JP3952298B2 - 分散型電源システム及び分散型電源システムの制御プログラム - Google Patents

分散型電源システム及び分散型電源システムの制御プログラム Download PDF

Info

Publication number
JP3952298B2
JP3952298B2 JP2003145424A JP2003145424A JP3952298B2 JP 3952298 B2 JP3952298 B2 JP 3952298B2 JP 2003145424 A JP2003145424 A JP 2003145424A JP 2003145424 A JP2003145424 A JP 2003145424A JP 3952298 B2 JP3952298 B2 JP 3952298B2
Authority
JP
Japan
Prior art keywords
circuit
signal
grid
synchronization confirmation
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003145424A
Other languages
English (en)
Other versions
JP2004350429A (ja
Inventor
和哉 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003145424A priority Critical patent/JP3952298B2/ja
Publication of JP2004350429A publication Critical patent/JP2004350429A/ja
Application granted granted Critical
Publication of JP3952298B2 publication Critical patent/JP3952298B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、太陽電池等の複数の直流電源から供給される直流電力を、並列に運転する複数の系統連系インバータにより系統電源(商用電源)と同期のとれた交流電力に変換し、系統電源と連系して需要者に供給する分散型電源システム及びこの分散型電源システムを制御するための分散型電源システムの制御プログラムに関する。
【0002】
【従来の技術】
従来の分散型電源システムは、複数の太陽電池と、複数の太陽電池に対応して設けられた、複数のインバータと、複数の系統保護回路とから構成されている。各インバータは、対応する太陽電池から供給される直流電力を系統電源と同期のとれた交流電力に変換する。各系統保護回路は、対応するインバータを制御するとともに、系統電源からの交流電力供給が停止されてこの分散型電源システムが単独運転していることを検出して保護動作等を行う。また、各系統保護回路は、同期信号ラインで相互に接続されている。各系統保護回路は、上記単独運転を検出するためのインバータの出力変動が互いに干渉することにより支障が出ないようにするために、上記同期信号ラインで供給される共通の同期信号に基づいて、各インバータの出力を微小変動させるタイミングを相互に同期させている。上記同期信号は、各インバータの出力をプラス側及びマイナス側に変動させる少なくとも2つのパターンを有する信号である(例えば、特許文献1参照。)。以下、この技術を第1の従来例と呼ぶ。
【0003】
また、従来の分散型電源システムには、複数の太陽電池と、複数の太陽電池に対応して設けられた複数のインバータ及び複数の系統連系スイッチと、外乱発生タイミング回路と、単独運転検出リレーとから構成されているものもある。各インバータは、対応する太陽電池から供給される直流電力を交流電力に変換する。外乱発生タイミング回路は、系統電源から供給される系統電圧に基づいて周期的な外乱発生タイミング信号を生成する。各インバータは、外乱発生タイミング回路から供給される外乱発生タイミング信号のHレベル/Lレベルに基づいて同種の外乱を発生する。単独運転検出リレーは、各インバータの外乱発生タイミングと同期して、系統の変動から単独運転を検出した場合には、各インバータの運転を停止させると同時に、各系統連系スイッチを開成する(例えば、特許文献2参照。)。以下、この技術を第2の従来例と呼ぶ。
【0004】
【特許文献1】
特許第3028205号公報([0027]〜[0030],[0039],[0040]、図1,図3)
【特許文献2】
特開平9−46909号公報([0016]〜[0020],[0024]、図1〜図3)
【0005】
【発明が解決しようとする課題】
ところで、上記した第1の従来例では、同期信号自体に各インバータの出力をプラス側又はマイナス側に微小変動させる機能を付加しているため、この同期信号を他の信号が伝送される信号ラインを兼用して伝送することができず、専用の同期信号ラインを必要としている。したがって、各インバータの運転状態や発電電力等を表示するためのモニタをさらに設けたり、各インバータの運転のオン/オフを制御するコントローラを新たに設ける場合には、各インバータ又は各系統保護回路を相互に接続する信号ラインを、上記同期信号ラインと同様の配線形態であるにもかかわらず、新たに配線する必要がある。すなわち、上記した第1の従来例における分散型電源システムを多機能化する場合には、施工性が悪く、コストも高くなるという課題があった。この課題は、工場や学校等において、大容量の発電電力を供給できるようにするために、並設される太陽電池が増えれば増えるほど、顕在化する。
【0006】
これに対し、上記した第2の従来例では、外乱発生タイミング回路や単独運転検出リレーに上記モニタ機能又は上記コントローラ機能を付加することができる。しかし、既設の信号ラインの他に、上記モニタ機能又は上記コントローラ機能を実現するための信号を伝送する通信ラインを新たに配設しなければならない点では、上記した第1の従来例と異なることはない。また、コントローラは分散型電源システム全体を制御するものであり、モニタは各インバータの運転状態や発電電力等を表示するものであるため、いずれも系統電圧を入力する必要はないが、上記した第2の従来例において、外乱発生タイミング回路又は単独運転検出リレーにコントローラ機能やモニタ機能を付加した場合には、本来不要な系統電圧を入力しなければならないという課題がある。
【0007】
この点、例えば、単独運転検出リレーが有する機能を各インバータに付加するとともに、コントローラ機能又はモニタ機能が付加された外乱発生タイミング回路は、系統電圧に基づかないで任意のタイミングで周期的な外乱発生タイミング信号を生成するように構成することが考えられる。しかし、各インバータは、この外乱発生タイミング信号のHレベル/Lレベルに基づいて外乱を発生しているため、系統電圧に基づかない場合には、各インバータは同種の外乱を発生することはできても系統電圧の周期に対して外乱を与えるタイミングが不定となる。その結果、単独運転時に外乱による系統の変動が現れにくくなる場合があり、単独運転を安定的に検出することができなくなるおそれがある。
【0008】
この発明は、上述のような課題を解決するためになされたもので、その目的は、施工性に優れ、安価かつ簡単に構成することができ、しかも安定的に単独運転を検出することができる分散型電源システム及び分散型電源システムの制御プログラムを得るものである。
【0009】
【課題を解決するための手段】
この発明に係る分散型電源システムは、複数の系統連系インバータと、コントローラとを備えている。各系統連系インバータは、対応する直流電源からの直流電力を交流電力に変換し系統電源と連系して出力するとともに、交流電力を微小変動させて単独運転を検出する。コントローラは、通信路を介して各系統連系インバータの運転情報を取得するとともに、通信路を介して各系統連系インバータに微小変動の同期がとれているか否かの確認を促す同期確認トリガ信号を送信する。これにより、各系統連系インバータは、同期確認トリガ信号に応じて通信路を介して互いに微小変動の同期がとれているか否かの確認を行う。
【0010】
【発明の実施の形態】
実施の形態1.
図1は、この発明の実施の形態1における分散型電源システムを示すものである。
この実施の形態1の分散型電源システムは、太陽光発電部11〜13と、コントローラ2と、通信線3と、系統電源4とから構成されている。太陽光発電部11〜13は、個別の分散型電源として機能する。コントローラ2は、太陽光発電部11〜13を構成する系統連系インバータ61〜63と通信線3を介して通信することにより各系統連系インバータ61〜63の運転状態や発電電力等に関する情報である運転情報を取得して表示するとともに、各系統連系インバータ61〜63の運転のオン/オフ等を制御する。通信線3は、系統連系インバータ61〜63とコントローラ2とを、これらの間で双方向通信を行うために接続するものである。通信線3は、例えば、信号線と接地線とからなる平行ケーブル、信号線と接地線とが撚り合わされたツイスト・ペアケーブル、同軸ケーブル、あるいは光ファイバケーブル等からなる。
【0011】
太陽光発電システム11と、太陽光発電システム12及び13とは、各構成要素の添え字が異なるとともに、入出力される信号の添え字が異なる以外は同一構成であるので、以下においては太陽光発電システム11の構成についてのみ説明する。なお、以下においては、同一構成の各構成要素を総称したり、同一構成の複数の構成要素を特定することなく示す場合には当該構成要素に付与した符号の添え字を省略して説明する。
太陽光発電システム11は、太陽電池51と、系統連系インバータ61とから構成されている。太陽電池51は、太陽光エネルギを電気エネルギに変換する。系統連系インバータ61は、太陽電池51から供給される直流電力を系統電源4と同期のとれた交流電力に変換する。
【0012】
系統連系インバータ61は、インバータ71と、連系リレー81と、制御回路91とから構成されている。インバータ71は、太陽電池51から供給される直流電力を交流電力に変換する。また、インバータ71は、制御回路91から供給されるインバータ制御信号SICTに基づいて、出力する交流電圧の周波数をプラス側及びマイナス側に交互に微小に変動させる。連系リレー81は、制御回路91から供給される開成信号SOPにより開成され、系統電源4から太陽光発電部11を切り離す。制御回路91は、インバータ71の制御、コントローラ2との通信及びこの分散型電源システムの単独運転を検出する等の系統保護処理を行う。
【0013】
