオフセット補償値を記憶する第一のメモリと、複数の予め定めた補償値を記憶する第二のメモリと、システム構成制御信号に応じて前記複数の予め定めた補償値の一つを選択して、当該一つの補償値を前記第二のメモリから前記第一のメモリに転送する手段と、マルチプライヤ、加算器および遅延素子を含む前記信号処理ネットワーク内のディジタル・フィルタ・ネットワークであって前記加算器素子の1つが前記第一のメモリからのDCオフセット補償値を前記信号経路に加えるディジタル・フィルタ・ネットワークとを具えたことを特徴とする装置。
- 入力信号を処理する複数個のデータ切捨てステージであって蓄積されたDCオフセット切り捨て誤差を呈する複数個のデータ切り捨てステージの信号経路を有するディジタル信号処理ネットワークを含むシステムにおいて、複数個の前記切り捨てステージを含む前記ディジタル信号処理ネットワークの構成をシステム構成制御信号に応じて変更する手段と、DCオフセット補償値を前記システム構成制御信号に応じて生成する手段と、前記DCオフセット補償値を前記信号経路に加えて前記誤差の値を減少する手段とを具えたことを特徴とする装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US365721 | 1994-12-28 | ||
US08/365,721 US5493343A (en) | 1994-12-28 | 1994-12-28 | Compensation for truncation error in a digital video signal decoder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08242415A JPH08242415A (ja) | 1996-09-17 |
JP3964473B2 true JP3964473B2 (ja) | 2007-08-22 |
Family
ID=23440064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34414395A Expired - Fee Related JP3964473B2 (ja) | 1994-12-28 | 1995-12-28 | ディジタルビデオ信号デコーダでの切り捨て誤差の補償のための装置 |
Country Status (8)
Country | Link |
---|---|
US (1) | US5493343A (ja) |
EP (1) | EP0720370B1 (ja) |
JP (1) | JP3964473B2 (ja) |
KR (1) | KR100382434B1 (ja) |
CN (1) | CN1115042C (ja) |
DE (1) | DE69526194T2 (ja) |
MY (1) | MY115192A (ja) |
SG (1) | SG41964A1 (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6122016A (en) * | 1994-11-14 | 2000-09-19 | U.S. Philips Corporation | Video signal processing |
US5642382A (en) * | 1995-03-01 | 1997-06-24 | Hitachi America, Ltd. | Fir filters with multiplexed inputs suitable for use in reconfigurable adaptive equalizers |
US6052415A (en) * | 1997-08-26 | 2000-04-18 | International Business Machines Corporation | Early error detection within an MPEG decoder |
US6513055B1 (en) | 1999-10-29 | 2003-01-28 | Visteon Global Technologies, Inc. | Apparatus and method for data width reduction in automotive systems |
US7986932B1 (en) | 2002-11-19 | 2011-07-26 | National Semiconductor Corporation | Fixed point FIR filter with adaptive truncation and clipping and wireless mobile station using same |
KR100814350B1 (ko) * | 2006-11-09 | 2008-03-18 | (주)에스앤케이솔루션 | 휴대용 단말기의 영상데이터의 비대칭 절단 오류를보정하는 보정 장치 및 그 방법 및 상기 방법이 적용된디스플레이 모듈 |
US7876147B1 (en) * | 2008-06-09 | 2011-01-25 | Marvell International Ltd. | Background offset cancellation scheme for continuous time gm-C filters |
US10491251B1 (en) * | 2018-12-05 | 2019-11-26 | The Aerospace Corporation | Suppressing interference in binary offset carrier modulated signals |
US10979069B2 (en) * | 2019-03-14 | 2021-04-13 | Mediatek Inc. | Delta-sigma modulator with truncation error compensation and associated method |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3699326A (en) * | 1971-05-05 | 1972-10-17 | Honeywell Inf Systems | Rounding numbers expressed in 2{40 s complement notation |
US4236224A (en) * | 1978-12-26 | 1980-11-25 | Rockwell International Corporation | Low roundoff noise digital filter |
AU532416B2 (en) * | 1979-09-19 | 1983-09-29 | Plessey Overseas Ltd. | Transversal equalisers |
SE440300B (sv) * | 1983-11-24 | 1985-07-22 | Ellemtel Utvecklings Ab | Forfarande for att i en samplad signal kompensera for trunkeringsfel samt anordning for utforande av forfarandet |
US4562553A (en) * | 1984-03-19 | 1985-12-31 | Analogic Corporation | Floating point arithmetic system and method with rounding anticipation |
US4727506A (en) * | 1985-03-25 | 1988-02-23 | Rca Corporation | Digital scaling circuitry with truncation offset compensation |
WO1988010544A1 (en) * | 1987-06-22 | 1988-12-29 | Eastman Kodak Company | Block adaptive linear predictive coding with adaptive gain and bias |
US4953186A (en) * | 1988-02-19 | 1990-08-28 | Silicon Systems, Inc. | Phase jitter tracker |