コントローラ2は、図2に示すように、送受信回路11と、タイマ回路12と、統轄回路13と、モニタ14とから概略構成されている。送受信回路11は、統轄回路13の制御の下、制御回路91〜93に対し、通信線3を介して、通常時TUSUに運転情報要求信号SROIを順次所定間隔をあけて送信するとともに、同期確認時TSCに同期確認トリガ信号STSCを送信する。運転情報要求信号SROIは、各制御回路91〜93に図示せぬアドレス設定回路により予め設定されているアドレス番号を含み、当該アドレス番号が設定されている制御回路9に対してその運転状態や発電電力等に関する情報である運転情報を要求するための信号である。今の場合、制御回路91にアドレス番号「1」が、制御回路92にアドレス番号「2」が、制御回路93にアドレス番号「3」がそれぞれ予め設定されているものとする。そして、以下においては、個別の制御回路91〜93に送信する運転情報要求信号SROIを特に示す場合には、制御回路91〜93に予め設定されているアドレス番号「1」〜「3」に対応させて運転情報要求信号SROI1〜SROI3と示すものとする。同期確認トリガ信号STSCは、この分散型電源システムの単独運転を検出すべく系統連系インバータ61〜63の出力を微小変動させるタイミングを相互に同期させるための同期がとれているか否かを確認する指示を与える信号である。一方、送受信回路11は、送信した運転情報要求信号SROIに応答して制御回路9から送信される、当該制御回路9が属する系統連系インバータ6の運転状態や発電電力等に関する情報である運転情報を示す運転情報信号SOIを受信する。以下においては、個別の制御回路91〜93から送信される運転情報信号SOIを特に示す場合には、制御回路91〜93の添え字に対応させて運転情報信号SOI1〜SOI3とする。
【0014】
タイマ回路12は、送受信回路11から同期確認トリガ信号STSCが供給されると、所定時間T1をカウントして、その間、送受信回路11に運転情報要求信号SROIの送信を停止させるための切換信号SSW1を供給し続ける。そして、上記所定時間T1のカウントが終了すると、タイマ回路12は、送受信回路11への上記切換信号SSW1の供給を停止する。統轄回路13は、コントローラ2の各部を統括的に制御するものである。例えば、統轄回路13は、上記したように、送受信回路11に対して、通常時TUSUにおける運転情報要求信号SROIの送信、同期確認時TSCにおける同期確認トリガ信号STSCの送信を指示する。また、統轄回路13は、各制御回路91〜93から供給される運転情報信号SOI1〜SOI3に基づいて当該制御回路91〜93が属する系統連系インバータ61〜63の運転状態や発電電力等を把握し、各系統連系インバータ61〜63の運転状態や発電電力等をモニタ14に表示する。さらに、統轄回路13は、把握した各系統連系インバータ61〜63の運転状態や発電電力等、あるいは図示せぬ需要者側の電力需要等に基づいて、各系統連系インバータ61〜63の運転開始を指示するオン信号SON1〜SON3又はそれらの運転停止を指示するオフ信号SOFF1〜SOFF3を送受信回路11及び通信線3を介して各制御回路91〜93に送信する。これらのオン信号SON1〜SON3及びオフ信号SOFF1〜SOFF3は、運転情報要求信号SROI1〜SROI3と同様、各制御回路91〜93に図示せぬアドレス設定回路により予め設定されているアドレス番号を含み、当該アドレス番号が設定されている制御回路9に対してその運転開始又は運転停止を指示するための信号である。モニタ14は、CRTディスプレイ、液晶ディスプレイ、プラズマディスプレイ、あるいはELディスプレイ等からなる。
【0015】
制御回路9は、図3に示すように、単独運転検出回路21と、切換回路22と、タイマ回路23と、送受信回路24と、統轄回路25と、微小変動指令回路26と、送信設定回路27と、パルス入出力回路28と、同期確認判定回路29とから構成されている。なお、図3においては、便宜上、制御回路9が後述する親機であるか子機であるかにかかわらず、すべての信号が入出力されるとして示している。単独運転検出回路21は、系統電源4から供給される系統電圧VSの周波数を検出し、微小変動による系統電圧VSの周波数変化からこの分散型電源システムの単独運転を検出した場合には、インバータ7にその運転を停止させるための停止信号SSTを供給すると同時に、連系リレー8に開成するための開成信号SOPを供給する。この場合、単独運転検出回路21は、誤動作を防止するために、系統電圧VSの周波数変化が所定時間連続した場合にのみ、この分散型電源システムが単独運転していると検出する。以下、上記した所定時間を単独運転検出期間と呼ぶことにする。そして、単独運転検出回路21は、この単独運転検出期間では、実際にこの分散型電源システムが単独運転している場合に系統電圧VSの周波数変化を確実なものとするために、微小変動のプラス側又はマイナス側に与える方向を、現在与えている方向又は系統電圧VSの周波数が変化している方向に固定する。
【0016】
切換回路22は、通常時TUSUには送受信回路24と接続される。切換回路22は、通常時TUSUには、コントローラ2から通信線3を介して供給される運転情報要求信号SROI及びオン信号SON、オフ信号SOFFを送受信回路24に供給するとともに、送受信回路24から供給される運転情報信号SOIを通信線3を介してコントローラ2に送信する。また、切換回路22は、同期確認時TSCには、タイマ回路23から切換信号SSW2が供給されるまでは送受信回路24と接続されており、コントローラ2から通信線3を介して送信される同期確認トリガ信号STSCを送受信回路24に供給し、タイマ回路23から切換信号SSW2が供給されると、パルス入出力回路28と接続される。切換回路22は、同期確認時TSCには、この切換回路22が属する制御回路9が親機の場合にはパルス入出力回路28が生成して供給する、所定幅のパルス状の同期確認タイミング信号STCSを通信線3を介して子機である他の制御回路9に送信する。ここで、同期確認タイミング信号STCSとは、各系統連系インバータ61〜63の出力を微小変動させるタイミングを相互に同期させるためのこの同期がとれているか否かを確認する基準となる信号である。
【0017】
一方、この切換回路22が属する制御回路9が子機の場合には、切換回路22は、同期確認時TSCには、他の制御回路9から通信線3を介して送信される同期確認タイミング信号STCSEをパルス入出力回路28に供給する。ここで、親機とは、内部の送信設定回路27が同期確認タイミング出力許可信号STKを出力するように設定されている制御回路9をいう。一方、子機とは、内部の送信設定回路27が同期確認タイミング出力許可信号STKを出力するようには設定されていない、親機以外の制御回路9をいう。親機及び子機は、例えば、各制御回路9内部に設けられた図示せぬディップスイッチ等の設定回路により予め設定する。また、同期確認タイミング信号STCSEにおける「E」とは、内部の送信設定回路27において生成される同期確認タイミング信号STCSと区別するために、外部(external)から供給されることを意味している。
【0018】
タイマ回路23は、送受信回路24から制御信号SCTが供給されると、所定時間T2をカウントして、その間、切換回路22をパルス入出力回路28と接続するための切換信号SSW2を切換回路22に供給し続ける。そして、上記所定時間T2のカウントが終了すると、タイマ回路23は、切換回路22への上記切換信号SSW2の供給を停止する。ここで、所定時間T2は、上記した同期確認時TSCをコントローラ2と系統連系インバータ6においてほぼ同時に終了させるために、上記したコントローラ2を構成するタイマ回路12に設定されている所定時間T1と比べて以下に示す伝送時間だけ短く設定されている。すなわち、この伝送時間は、タイマ回路12に同期確認トリガ信号STSCが供給された後、上記同期確認トリガ信号STSCが通信線3及び切換回路22を介して送受信回路24に伝送され、これにより送受信回路24からタイマ回路23に制御信号SCTが供給され、タイマ回路23がこの制御信号SCTに応じて切換回路22に切換信号SSW2の供給を開始するまでの時間である。
【0019】
送受信回路24は、通常時TUSUに、通信線3及び切換回路22を介して自己が属する制御回路9に設定されているアドレス番号を含む運転情報要求信号SROIを受信した場合には、統轄回路25の制御の下、当該制御回路9が属する系統連系インバータ6の運転状態や発電電力等に関する情報である運転情報を示す運転情報信号SOIを切換回路22及び通信線3を介してコントローラ2に送信する。また、送受信回路24は、通常時TUSUに、通信線3及び切換回路22を介して自己が属する制御回路9に設定されているアドレス番号を含むオン信号SON又はオフ信号SOFFを受信した場合には、それらを統轄回路25に供給する。また、送受信回路24は、同期確認時TSCに、通信線3及び切換回路22を介して同期確認トリガ信号STSCを受信した場合には、タイマ回路23及びパルス入出力回路28に制御信号SCTを出力する。
【0020】
統轄回路25は、制御回路9の各部を統括的に制御するものである。例えば、統轄回路25は、上記したように、送受信回路24に対して、通常時TUSUにおける運転情報信号SOIの送信を指示する。また、統轄回路25は、自己が含まれる系統連系インバータ6が運転停止状態において、コントローラ2から通信線3、切換回路22及び送受信回路24を介して送信されるオン信号SONを受信した場合には、各部を制御して当該系統連系インバータ6の運転を開始させる。一方、統轄回路25は、自己が含まれる系統連系インバータ6が運転状態において、コントローラ2から送信されるオフ信号SOFFを受信した場合には、各部を制御して当該系統連系インバータ6の運転を停止させる。
【0021】
微小変動指令回路26は、インバータ7から出力される交流電圧の周波数をプラス側及びマイナス側に交互に微小に変動させるために、インバータ7にインバータ制御信号SICTを供給する。このインバータ制御信号SICTは、系統電源4から供給される系統電圧VSの周期(以下、系統周期という。)に同期して、インバータ7から出力される交流電圧の周波数に、そのプラス側及びマイナス側に交互に系統周期の半サイクル、1サイクル、あるいは数サイクルの期間(以下、微小変動期間という。)だけ微小変動を与えるための信号である。また、微小変動指令回路26は、上記微小変動期間を1セットとして、その微小変動期間がスタートするタイミングで出力タイミング信号STOをパルス入出力回路28及び同期確認判定回路29に供給する。さらに、微小変動指令回路26は、同期確認判定回路29から修正指示信号SDAが供給された場合には、その修正指示信号SDAに基づいて、上記微小変動期間の1セット分のスタートタイミングを修正する。そして、微小変動指令回路26は、その修正された上記微小変動期間の1セット分のスタートタイミングで、インバータ7にインバータ制御信号SICTを供給するとともに、上記出力タイミング信号STOをパルス入出力回路28及び同期確認判定回路29に供給する。
【0022】
親機のパルス入出力回路28は、送信設定回路27から同期確認タイミング出力許可信号STKが供給されているので、微小変動指令回路26から出力タイミング信号STOが供給されるタイミングで、パルス状であって、所定周期の上記した同期確認タイミング信号STCSを常時生成して供給する。一方、子機のパルス入出力回路28は、送信設定回路27から同期確認タイミング出力許可信号STKが供給されていないので、同期確認タイミング信号STCSを生成、供給しない。親機のパルス入出力回路28は、送受信回路24から制御信号SCTが供給された場合には、上記同期確認タイミング信号STCSを切換回路22及び通信線3を介して他の制御回路9に送信する。一方、子機のパルス入出力回路28は、送受信回路24から制御信号SCTが供給された後に、他の制御回路9から通信線3及び切換回路22を介して上記同期確認タイミング信号STCSEが供給された場合には、その同期確認タイミング信号STCSEを同期確認判定回路29に供給する。
【0023】
子機の同期確認判定回路29は、パルス入出力回路28から供給される同期確認タイミング信号STCSEと、微小変動指令回路26から供給される出力タイミング信号STOとを比較して、親機における微小変動1セット分のスタートタイミングと、自己における微小変動1セット分のスタートタイミングとが等しいか否か判定する。そして、親機における微小変動1セット分のスタートタイミングと、自己における微小変動1セット分のスタートタイミングとが異なると判定した場合には、子機の同期確認判定回路29は、微小変動指令回路26に上記した修正指示信号SDAを供給する。一方、親機の同期確認判定回路29には、自己が供給した同期確認タイミング信号STCSが外部から供給される同期確認タイミング信号STCSEとして入力されるが、当然自己における微小変動1セット分のスタートタイミングと等しいので、修正指示信号SDAを出力しない。
【0024】
次に、上記構成の分散型電源システムの動作について、図4に示すタイミング・チャートを参照して説明する。前提として、制御回路91が親機に予め設定され、制御回路92及び93が子機に予め設定されているものとする。また、通常時TUSUでは、いずれの制御回路9においても、切換回路22は、送受信回路24と接続されている。さらに、初期状態では、各制御回路91〜93を構成する微小変動指令回路26は、対応するインバータ71〜73の出力交流電圧の周波数をプラス側及びマイナス側に交互に微小変動させるために、対応するインバータ71〜73にインバータ制御信号SICTを供給している。また、各微小変動指令回路26は、微小変動期間を1セットとして、その微小変動期間がスタートするタイミングで出力タイミング信号STOを対応するパルス入出力回路28及び同期確認判定回路29に供給している。
【0025】
このような状態において、各太陽電池51〜53が太陽光エネルギを電気エネルギに変換すると、各インバータ71〜73は、太陽電池51〜53から供給される直流電力を系統電源4と同期のとれた交流電力に変換するとともに、対応する制御回路91〜93から供給されるインバータ制御信号SICTに基づいて、出力する交流電圧の周波数をプラス側及びマイナス側に交互に微小に変動させる。コントローラ2の送受信回路11は、通常時TUSUにおいては、図4(1)に示すように、各制御回路91〜93に対して、それぞれの運転情報を要求するために、それぞれに対応したアドレス番号「1」〜「3」を含んだ運転情報要求信号SROI1〜SROI3を順次所定間隔をあけて通信線3を介して送信する。
【0026】
一方、制御回路91の送受信回路24は、通信線3及び切換回路22を介して運転情報要求信号SROI1を受信すると、その受信時から所定時間内に、図4(2)に示すように、当該制御回路91が属する系統連系インバータ61の運転状態や発電電力等に関する情報である運転情報を示す運転情報信号SOI1を切換回路22及び通信線3を介してコントローラ2に送信する。同様に、制御回路92の送受信回路24は、運転情報要求信号SROI2を受信すると、その受信時から所定時間内に、図4(3)に示すように、系統連系インバータ62の運転状態や発電電力等に関する情報である運転情報を示す運転情報信号SOI2をコントローラ2に送信する。制御回路93の送受信回路24は、運転情報要求信号SROI3を受信すると、その受信時から所定時間内に、図4(4)に示すように、系統連系インバータ63の運転状態や発電電力等に関する情報である運転情報を示す運転情報信号SOI3をコントローラ2に送信する。このように、通常時TUSUでは、通信線3には、図4(5)に示すように、運転情報要求信号SROI1〜SROI3と、運転情報信号SOI1〜SOI3とが双方向で互いに重複することなく伝送される。コントローラ2を構成する統轄回路13は、制御回路91〜93から運転情報信号SOI1〜SOI3が供給されると、これらの運転情報信号SOI1〜SOI3に基づいて当該制御回路91〜93が属する系統連系インバータ61〜63の運転状態や発電電力等を把握し、各系統連系インバータ61〜63の運転状態や発電電力等をモニタ14に表示する。
【0027】
そして、統轄回路13は、把握した各系統連系インバータ61〜63の運転状態や発電電力等、あるいは図示せぬ需要者側の電力需要等に基づいて、運転を開始させるべき系統連系インバータ6に対応したオン信号SON又は運転を停止させるべき系統連系インバータ6に対応したオフ信号SOFFを送受信回路11及び通信線3を介して当該制御回路9に送信する。したがって、運転停止状態においてオン信号SONが供給された統轄回路25は、各部を制御して当該系統連系インバータ6の運転を開始させる。一方、運転状態においてオフ信号SOFFが供給された統轄回路25は、各部を制御して当該系統連系インバータ6の運転を停止させる。さらに、通常時TUSUにおいては、各制御回路91〜93を構成する単独運転検出回路21は、系統電源4から供給される系統電圧VSの周波数を検出し、上記した微小変動による系統電圧VSの周波数変化からこの分散型電源システムの単独運転を検出した場合には、対応するインバータ7に停止信号SSTを供給すると同時に、対応する連系リレー8に開成信号SOPを供給する。これにより、インバータ7はその動作を停止し、連系リレー8は、開成信号SOPにより開成され、系統電源4から太陽光発電部1を切り離す。
【0028】
次に、同期確認時TSCでは、コントローラ2を構成する送受信回路11は、図4(1)に示すように、通信線3を介して各制御回路91〜93に同期確認トリガ信号STSCを送信するとともに、タイマ回路12にも同期確認トリガ信号STSCを供給する。これにより、タイマ回路12は、所定時間T1をカウントして、その間、送受信回路11に運転情報要求信号SROIの送信を停止させるための切換信号SSW1を供給し続ける。各制御回路91〜93では、送受信回路24は、通信線3及び切換回路22を介して同期確認トリガ信号STSCを受信すると、タイマ回路23及びパルス入出力回路28に制御信号SCTを出力する。これにより、タイマ回路23は、所定時間T2をカウントして、その間、切換回路22をパルス入出力回路28と接続するための切換信号SSW2を切換回路22に供給し続ける。したがって、これ以降、いずれの制御回路91〜93においても、切換回路22は、パルス入出力回路28と接続される。
【0029】
親機である制御回路91では、送信設定回路27が同期確認タイミング出力許可信号STKをパルス入出力回路28に供給している。したがって、パルス入出力回路28は、送受信回路24から制御信号SCTが供給されると、図4(2)に示すように、微小変動指令回路26から出力タイミング信号STOが供給されるタイミングで上記同期確認タイミング信号STCSを切換回路22及び通信線3を介して制御回路92及び93に送信する。一方、子機である制御回路92及び93では、パルス入出力回路28は、制御回路91から通信線3及び切換回路22を介して上記同期確認タイミング信号STCSEが供給されると、その同期確認タイミング信号STCSEを同期確認判定回路29に供給する。これにより、子機の同期確認判定回路29は、パルス入出力回路28から供給される同期確認タイミング信号STCSEと、微小変動指令回路26から供給される出力タイミング信号STOとを比較して、親機における微小変動1セット分のスタートタイミングと、自己における微小変動1セット分のスタートタイミングとが等しいか否か判定する。そして、親機における微小変動1セット分のスタートタイミングと、自己における微小変動1セット分のスタートタイミングとが等しい判定した場合には、子機の各同期確認判定回路29は、対応する微小変動指令回路26に何も供給しない。一方、親機における微小変動1セット分のスタートタイミングと、自己における微小変動1セット分のスタートタイミングとが異なると判定した場合には、子機の各同期確認判定回路29は、対応する微小変動指令回路26に修正指示信号SDAを供給する。
【0030】
これにより、子機の微小変動指令回路26は、同期確認判定回路29から供給された修正指示信号SDAに基づいて、上記微小変動期間の1セット分のスタートタイミングを修正する。そして修正した以降、微小変動指令回路26は、その修正された上記微小変動期間の1セット分のスタートタイミングで、対応するインバータ72及び73にインバータ制御信号SICTを供給するとともに、上記出力タイミング信号STOをパルス入出力回路28及び同期確認判定回路29に供給する。また、親機である制御回路91においては、自己が供給した同期確認タイミング信号STCSが外部から供給される同期確認タイミング信号STCSEとして同期確認判定回路29に入力されるが、当然自己における微小変動1セット分のスタートタイミングと等しいので、同期確認判定回路29は、微小変動指令回路26に何も供給しない。この結果、すべての系統連系インバータ61〜63において単独運転検出のために行われている微小変動の同期をとることができる。
【0031】
そして、コントローラ2のタイマ回路12は、上記所定時間T1のカウントが終了すると、送受信回路11への上記切換信号SSW1の供給を停止する。一方、各制御回路91〜93のタイマ回路23は、上記所定時間T2のカウントが終了すると、対応する切換回路22への上記切換信号SSW2の供給を停止するので、各切換回路22は、再び対応する送受信回路24と接続される。これにより、図4に示すように、同期確認時TSCから再び通常時TUSUに移行する。なお、次の通常時TUSUにおける動作については、上記した通常時TUSUの動作と同様であるので、その説明を省略する。
【0032】
このように、この実施の形態1によれば、コントローラ2から通信線3を介して各制御回路91〜93に送信される同期確認トリガ信号STSCは、この分散型電源システムの単独運転検出のための微小変動の同期がとれているか否かを確認する指示を与える信号であり、上記した第1の従来例のように、信号自体に各インバータの出力を微小変動させる機能が付加されているものではない。したがって、専用の信号線は不要であり、他の信号が伝送される通信線3を兼用して同期確認トリガ信号STSCを伝送することができる。この結果、コントローラ2にモニタ14や統轄回路13を設けても新たに通信線を配線する必要がないため、施工性に優れており、この分散型電源システムを安価に構成することができ、太陽光発電部1を容易に増設することもできる。また、この実施の形態1によれば、コントローラ2には系統電源4から系統電圧VSが供給されないが、各系統連系インバータ61〜63において系統周期に同期した微小変動の同期をとりつつ分散型電源システムの単独運転検出を行うことができるので、系統連系インバータ61〜63間で微小変動を打ち消し合うことなく、安定的に確実に単独運転を検出することができる。
【0033】
また、この実施の形態1によれば、微小変動期間を1セットとして、その微小変動期間がスタートするタイミングで出力タイミング信号STOをパルス入出力回路28及び同期確認判定回路29に供給している。このため、系統連系インバータ61〜63間で一度同期がとれれば良く、コントローラ2と制御回路91〜93との間で、通信線3を介して、常時、同期確認トリガ信号STSC及び同期確認タイミング信号STCSを送受信する必要はない。したがって、コントローラ2の同期確認トリガ信号STSCの送信は、例えば、太陽光発電部11及び12が運転を開始したときに行い、次に、太陽光発電部13が運転を開始したときに行えば良い。これにより、通常時TUSUにおけるコントローラ2の制御回路91〜93からの運転情報の取得に支障はない。
【0034】
実施の形態2.
図5は、この発明の実施の形態2における分散型電源システムを構成するコントローラ31を示すものであり、図6は、同システムを構成する各太陽光発電部に含まれる系統連系インバータの一部である制御回路32を示すものである。図5及び図6において、図2及び図3の各部に対応する部分には同一の符号を付け、その説明を省略する。図5に示すコントローラ31においては、図2に示す統轄回路13に換えて、統轄回路33が新たに設けられている。また、図6に示す制御回路32においては、図3に示す送受信回路24及び送信設定回路27に換えて、送受信回路34及び送信設定回路35が新たに設けられている。なお、分散型電源システムの他の構成要素については、上記実施の形態1で説明した構成要素(図1参照)と同様である。
【0035】
まず、前提として、上記した実施の形態1の場合と同様、制御回路321〜323のうち、制御回路321が親機として予め設定されているとともに、制御回路322及び323が子機として予め設定されているものとする。したがって、すべての太陽光発電部11〜13が動作状態にある場合には、制御回路321のみが、送信設定回路35が同期確認タイミング出力許可信号STKを供給してパルス入出力回路28が同期確認タイミング信号STCSを生成し、制御回路322及び323の送信設定回路35は同期確認タイミング出力許可信号STKを供給しないので、パルス入出力回路28は同期確認タイミング信号STCSを生成しない。この状態で単独運転検出の同期をとっている。ところが、太陽光発電部11を構成する太陽電池51が時間帯によっては樹木やビルの陰となるような場所に設置されているために、時間の経過とともに日射量が不足するなどして太陽光発電部11が動作状態から非動作状態となる場合がある。また、太陽光発電部11が初めから非動作状態となっている場合がある。これらの場合には、コントローラ31が同期確認トリガ信号STSCを通信線3を介して送信しても、太陽光発電部11を構成する制御回路321から同期確認タイミング信号STCSが送信されず、他の太陽光発電部12及び13を構成する系統連系インバータ62及び63において微小変動の同期、すなわち、単独運転検出の同期の確認ができず、単独運転検出の同期がとれていない可能性がある。
【0036】
そこで、この実施の形態2においては、以下に示すように構成する。まず、コントローラ31を構成する統轄回路33、制御回路32を構成する送受信回路34及び送信設定回路35は、図2に示す統轄回路13が有する機能、図3に示す送受信回路24が有する機能及び送信設定回路27が有する機能の他、以下に示す機能を有している。すなわち、まず、統轄回路33は、各制御回路321〜323から供給される運転情報信号SOI1〜SOI3に基づいて当該制御回路321〜323が属する系統連系インバータ61〜63の運転状態や発電電力等を把握する。そして、親機である制御回路321から運転情報信号SOI1が送信されなかった場合には、統轄回路33は、系統連系インバータ61が運転状態にないと判断して、運転状態にある子機の制御回路322及び323の中から新規の親機を決定する。したがって、統轄回路33は、送受信回路11に対して、同期確認時TSCに、新規の親機として決定した制御回路32に対する同期確認トリガ信号STSCの送信を指示する。この実施の形態2においては、同期確認トリガ信号STSCは、各制御回路321〜323に図示せぬアドレス設定回路により予め設定されているアドレス番号を含むものとし、制御回路321〜323に送信される同期確認トリガ信号STSCを特に示す場合には、制御回路321〜323の添え字に対応させて同期確認トリガ信号STSC1〜STSC3とする。
【0037】
送受信回路11は、統轄回路33の制御の下、新規の親機として決定された制御回路32に対し、通信線3を介して、同期確認時TSCに同期確認トリガ信号STSCを送信する。新規の親機として決定された制御回路32を構成する送受信回路34は、同期確認時TSCに、通信線3及び切換回路22を介して自己が属する制御回路32に設定されているアドレス番号を含む同期確認トリガ信号STSCを受信した場合には、自己が親機であると判断して、送信設定回路35にスタート信号SSTを供給した後、タイマ回路23及びパルス入出力回路28に制御信号SCTを供給する。送信設定回路35は、送受信回路34からスタート信号SSTが供給された場合には、同期確認タイミング出力許可信号STKをパルス入出力回路28に供給し、パルス入出力回路28は同期確認タイミング信号STCSを生成する。一方、同期確認時TSCに、通信線3及び切換回路22を介して自己が属する制御回路32に設定されているアドレス番号以外のアドレス番号を含む同期確認トリガ信号STSCを受信した場合には、送受信回路34は、自己以外が親機であると判断して、送信設定回路35にスタート信号SSTを供給することなく、タイマ回路23及びパルス入出力回路28に制御信号SCTを供給する。なお、この構成においては、実施の形態1にあるような親機あるいは子機に設定するための設定回路は必要としない。
【0038】
次に、上記構成の分散型電源システムの動作について、図7に示すタイミング・チャートを参照して説明する。前提として、送受信回路11は、統轄回路33の制御の下、同期確認時TSCに、制御回路321に対する同期確認トリガ信号STSC1の送信を指示する。これにより、制御回路321が親機に設定され、制御回路322及び323が子機に設定されており、当初は、いずれの制御回路32も動作状態にあったものとする。そして、通常時TUSUでは、各切換回路22は、送受信回路34と接続されている。さらに、初期状態では、各制御回路321〜323を構成する微小変動指令回路26は、対応するインバータ71〜73の出力交流電圧の周波数をプラス側及びマイナス側に交互に微小変動させるために、対応するインバータ71〜73にインバータ制御信号SICTを供給している。また、各微小変動指令回路26は、微小変動期間を1セットとして、その微小変動期間がスタートするタイミングで出力タイミング信号STOを対応するパルス入出力回路28及び同期確認判定回路29に供給している。
【0039】
次に、太陽光発電部11を構成する太陽電池51が時間帯によっては樹木やビルの陰となるような場所に設置されているために、時間の経過とともに日射量が不足するなどして太陽光発電部11が動作状態から非動作状態となったものとする。このような状態において、コントローラ31の送受信回路11は、通常時TUSUにおいては、図7(1)に示すように、各制御回路321〜323に対して、それぞれの運転情報を要求するために、それぞれに対応したアドレス番号「1」〜「3」を含んだ運転情報要求信号SROI1〜SROI3を順次所定間隔をあけて通信線3を介して送信する。一方、制御回路321は、非動作状態にあるため、通信線3を介して運転情報要求信号SROI1が供給されても、図7(2)に示すように、何らの信号も通信線3を介してコントローラ31に送信しない。一方、制御回路322の送受信回路34は、運転情報要求信号SROI2を受信すると、その受信時から所定時間内に、図7(3)に示すように、系統連系インバータ62の運転情報信号SOI2をコントローラ31に送信する。制御回路323の送受信回路24は、運転情報要求信号SROI3を受信すると、その受信時から所定時間内に、図7(4)に示すように、系統連系インバータ63の運転情報信号SOI3をコントローラ31に送信する。
【0040】
コントローラ31を構成する統轄回路33は、制御回路322及び323から運転情報信号SOI2及びSOI3が供給されるが、制御回路321から運転情報信号SOI1が供給されないと、運転情報信号SOI2及びSOI3並びに、運転情報信号SOI1が供給されなかったことに基づいて制御回路321〜323が属する系統連系インバータ61〜63の運転状態や発電電力等を把握し、系統連系インバータ61が運転状態にないこと及び、系統連系インバータ62及び63の運転状態や発電電力等をモニタ14に表示する。そして、統轄回路33は、運転状態にある子機の制御回路322及び323の中から新規の親機を決定する。今の場合、統轄回路33は、制御回路322を新規の親機として決定したものとする。なお、以上説明した以外の通常時TUSUにおける分散型電源システムの動作については、上記した実施の形態1の場合と同様であるので、その説明を省略する。
【0041】
次に、同期確認時TSCでは、コントローラ31を構成する統轄回路33は、送受信回路11に対して、新規の親機として決定した制御回路322に対する同期確認トリガ信号STSCの送信を指示する。これにより、送受信回路11は、図7(1)に示すように、通信線3を介して制御回路322に同期確認トリガ信号STSC2を送信するとともに、タイマ回路12にも同期確認トリガ信号STSC2を供給する。これにより、タイマ回路12は、所定時間T1をカウントして、その間、送受信回路11に運転情報要求信号SROIの送信を停止させるための切換信号SSW1を供給し続ける。
【0042】
制御回路322では、送受信回路34は、通信線3及び切換回路22を介して自己が属する制御回路322に設定されているアドレス番号「2」を含む同期確認トリガ信号STSC2を受信すると、自己が新規の親機として決定されたと判断して、送信設定回路35にスタート信号SSTを供給した後、タイマ回路23及びパルス入出力回路28に制御信号SCTを供給する。これにより、送信設定回路35は同期確認タイミング出力許可信号STKを供給し、パルス入出力回路28は微小変動指令回路26から出力タイミング信号STOが供給されるタイミングで同期確認タイミング信号STCS2を生成する。また、タイマ回路23は、所定時間T2をカウントして、その間、切換回路22をパルス入出力回路28と接続するための切換信号SSW2を切換回路22に供給し続ける。したがって、これ以降、制御回路322において、切換回路22は、パルス入出力回路28と接続される。したがって、制御回路322のパルス入出力回路28は、送受信回路34から制御信号SCTが供給されると、図7(3)に示すように、上記同期確認タイミング信号STCS2を切換回路22及び通信線3を介して制御回路323に送信する。
【0043】
一方、制御回路323では、送受信回路34は、通信線3及び切換回路22を介して自己が属する制御回路32に設定されているアドレス番号「3」以外のアドレス番号「2」を含む同期確認トリガ信号STSC2を受信すると、自己以外が親機であると判断して、送信設定回路35にスタート信号SSTを供給することなく、タイマ回路23及びパルス入出力回路28に制御信号SCTを供給する。これにより、タイマ回路23は、所定時間T2をカウントして、その間、切換回路22をパルス入出力回路28と接続するための切換信号SSW2を切換回路22に供給し続ける。したがって、これ以降、制御回路323において、切換回路22は、パルス入出力回路28と接続される。したがって、制御回路323のパルス入出力回路28は、制御回路322から通信線3及び切換回路22を介して同期確認タイミング信号STCSEとして同期確認タイミング信号STCS2が供給されると、その同期確認タイミング信号STCS2を同期確認判定回路29に供給する。なお、以上説明した以外の同期確認時TSCにおける分散型電源システムの動作については、上記した実施の形態1の場合と同様であるので、その説明を省略する。
【0044】
このように、この実施の形態2によれば、親機の制御回路32が非動作状態である場合には子機の制御回路32の中から新規の親機を決定して同期確認トリガ信号STSCを送信してその新規の親機から同期確認タイミング信号STCSを出力するようにしている。したがって、自己が親機であるという同期確認トリガ信号STSCを受信していた制御回路32が属する太陽光発電部1が非動作状態であっても、他の太陽光発電部1を構成する系統連系インバータ6において確実に微小変動の同期、すなわち、単独運転検出の同期をとることができる。また、制御回路32の内部に親機あるいは子機に設定するための設定回路は必要としないので、実施の形態1に比べてその回路規模を縮小することができ、処理の簡略化及びコスト削減を図ることができる。
【0045】
実施の形態3.
図8は、この発明の実施の形態3における分散型電源システムを構成する各太陽光発電部に含まれる系統連系インバータの一部である制御回路41を示すものである。図8において、図3の各部に対応する部分には同一の符号を付け、その説明を省略する。図8に示す制御回路41においては、図3に示す送信設定回路27が取り除かれているとともに、図3に示すパルス入出力回路28及び同期確認判定回路29に換えて、パルス入出力回路42及び同期確認判定回路43が新たに設けられている。なお、分散型電源システムの他の構成要素については、上記実施の形態1で説明した構成要素(図1参照)と同様である。
【0046】
まず、前提として、上記した実施の形態1及び2の場合とは異なり、制御回路411〜413は、親機及び子機の区別はないものとする。また、各パルス入出力回路42は、図3に示すパルス入出力回路28が有する機能の他、以下に示す機能を有している。すなわち、各パルス入出力回路42は、送受信回路24から制御信号SCTが供給された場合には、親機及び子機の区別なく、微小変動指令回路26から出力タイミング信号STOが供給されるタイミングで、パルス状の同期確認タイミング信号STCSを生成して切換回路22及び通信線3を介して他の制御回路41に送信する。この実施の形態3においては、同期確認タイミング信号STCSは、各制御回路411〜413に図示せぬアドレス設定回路により予め設定されているアドレス番号を含むものとし、制御回路411〜413から出力される同期確認タイミング信号STCSを特に示す場合には、制御回路411〜413の添え字に対応させて同期確認タイミング信号STCS1〜STCS3とする。
【0047】
また、同期確認判定回路43は、パルス入出力回路42から供給される同期確認タイミング信号STCSEと、微小変動指令回路26から供給される出力タイミング信号STOとを比較して、他の制御回路41における微小変動1セット分のスタートタイミングと、自己における微小変動1セット分のスタートタイミングとが等しいか否か判定する。そして、他の制御回路41における微小変動1セット分のスタートタイミングと、自己における微小変動1セット分のスタートタイミングとが等しいか又は、自己における微小変動1セット分のスタートタイミングが最も進んでいると判定した場合には、各同期確認判定回路43は、対応する微小変動指令回路26に何も供給しない。一方、自己における微小変動1セット分のスタートタイミングが、他の制御回路41における微小変動1セット分のスタートタイミングより遅れていると判定した場合には、当該同期確認判定回路43は、もっとも進んでいる同期確認タイミング信号STCSEのタイミングで、対応する微小変動指令回路26に修正指示信号SDAを供給する。
【0048】
次に、上記構成の分散型電源システムの動作について、図9に示すタイミング・チャートを参照して説明する。前提として、制御回路411〜413のうち、制御回路413だけが単独運転検出の同期がとれておらず、このままでは、同期確認時TSCにおける同期確認タイミング信号STCS1及びSTCS2の出力タイミングは等しいが、同期確認タイミング信号STCS3の出力タイミングが同期確認タイミング信号STCS1及びSTCS2の出力タイミングよりも遅れるものとする。まず、通常時TUSUにおける分散型電源システムの動作については、上記した実施の形態1の場合と略同様であるので、その説明を省略する。
【0049】
次に、同期確認時TSCでは、コントローラ2を構成する送受信回路11は、図9(1)に示すように、通信線3を介して各制御回路411〜413に同期確認トリガ信号STSCを送信するとともに、タイマ回路12にも同期確認トリガ信号STSCを供給する。これにより、タイマ回路12は、所定時間T1をカウントして、その間、送受信回路11に運転情報要求信号SROIの送信を停止させるための切換信号SSW1を供給し続ける。各制御回路411〜413では、送受信回路24は、通信線3及び切換回路22を介して同期確認トリガ信号STSCを受信すると、タイマ回路23及びパルス入出力回路42に制御信号SCTを出力する。これにより、タイマ回路23は、所定時間T2をカウントして、その間、切換回路22をパルス入出力回路28と接続するための切換信号SSW2を切換回路22に供給し続ける。したがって、これ以降、いずれの制御回路411〜413においても、切換回路22は、パルス入出力回路42と接続される。
【0050】
制御回路411及び412のパルス入出力回路42は、送受信回路24から制御信号SCTが供給されると、図9(2)及び(3)に時刻t1で示すように、微小変動指令回路26から出力タイミング信号STOが供給されるタイミングで、同期確認タイミング信号STCS1及びSTCS2をそれぞれ生成して切換回路22及び通信線3を介して他の制御回路41に送信する。一方、制御回路413のパルス入出力回路42は、送受信回路24から制御信号SCTが供給されても、図9(4)に示すように、時刻t1の時点では、微小変動指令回路26から出力タイミング信号STOが供給されないので、同期確認タイミング信号STCS3を生成しない。
【0051】
次に、他の制御回路41から通信線3及び切換回路22を介して他の同期確認タイミング信号STCSEが供給されると、各制御回路411〜413のパルス入出力回路42は、他の制御回路41から供給された同期確認タイミング信号STCSEを同期確認判定回路43に供給する。これにより、各同期確認判定回路43は、パルス入出力回路42から供給される同期確認タイミング信号STCSEと、微小変動指令回路26から供給される出力タイミング信号STOとを比較して、他の制御回路41における微小変動1セット分のスタートタイミングと、自己における微小変動1セット分のスタートタイミングとが等しいか否か判定する。
【0052】
今の場合、上記したように、同期確認時TSCにおける同期確認タイミング信号STCS1及びSTCS2の出力タイミングは等しいが、同期確認タイミング信号STCS3の出力タイミングが同期確認タイミング信号STCS1及びSTCS2の出力タイミングよりも遅れている。したがって、制御回路411及び412の同期確認判定回路43は、自己における微小変動1セット分のスタートタイミングが、制御回路412又は411における微小変動1セット分のスタートタイミングと等しく、制御回路413における微小変動1セット分のスタートタイミングよりも進んでいると判定するので、対応する微小変動指令回路26に何も供給しない。一方、制御回路413の同期確認判定回路43は、同期確認タイミング信号STCS1及びSTCS2が供給された時点では、自己における微小変動1セット分のスタートタイミングが、制御回路411及び412における微小変動1セット分のスタートタイミングより遅れていると判定するので、もっとも進んでいる同期確認タイミング信号STCSE、今の場合、同期確認タイミング信号STCS1及びSTCS2のタイミングで、対応する微小変動指令回路26に修正指示信号SDAを供給する。
【0053】
これにより、制御回路413の微小変動指令回路26は、同期確認判定回路43から供給された修正指示信号SDAに基づいて、上記微小変動期間の1セット分のスタートタイミングを修正する。そして修正した以降、微小変動指令回路26は、その修正された上記微小変動期間の1セット分のスタートタイミングで、対応するインバータ73にインバータ制御信号SICTを供給するとともに、上記出力タイミング信号STOをパルス入出力回路42及び同期確認判定回路43に供給する。すなわち、修正した以降、制御回路413のパルス入出力回路42には、送受信回路24から制御信号SCTが供給された後、微小変動指令回路26から修正された出力タイミング信号STOが供給される。この結果、制御回路413のパルス入出力回路42は、時刻t1に、同期確認タイミング信号STCS1及びSTCS2と同じ出力タイミングで同期確認タイミング信号STCS3を出力する。これにより、すべての系統連系インバータ61〜63において単独運転検出のために行われている微小変動の同期をとることができる。
【0054】
そして、コントローラ2のタイマ回路12は、上記所定時間T1のカウントが終了すると、送受信回路11への上記切換信号SSW1の供給を停止する。一方、各制御回路411〜413のタイマ回路23は、上記所定時間T2のカウントが終了すると、対応する切換回路22への上記切換信号SSW2の供給を停止するので、各切換回路22は、再び対応する送受信回路24と接続される。これにより、図9に示すように、同期確認時TSCから再び通常時TUSUに移行する。なお、次の通常時TUSUにおける動作については、上記した通常時TUSUの動作と同様であるので、その説明を省略する。
【0055】
このように、この実施の形態3によれば、運転状態にあるすべての制御回路41の間で同期確認タイミング信号STCSの送受信が行われるので、いずれかの太陽光発電部1が非運転状態にあっても、他の太陽光発電部1を構成する系統連系インバータ6において確実に微小変動の同期、すなわち、単独運転検出の同期をとることができる。また、コントローラ2は、同期確認トリガ信号STSCの送信先を指定しなくても確実に単独運転検出の同期をとることができるので、その回路規模を小さくすることができ、処理の簡略化及びコスト削減を図ることができる。さらに、制御回路41は、図8に示すように、内部に送信設定回路を設ける必要がないので、上記した実施の形態1及び2に比べてその回路規模を縮小することができ、処理の簡略化及びコスト削減を図ることができる。
【0056】
実施の形態4.
図10は、この発明の実施の形態4における分散型電源システムを構成する各太陽光発電部に含まれる系統連系インバータの一部である制御回路51を示すものである。図10において、図8の各部に対応する部分には同一の符号を付け、その説明を省略する。図10に示す制御回路51においては、図8に示す単独運転検出回路21及び送受信回路24に換えて、単独運転検出回路52及び送受信回路53が新たに設けられている。なお、分散型電源システムの他の構成要素については、上記実施の形態1及び3で説明した構成要素(図1参照)と同様である。単独運転検出回路52は、図8に示す単独運転検出回路21が有する機能の他、復旧信号SREを送受信回路53に供給する機能を有している。復旧信号SREは、単独運転検出期間の途中で、通常状態に戻ったことを示す信号である。また、送受信回路53は、図8に示す送受信回路24が有する機能の他、以下に示す機能を有している。すなわち、送受信回路53は、自己宛の運転情報要求信号SROIを受信し、運転情報信号SOIをコントローラ2に送信する際に、単独運転検出回路52から復旧信号SREが供給されている場合には、運転情報信号SOIに単独運転検出回路52で一旦単独運転検出期間に入ったことを示す情報である単独運転検出期間突入情報を含めてコントローラ2に送信する。コントローラ2の送受信回路11は、各制御回路51から供給された運転情報信号SOIに単独運転検出期間突入情報が含まれている場合には、通常時TUSUであって、すべての制御回路51に運転情報要求信号SROIを送信していない場合であっても、同期確認信号STSCを送信する同期確認時TSCに移行する。
【0057】
単独運転検出回路52、送受信回路53及び送受信回路11が上記した機能を有しているのは、以下に示す理由による。すなわち、系統電圧VSの周波数変化が単独運転検出期間として予め設定された期間だけ継続したが、この原因が分散型電源システムが単独運転になったことにあるのではなく、例えば、電力需要の一時的集中や落雷の影響等により、系統電圧VSの周波数が一時的に変化したに過ぎないことにある場合がある。この場合にはしばらくして通常状態に戻るが、上記したように、単独運転検出回路52は、単独運転検出期間では、微小変動による系統電圧VSの周波数変化を確実なものとするために、微小変動のプラス側又はマイナス側に与える方向を、現在与えている方向又は系統電圧VSの周波数が変化している方向に固定している。このため、一旦単独運転検出期間に入った単独運転検出回路52においては、通常の状態に戻っても、単独運転検出の同期がとれていない可能性が高く、単独運転検出期間に一旦入ってから同期確認時TSCに移行するまでに長時間を要する場合には、単独運転検出の同期がとれていない状態が長時間継続してしまう。このため、できるだけ早く単独運転検出の同期を確認する必要がある。さらに、その起動時だけ単独運転検出の同期確認をしてその後はしていない分散型電源システムにおいては、単独運転検出の同期がとれていない状態のままになってしまう可能性がある。このため、単独運転検出の同期を確認する必要がある。そこで、この実施の形態4においては、各制御回路51から供給された運転情報信号SOIに単独運転検出期間突入情報が含まれている場合には、コントローラ2の送受信回路11は、通常時TUSUであって、すべての制御回路51に運転情報要求信号SROIを送信していない場合であっても、直ちに同期確認時TSCに移行するのである。
【0058】
次に、上記構成の分散型電源システムの動作について、図11に示すタイミング・チャートを参照して説明する。まず、通常時TUSUでは、いずれの制御回路51においても、切換回路22は、送受信回路53と接続されている。また、前提として、制御回路511〜513のうち、制御回路512の単独運転検出回路52だけが単独運転検出期間に一旦入ったために、単独運転検出の同期がとれておらず、このままでは、同期確認時TSCにおける同期確認タイミング信号STCS1及びSTCS3の出力タイミングは等しいが、同期確認タイミング信号STCS2の出力タイミングが同期確認タイミング信号STCS1及びSTCS2の出力タイミングよりも遅れるものとする。さらに、初期状態では、各制御回路511〜513を構成する微小変動指令回路52は、対応するインバータ71〜73の出力交流電圧の周波数をプラス側及びマイナス側に交互に微小変動させるために、対応するインバータ71〜73にインバータ制御信号SICTを供給している。また、各微小変動指令回路52は、微小変動期間を1セットとして、その微小変動期間がスタートするタイミングで出力タイミング信号STOを対応するパルス入出力回路42及び同期確認判定回路43に供給している。
【0059】
このような状態において、各太陽電池51〜53が太陽光エネルギを電気エネルギに変換すると、各インバータ71〜73は、太陽電池51〜53から供給される直流電力を交流電力に変換するとともに、対応する制御回路511〜513から供給されるインバータ制御信号SICTに基づいて、出力する交流電圧の周波数をプラス側及びマイナス側に交互に微小に変動させる。コントローラ2の送受信回路11は、通常時TUSUにおいては、図11(1)に示すように、各制御回路511〜513に対して、それぞれの運転情報を要求するために、それぞれに対応したアドレス番号「1」〜「3」を含んだ運転情報要求信号SROI1〜SROI3を順次所定間隔をあけて通信線3を介して送信する。一方、制御回路511の送受信回路53は、通信線3及び切換回路22を介して運転情報要求信号SROI1を受信すると、その受信時から所定時間内に、図11(2)に示すように、当該制御回路511が属する系統連系インバータ61の運転状態や発電電力等に関する情報である運転情報を示す運転情報信号SOI1を切換回路22及び通信線3を介してコントローラ2に送信する。
【0060】
ここで、図11に示す時刻t0まで、厳密にいえば、制御回路512の送受信回路53が運転情報要求信号SROI2を受信するまでに、以下に示す状況が発生したものとする。すなわち、例えば、電力需要の一時的集中や落雷の影響等により、系統電圧VSの周波数変化が一旦発生したが、単独運転検出期間として予め設定された期間だけ継続する前に通常状態に戻ることにより、制御回路512の単独運転検出回路52が復旧信号SREを送受信回路53に供給しているものとする。これにより、制御回路512の送受信回路53は、運転情報要求信号SROI2を受信すると、その受信時から所定時間内に、図11(3)に示すように、系統連系インバータ62の運転状態や発電電力等に単独運転検出期間突入情報を含めた運転情報信号SOI2をコントローラ2に送信する。コントローラ2の送受信回路11は、制御回路512から供給された運転情報信号SOI2に単独運転検出期間突入情報が含まれているので、まだ制御回路513に運転情報要求信号SROI3を送信していないが、以下に示すように、同期確認時TSCに移行する。
【0061】
すなわち、コントローラ2を構成する送受信回路11は、図11(1)に示すように、通信線3を介して各制御回路511〜513に同期確認トリガ信号STSCを送信するとともに、タイマ回路12にも同期確認トリガ信号STSCを供給する。これにより、タイマ回路12は、所定時間T1をカウントして、その間、送受信回路11に運転情報要求信号SROIの送信を停止させるための切換信号SSW1を供給し続ける。各制御回路511〜513では、送受信回路53は、通信線3及び切換回路22を介して同期確認トリガ信号STSCを受信すると、タイマ回路23及びパルス入出力回路42に制御信号SCTを出力する。これにより、タイマ回路23は、所定時間T2をカウントして、その間、切換回路22をパルス入出力回路28と接続するための切換信号SSW2を切換回路22に供給し続ける。したがって、これ以降、いずれの制御回路511〜513においても、切換回路22は、パルス入出力回路42と接続される。
【0062】
制御回路511及び513のパルス入出力回路42は、送受信回路53から制御信号SCTが供給されると、図11(2)及び(4)に時刻t1で示すように、微小変動指令回路26から出力タイミング信号STOが供給されるタイミングで、同期確認タイミング信号STCS1及びSTCS3をそれぞれ生成して切換回路22及び通信線3を介して他の制御回路51に送信する。一方、制御回路512のパルス入出力回路42は、送受信回路53から制御信号SCTが供給されても、図11(3)に示すように、時刻t1の時点では、微小変動指令回路26から出力タイミング信号STOが供給されないので、同期確認タイミング信号STCS3を生成しない。
【0063】
次に、他の制御回路51から通信線3及び切換回路22を介して他の同期確認タイミング信号STCSEが供給されると、各制御回路511〜513のパルス入出力回路42は、他の制御回路51から供給された同期確認タイミング信号STCSEを同期確認判定回路43に供給する。これにより、各同期確認判定回路43は、パルス入出力回路42から供給される同期確認タイミング信号STCSEと、微小変動指令回路26から供給される出力タイミング信号STOとを比較して、他の制御回路51における微小変動1セット分のスタートタイミングと、自己における微小変動1セット分のスタートタイミングとが等しいか否か判定する。
【0064】
今の場合、上記したように、同期確認時TSCにおける同期確認タイミング信号STCS1及びSTCS3の出力タイミングは等しいが、同期確認タイミング信号STCS2の出力タイミングが同期確認タイミング信号STCS1及びSTCS3の出力タイミングよりも遅れている。したがって、制御回路511及び513の同期確認判定回路43は、自己における微小変動1セット分のスタートタイミングが、制御回路513及び511における微小変動1セット分のスタートタイミングと等しく、制御回路512における微小変動1セット分のスタートタイミングよりも進んでいると判定するので、対応する微小変動指令回路26に何も供給しない。一方、制御回路512の同期確認判定回路43は、同期確認タイミング信号STCS1及びSTCS3が供給された時点では、自己における微小変動1セット分のスタートタイミングが、制御回路511及び513における微小変動1セット分のスタートタイミングより遅れていると判定するので、もっとも進んでいる同期確認タイミング信号STCSE、今の場合、同期確認タイミング信号STCS1及びSTCS3のタイミングで、対応する微小変動指令回路26に修正指示信号SDAを供給する。
【0065】
これにより、制御回路512の微小変動指令回路26は、同期確認判定回路43から供給された修正指示信号SDAに基づいて、上記微小変動期間の1セット分のスタートタイミングを修正する。そして修正した以降、微小変動指令回路26は、その修正された上記微小変動期間の1セット分のスタートタイミングで、対応するインバータ72にインバータ制御信号SICTを供給するとともに、上記出力タイミング信号STOをパルス入出力回路42及び同期確認判定回路43に供給する。すなわち、修正した以降、制御回路512のパルス入出力回路42には、送受信回路24から制御信号SCTが供給された後、微小変動指令回路26から修正された出力タイミング信号STOが供給される。この結果、制御回路512のパルス入出力回路42は、時刻t1に、同期確認タイミング信号STCS1及びSTCS3と同じ出力タイミングで同期確認タイミング信号STCS2を出力する。これにより、すべての系統連系インバータ61〜63において単独運転検出のために行われている微小変動の同期をとることができる。
【0066】
そして、コントローラ2のタイマ回路12は、上記所定時間T1のカウントが終了すると、送受信回路11への上記切換信号SSW1の供給を停止する。一方、各制御回路511〜513のタイマ回路23は、上記所定時間T2のカウントが終了すると、対応する切換回路22への上記切換信号SSW2の供給を停止するので、各切換回路22は、再び対応する送受信回路24と接続される。これにより、図11に示すように、同期確認時TSCから再び通常時TUSUに移行する。次の通常時TUSUにおいては、コントローラ2の送受信回路11は、図11(1)に示すように、前の通常時TUSUで制御回路513に対してその運転情報を要求していなかったので、まず、アドレス番号「3」を含んだ運転情報要求信号SROI3を通信線3を介して送信し所定時間経過後、アドレス番号「1」及び「2」を含んだ運転情報要求信号SROI1及びSROI2を順次所定間隔をあけて通信線3を介して送信する。これ以降の通常時TUSUにおける動作については、上記した通常時TUSUの動作と同様であるので、その説明を省略する。
【0067】
このように、この実施の形態4によれば、実際に分散型電源システムが単独運転になったのではなく、何らかの原因により系統電圧VSの周波数が一時的に変化したに過ぎないために、ある制御回路51の単独運転検出回路52が、単独運転検出期間に一旦入った後、通常の状態に戻った場合には、復旧信号SREを送受信回路53に供給している。これにより、当該送受信回路53が運転情報信号SOI2をコントローラ2に送信する際に、単独運転検出期間突入情報を含めており、コントローラ2の送受信回路11は、運転情報信号SOIに単独運転検出期間突入情報が含まれている場合には、直ちに同期確認時TSCに移行している。したがって、単独運転検出期間に一旦入ったために単独運転検出の同期がとれていない状態になっても、短時間で単独運転検出の同期をとることができる。
【0068】
実施の形態5.
図12は、この発明の実施の形態5における分散型電源システムを構成する各太陽光発電部に含まれる系統連系インバータの一部である制御回路61を示すものである。図12において、図8の各部に対応する部分には同一の符号を付け、その説明を省略する。図12に示す制御回路61においては、図8に示す切換回路22、タイマ回路23及びパルス入出力回路42が取り除かれているとともに、図8に示す単独運転検出回路21及び送受信回路24に換えて、単独運転検出回路52及び送受信回路62が新たに設けられている。なお、分散型電源システムの他の構成要素については、上記実施の形態1及び3で説明した構成要素(図1参照)と同様である。ただし、微小変動指令回路26は、出力タイミング信号STOを同期確認判定回路29及び送受信回路62に供給する。また、単独運転検出回路52は、上記した実施の形態4における単独運転検出回路52(図10参照)と同一構成及び同一機能を有しているので、その説明を省略する。
【0069】
まず、前提として、上記した実施の形態3と同様、制御回路611〜613は、親機及び子機の区別はないものとする。送受信回路62は、通常時TUSUに、通信線3を介して自己が属する制御回路61に設定されているアドレス番号を含む運転情報要求信号SROIを受信した場合には、統轄回路25の制御の下、当該制御回路61が属する系統連系インバータ6の運転状態や発電電力等に関する情報である運転情報を示す運転情報信号SOIを通信線3を介してコントローラ2に送信する。この運転情報信号SOIをコントローラ2に送信する際に、送受信回路62は、単独運転検出回路52から復旧信号SREが供給されている場合には、運転情報信号SOIに単独運転検出回路52で一旦単独運転検出期間に入ったことを示す情報である単独運転検出期間突入情報を含めてコントローラ2に送信する。この場合におけるコントローラ2を構成する送受信回路11の動作は、上記した実施の形態4の場合と同様である。さらに、送受信回路62は、通常時TUSUに、通信線3を介して自己が属する制御回路61に設定されているアドレス番号を含むオン信号SON又はオフ信号SOFFを受信した場合には、それらを統轄回路25に供給する。
【0070】
また、送受信回路62は、同期確認時TSCに、通信線3を介して同期確認トリガ信号STSCを受信した場合には、微小変動指令回路26から出力タイミング信号STOが供給されるタイミングで運転情報信号SOIを通信線3を介して他の制御回路61に送信するとともに、他の制御回路61から通信線3を介して送信された運転情報信号SOIEを同期確認判定回路43に供給する。ここで、運転情報信号SOIEにおける「E」とは、送受信回路62自体が出力する運転情報信号SOIと区別するために、外部(external)から供給されることを意味している。なお、同期確認時TSCに送受信回路62が出力する運転情報信号SOIは、それに含まれている情報の内容自体に意味があるのではなく、その出力タイミングに意味があるのである。すなわち、この実施の形態5においては、運転情報信号SOIは、同期確認時TSCには、上記した実施の形態1〜4における同期確認タイミング信号STCSとして使用される。
【0071】
次に、上記構成の分散型電源システムの動作について、図13に示すタイミング・チャートを参照して説明する。前提として、制御回路611〜613のうち、制御回路613だけが単独運転検出の同期がとれておらず、このままでは、同期確認時TSCにおける運転情報信号SOI1及びSOI2の出力タイミングは等しいが、運転情報信号SOI3の出力タイミングが運転情報信号SOI1及びSOI2の出力タイミングよりも遅れるものとする。まず、通常時TUSUにおける分散型電源システムの動作については、上記した実施の形態4の場合と略同様であるので、その説明を省略する。なお、図13では、通常時TUSUに何らの不都合も生じない場合を示している。
【0072】
次に、同期確認時TSCでは、コントローラ2を構成する送受信回路11は、図13(1)に示すように、通信線3を介して各制御回路611〜613に同期確認トリガ信号STSCを送信するとともに、タイマ回路12にも同期確認トリガ信号STSCを供給する。これにより、タイマ回路12は、所定時間T1をカウントして、その間、送受信回路11に運転情報要求信号SROIの送信を停止させるための切換信号SSW1を供給し続ける。制御回路611及び612の送受信回路62は、通信線3を介して同期確認トリガ信号STSCを受信すると、図13(2)及び(3)に時刻t1で示すように、微小変動指令回路26から出力タイミング信号STOが供給されるタイミングで、運転情報信号SOI1及びSOI2を通信線3を介して他の制御回路61に送信する。一方、制御回路613の送受信回路62は、通信線3を介して同期確認トリガ信号STSCを受信しても、図13(4)に示すように、時刻t1の時点では、微小変動指令回路26から出力タイミング信号STOが供給されないので、運転情報信号SOI3を通信線3を介して他の制御回路61に送信しない。
【0073】
次に、他の制御回路61から通信線3を介して他の運転情報信号SOIEが供給されると、各制御回路611〜613の送受信回路62は、他の制御回路61から供給された運転情報信号SOIEを同期確認判定回路43に供給する。これにより、各同期確認判定回路43は、送受信回路62から供給される運転情報信号SOIEと、微小変動指令回路26から供給される出力タイミング信号STOとを比較して、他の制御回路61における微小変動1セット分のスタートタイミングと、自己における微小変動1セット分のスタートタイミングとが等しいか否か判定する。
【0074】
今の場合、上記したように、同期確認時TSCにおける運転情報信号SOI1及びSOI2の出力タイミングは等しいが、運転情報信号SOIE3の出力タイミングが運転情報信号SOI1及びSOI2の出力タイミングよりも遅れている。したがって、制御回路611及び612の同期確認判定回路43は、自己における微小変動1セット分のスタートタイミングが、制御回路612又は611における微小変動1セット分のスタートタイミングと等しく、制御回路613における微小変動1セット分のスタートタイミングよりも進んでいると判定するので、対応する微小変動指令回路26に何も供給しない。一方、制御回路613の同期確認判定回路43は、運転情報信号SOI1及びSOI2が供給された時点では、自己における微小変動1セット分のスタートタイミングが、制御回路611及び612における微小変動1セット分のスタートタイミングより遅れていると判定するので、もっとも進んでいる運転情報信号SOIE、今の場合、運転情報信号SOI1及びSOI2のタイミングで、対応する微小変動指令回路26に修正指示信号SDAを供給する。
【0075】
これにより、制御回路613の微小変動指令回路26は、同期確認判定回路43から供給された修正指示信号SDAに基づいて、上記微小変動期間の1セット分のスタートタイミングを修正する。そして修正した以降、微小変動指令回路26は、その修正された上記微小変動期間の1セット分のスタートタイミングで、対応するインバータ73にインバータ制御信号SICTを供給するとともに、上記出力タイミング信号STOを同期確認判定回路43及び送受信回路62に供給する。すなわち、修正した以降、制御回路613の送受信回路62には、同期確認トリガ信号STSCを受信した後、微小変動指令回路26から修正された出力タイミング信号STOが供給される。この結果、制御回路613の送受信回路62は、時刻t1に、運転情報信号SOI1及びSOI2と同じ出力タイミングで運転情報信号SOI3を出力する。これにより、すべての系統連系インバータ61〜63において単独運転検出のために行われている微小変動の同期をとることができる。そして、コントローラ2のタイマ回路12は、上記所定時間T1のカウントが終了すると、送受信回路11への上記切換信号SSW1の供給を停止する。これにより、図13に示すように、同期確認時TSCから再び通常時TUSUに移行する。なお、次の通常時TUSUにおける動作については、上記した通常時TUSUの動作と同様であるので、その説明を省略する。
【0076】
このように、この実施の形態5によれば、同期確認時TSCには、運転情報信号SOIを上記した実施の形態1〜4における同期確認タイミング信号STCSとして使用しているので、例えば、図8に示す切換回路22及びタイマ回路23及びパルス入出力回路42のように信号の入出力を切り換える回路や通信プロトコルを変更するための回路を設ける必要がない。したがって、この実施の形態5によれば、上記した実施の形態4で得られる効果の他、上記した実施の形態1〜4に比べて制御回路61の回路規模を縮小することができ、処理の簡略化及びコスト削減を図ることができる。
【0077】
実施の形態6.
上述の各実施の形態においては、各コントローラ及び制御回路をハードウェアで構成した例を示したが、これに限定されない。すなわち、上記コントローラ及び制御回路を、それぞれ、CPU(中央処理装置)と、ROMやRAM等の内部記憶装置と、FDD(フロッピー(登録商標)・ディスク・ドライブ)、HDD(ハード・ディスク・ドライブ)、CD−ROMドライブ等の外部記憶装置と、出力手段と、入力手段とを有するコンピュータによって構成し、上記コントローラを構成する送受信回路及びタイマ回路、統轄回路、上記制御回路を構成する単独運転検出回路及びタイマ回路、送受信回路、統轄回路、微小変動指令回路、送信設定回路、パルス入出力回路、同期確認判定回路がCPUによって構成され、これらの機能が分散型電源システムの制御プログラムとして、ROM等の半導体メモリや、FD、HDやCD−ROM等の記憶媒体に記憶されていると構成しても良い。この場合、分散型電源システムの制御プログラムは、記憶媒体からCPUに読み込まれ、CPUの動作を制御する。CPUは、分散型電源システムの制御プログラムが起動されると、上記コントローラを構成する送受信回路及びタイマ回路、統轄回路、上記制御回路を構成する単独運転検出回路及びタイマ回路、送受信回路、統轄回路、微小変動指令回路、送信設定回路、パルス入出力回路、同期確認判定回路として機能し、分散型電源システムの制御プログラムの制御により、上記した処理を実行するのである。
【0078】
以上、この実施の形態を図面を参照して詳述してきたが、具体的な構成はこの実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があってもこの発明に含まれる。例えば、上述の各実施の形態においては、微小変動指令回路が系統周期に同期して、対応するインバータから出力される交流電圧の周波数に、そのプラス側及びマイナス側に交互に微小変動期間だけ微小変動を与えるインバータ制御信号SICTを当該インバータに供給する例を示したが、これに限定されない。例えば、インバータ制御信号SICTは、系統周期に同期して、対応するインバータから出力される交流電圧の周期に、そのプラス側及びマイナス側に交互に微小変動期間だけ微小変動を与えるものでも良い。また、プラス側とマイナス側で微小変動を与える期間が異なっていても良い。さらに、インバータ制御信号SICTは、系統周期に同期して、対応するインバータから出力される交流電力の有効電力又は無効電力に微小変動を与えるものでも良い。
【0079】
また、上述の各実施の形態においては、単独運転検出回路は、誤動作を防止するために、系統電圧VSの周波数変化が所定時間連続した場合にのみ、この分散型電源システムが単独運転していると検出する例を示したが、これに限定されない。例えば、単独運転検出回路は、系統電圧VSの周波数変化又は周期変化を検出すると直ちに、この分散型電源システムが単独運転していると検出しても良いし、系統電圧VSの周波数変化又は周期変化を予め設定された回数だけ検出した場合のみ、この分散型電源システムが単独運転していると検出しても良い。また、上述の実施の形態1及び2においては、親機及び子機は、各制御回路9内部に設けられた図示せぬディップスイッチ等の設定回路により予め設定する例を示したが、これに限定されない。親機は、例えば、図示せぬアドレス設定回路により予め設定されているアドレス番号のいずれか(例えば、アドレス番号「1」)が付与されている制御回路9に予め設定しても良い。
【0080】
また、上述の実施の形態3おいては、同期確認判定回路43は、自己における微小変動1セット分のスタートタイミングが、他の制御回路41における微小変動1セット分のスタートタイミングより遅れていると判定した場合に、もっとも進んでいる同期確認タイミング信号STCSEのタイミングで、対応する微小変動指令回路26に修正指示信号SDAを供給しているが、これに限定されない。要するに、単独運転検出のための同期がとれれば良いのであるから、同期確認判定回路43は、自己における微小変動1セット分のスタートタイミングが、他の制御回路41における微小変動1セット分のスタートタイミングよりずれていると判定した場合に、もっとも遅れている同期確認タイミング信号STCSEのタイミング又は中間の同期確認タイミング信号STCSEのタイミングで、対応する微小変動指令回路26に修正指示信号SDAを供給するようにしても良い。また、上述の各実施の形態においては、同期確認時TSCにおける同期確認タイミング信号STCS(実施の形態1〜4の場合)又は運転情報信号SOI(実施の形態5の場合)がある制御回路から他の制御回路に送信されるタイミングは、微小変動期間を1セットとして、その微小変動期間がスタートするタイミングである例を示したが、これに限定されない。上記同期確認タイミング信号STCS等の他の制御回路に送信されるタイミングは、例えば、系統周期に対して、同期確認トリガ信号STSCを受信した1サイクル後や数サイクル後が微小変動期間を1セットとしてスタートするタイミングであっても良い。このように構成しても、微小変動指令回路26で実施される微小変動期間の1セット分のスタートタイミングの修正が、同期確認タイミング信号STCS又は運転情報信号SOIの送信と、微小変動指令回路からパルス入出力回路又は送受信回路への出力タイミング信号STOの供給とにおいて、上記したルールが遵守されていれば単独運転検出のための同期がずれることはない。
【0081】
また、上述の各実施の形態においては、コントローラが同期確認トリガ信号STSCを送信するタイミングや間隔については、特に言及していないが、分散型電源システムの起動時だけや、数秒ごとであっても良い。後者の場合、コントローラを構成するタイマ回路22には、上記同期確認トリガ信号STSCを送信する間隔である数秒間をカウントし、その時間に到達した場合にその旨を示す送信指示信号を出力する機能を付加しても良い。送受信回路21は、送信指示信号が供給された場合に同期確認トリガ信号STSCを送信する。なお、上記同期確認トリガ信号STSCを送信する間隔は、数秒ごとに限らずもっと長くても良い。この場合には、通常時TUSUにおけるコントローラにおける各制御回路からの運転情報の取得に支障はない。また、上述の実施の形態4においては、送受信回路53は、自己宛の運転情報要求信号SROIを受信し、運転情報信号SOIをコントローラ2に送信する際に、単独運転検出回路52から復旧信号SREが供給されている場合には、運転情報信号SOIに単独運転検出回路52で一旦単独運転検出期間に入ったことを示す情報である単独運転検出期間突入情報を含めてコントローラ2に送信する例を示したが、これに限定されない。例えば、送受信回路53は、単独運転検出回路52から復旧信号SREが供給された場合には、通信線3に信号が伝送されているか否かを判定し、通信線3に何ら信号が伝送されていない場合には、直ちに、対応する単独運転検出回路52で一旦単独運転検出期間に入ったことを示す情報である単独運転検出期間突入情報を示す信号をコントローラ2に送信するように構成しても良い。このように構成すれば、より早い段階で単独運転検出のための同期をとることができる。
【0082】
また、上述の実施の形態5においては、同期確認時TSCには、運転情報信号SOIを上記した実施の形態1〜4における同期確認タイミング信号STCSとして使用する例を示したが、これに限定されない。すなわち、同期確認時TSCに同期確認のために各制御回路が他の制御回路に送信する信号は、運転情報信号SOIと同一の通信プロトコルで送信することができればどのようなものでも良い。また、上述の実施の形態5においては、コントローラを構成する送受信回路も各制御回路から同期確認時TSCに送信された運転情報信号SOIを受信することできる。そこで、コントローラを構成するタイマ回路を取り除き、コントローラを構成する送受信回路を、各制御回路から同期確認時TSCに送信された運転情報信号SOIを受信するまで運転情報要求信号SROIを送信しないように構成しても良い。このように構成すれば、上記した実施の形態1〜4に比べてコントローラの回路規模を小さくすることができ、処理の簡略化およびコストの削減が可能である。
【0083】
また、上述の各実施の形態においては、コントローラ2は、各系統連系インバータ61〜63の運転状態や発電電力等に関する情報である運転情報を取得して表示するとともに、各系統連系インバータ61〜63の運転のオン/オフ等を制御する例を示したが、これに限定されず、いずれか一方の機能だけを有していても良い。また、上述の各実施の形態においては、この発明を3台の太陽光発電部11〜13を並列に接続した分散型電源システムに適用する例を示したが、これに限定されず、この発明は、太陽光発電部1を、2台、4台、5台、あるいはそれ以上並列接続した分散型電源システムにも適用することができる。
【0084】
また、上述の各実施の形態においては、通信線3は、双方向通信線である例を示したが、これに限定されず、送信側と受信側が別の線からなるものでも良い。さらに、通信線3は、コントローラ及び各制御回路に電源を供給する電源線を流用しても良い。このように構成すれば、より施工性が向上するとともに、コストの削減が可能である。また、上述の各実施の形態においては、コントローラ及び制御回路は通信線3を介して有線通信を行う例を示したが、これに限定されず、コントローラ及び制御回路は無線通信を行っても良い。このように構成すれば、より施工性が向上する。また、上述の各実施の形態においては、直流電源として太陽電池を用いる例を示したが、これに限定されず、直流電源は、例えば、燃料電池でも良い。また、上述の各実施の形態は、その目的及び構成等に特に矛盾や問題がない限り、互いの技術を流用することができる。例えば、実施の形態4における、単独運転検出回路52が復旧信号SREを送信し、送受信回路53が単独運転検出期間突入情報を含めた運転情報信号SOIを送信する技術は、上記した実施の形態1〜3にも適用することができる。また、実施の形態5における、同期確認時TSCに同期確認タイミング信号STCSに換えて運転情報信号SOIを送信する技術は、上記した実施の形態1〜4にも適用することができる。
【0085】
【発明の効果】
この発明は以上説明したように、複数の系統連系インバータと、コントローラとを備えている。各系統連系インバータは、対応する直流電源からの直流電力を交流電力に変換し系統電源と連系して出力するとともに、交流電力を微小変動させて単独運転を検出する。コントローラは、通信路を介して各系統連系インバータの運転情報を取得するとともに、通信路を介して各系統連系インバータに微小変動の同期がとれているか否かの確認を促す同期確認トリガ信号を送信する。これにより、各系統連系インバータは、同期確認トリガ信号に応じて通信路を介して互いに微小変動の同期がとれているか否かの確認を行う。このため、施工性に優れ、分散型電源システムを安価かつ簡単に構成することができ、しかも安定的に単独運転を検出することができる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1を示す分散型電源システムのブロック図である。
【図2】 同システムを構成するコントローラのブロック図である。
【図3】 同システムを構成する太陽光発電部の一部である制御回路のブロック図である。
【図4】 同システムの動作を説明するためのタイミング・チャートである。
【図5】 この発明の実施の形態2である分散型電源システムを構成するコントローラのブロック図である。
【図6】 同システムを構成する太陽光発電部の一部である系統連系インバータを構成する制御回路のブロック図である。
【図7】 同システムの動作を説明するためのタイミング・チャートである。
【図8】 この発明の実施の形態3である分散型電源システムを構成する太陽光発電部に含まれる系統連系インバータの一部である制御回路のブロック図である。
【図9】 同システムの動作を説明するためのタイミング・チャートである。
【図10】 この発明の実施の形態4である分散型電源システムを構成する太陽光発電部の一部である制御回路のブロック図である。
【図11】 同システムの動作を説明するためのタイミング・チャートである。
【図12】 この発明の実施の形態5である分散型電源システムを構成する太陽光発電部の一部である制御回路のブロック図である。
【図13】 同システムの動作を説明するためのタイミング・チャートである。
【符号の説明】
11〜13 太陽光発電部、2,31 コントローラ、3 通信線(通信路)、4 系統電源、51〜53 太陽電池、61〜63 系統連系インバータ、71〜73 インバータ、81〜83 連系リレー、91〜93,32,41,51,61 制御回路、11,24,34,53,62 送受信回路、12,23タイマ回路、13,25,33 統轄回路、14 モニタ、21,52 単独運転検出回路、22 切換回路、26 微小変動指令回路、27,35 送信設定回路、28,42 パルス入出力回路、29,43 同期確認判定回路。

Claims (10)

  1. 対応する直流電源からの直流電力を交流電力に変換し系統電源と連系して出力するとともに、前記交流電力を微小変動させて単独運転を検出する複数の系統連系インバータと、
    通信路を介して前記各系統連系インバータの運転情報を取得するとともに、前記通信路を介して前記各系統連系インバータに前記微小変動の同期がとれているか否かの確認を促す同期確認トリガ信号を送信するコントローラとを備え、
    前記各系統連系インバータは、前記同期確認トリガ信号に応じて前記通信路を介して互いに前記確認を行うことを特徴とする分散型電源システム。
  2. 対応する直流電源からの直流電力を交流電力に変換し系統電源と連系して出力するとともに、前記交流電力を微小変動させて単独運転を検出する複数の系統連系インバータと、
    通信路を介して前記各系統連系インバータの運転情報を取得するとともに、前記通信路を介して前記各系統連系インバータに前記微小変動の同期がとれているか否かの確認を促す同期確認トリガ信号を送信するコントローラとを備え、
    前記複数の系統連系インバータのうちのいずれか1つは、前記同期確認トリガ信号に応じて自己の前記微小変動のタイミングを示す同期確認タイミング信号を前記通信路を介して他の前記系統連系インバータに送信し、他の前記系統連系インバータは、自己の前記微小変動のタイミングが前記同期確認タイミング信号と一致していない場合には、前記自己の前記微小変動のタイミングを修正することを特徴とする分散型電源システム。
  3. 対応する直流電源からの直流電力を交流電力に変換し系統電源と連系して出力するとともに、前記交流電力を微小変動させて単独運転を検出する複数の系統連系インバータと、
    通信路を介して前記各系統連系インバータの運転情報を取得するとともに、前記通信路を介して前記各系統連系インバータに前記微小変動の同期がとれているか否かの確認を促す同期確認トリガ信号を、取得した前記運転情報に基づいて選択した前記系統連系インバータに送信するコントローラとを備え、
    選択された前記系統連系インバータは、前記同期確認トリガ信号に応じて自己の前記微小変動のタイミングを示す同期確認タイミング信号を前記通信路を介して他の前記系統連系インバータに送信し、他の前記系統連系インバータは、自己の前記微小変動のタイミングが前記同期確認タイミング信号と一致していない場合には、前記自己の前記微小変動のタイミングを修正することを特徴とする分散型電源システム。
  4. 対応する直流電源からの直流電力を交流電力に変換し系統電源と連系して出力するとともに、前記交流電力を微小変動させて単独運転を検出する複数の系統連系インバータと、
    通信路を介して前記各系統連系インバータの運転情報を取得するとともに、前記通信路を介して前記各系統連系インバータに前記微小変動の同期がとれているか否かの確認を促す同期確認トリガ信号を送信するコントローラとを備え、
    前記各系統連系インバータは、前記同期確認トリガ信号に応じて自己の前記微小変動のタイミングを示す同期確認タイミング信号を前記通信路を介して他の前記系統連系インバータに送信し、他の前記系統連系インバータは、自己の前記微小変動のタイミングが前記同期確認タイミング信号と一致していない場合には、前記自己の前記微小変動のタイミングを修正することを特徴とする分散型電源システム。
  5. 前記各系統連系インバータは、前記単独運転を検出した後、通常状態にもどった場合にはその旨を示す信号を前記コントローラに送信し、前記コントローラは、前記信号に応じて前記通信路を介して前記各系統連系インバータに前記同期確認トリガ信号を送信することを特徴とする請求項1乃至4のいずれか1に記載の分散型電源システム。
  6. 前記複数の系統連系インバータのうちのいずれか1つ又