US4965668A (en) * | 1989-11-09 | 1990-10-23 | The Grass Valley Group, Inc. | Adaptive rounder for video signals |
US5248970A (en) * | 1991-11-08 | 1993-09-28 | Crystal Semiconductor Corp. | Offset calibration of a dac using a calibrated adc |
US5386239A (en) * | 1993-05-03 | 1995-01-31 | Thomson Consumer Electronics, Inc. | Multiple QAM digital television signal decoder |
-
1994
- 1994-12-28 US US08/365,721 patent/US5493343A/en not_active Expired - Lifetime
-
1995
- 1995-12-22 DE DE69526194T patent/DE69526194T2/de not_active Expired - Lifetime
- 1995-12-22 SG SG1995002287A patent/SG41964A1/en unknown
- 1995-12-22 EP EP95120376A patent/EP0720370B1/en not_active Expired - Lifetime
- 1995-12-27 CN CN95120456A patent/CN1115042C/zh not_active Expired - Fee Related
- 1995-12-27 MY MYPI95004110A patent/MY115192A/en unknown
- 1995-12-28 JP JP34414395A patent/JP3964473B2/ja not_active Expired - Fee Related
- 1995-12-28 KR KR1019950061424A patent/KR100382434B1/ko not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
DE69526194D1 (de) | 2002-05-08 |
KR960028571A (ko) | 1996-07-22 |
CN1135145A (zh) | 1996-11-06 |
EP0720370A3 (en) | 1998-11-11 |
DE69526194T2 (de) | 2002-08-29 |
JPH08242415A (ja) | 1996-09-17 |
EP0720370B1 (en) | 2002-04-03 |
CN1115042C (zh) | 2003-07-16 |
EP0720370A2 (en) | 1996-07-03 |
MY115192A (en) | 2003-04-30 |
US5493343A (en) | 1996-02-20 |
KR100382434B1 (ko) | 2003-07-18 |
SG41964A1 (en) | 1997-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0149580B1 (ko) | 고품위 텔레비젼 수신기와 같은 디지탈 무선 수신기의 신속한 갱신 적응 채널등화필터링 | |
KR0158719B1 (ko) | 에러 트래킹 루프 회로 | |
KR100300539B1 (ko) | 신호처리시스템 | |
KR0161806B1 (ko) | 고품위 텔레비젼용 대역 통과 위상 트랙커를 구비한 디지탈 잔류 측파대 검출기 | |
US6816204B2 (en) | Ghost cancellation reference signals for broadcast digital television signal receivers and receivers for utilizing them | |
KR100444378B1 (ko) | 다양한포맷으로인코드된비디오신호를디코딩하기위한장치및그처리방법 | |
US7151797B2 (en) | Adaptive K-factor-improvement filter for receiver of radio signals subject to multipath distortion | |
USRE37070E1 (en) | High definition television receiver | |
JPH10135941A (ja) | 出力インタフェース | |
KR19990028865A (ko) | 비디오 신호의 복조 및 디코딩을 위한 장치 | |
KR100769868B1 (ko) | 복조 회로 및 복조 방법 | |
JPH09247569A (ja) | ディジタル信号処理装置におけるタイミング再生装置 | |
JP3613520B2 (ja) | Hdtv受信機に利用するためのレーダーフィルタを利用した帯域位相トラッカーを有するディジタルvsb検出器 | |
JP3964473B2 (ja) | ディジタルビデオ信号デコーダでの切り捨て誤差の補償のための装置 | |
US7133481B2 (en) | Synchronization detection apparatus | |
JP3502644B2 (ja) | 高精細度テレビジョン受信機 | |
US6573948B1 (en) | Equalizing intermediate-frequency signals before demodulating them in a digital television receiver | |
JPH06133273A (ja) | Qam信号処理装置 | |
US5801595A (en) | Device and method for digital vestigial sideband modulation | |
US6505220B1 (en) | Method and apparatus for detecting a unique word | |
JP2000244777A (ja) | 波形等化装置 | |
JP2003513581A (ja) | 共有された資源を伴なうディジタルフィルタのマルチモード動作のためのシステム及び方法 | |
US5333149A (en) | Process and a circuit for adapting coefficients in a modem equalizer | |
JP4292667B2 (ja) | 受信装置およびその方法 | |
KR100367230B1 (ko) | 디지털 텔레비전 수신기의 복조 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050915 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060124 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20060424 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20060427 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060724 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070511 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070524 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100601 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110601 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120601 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120601 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130601 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |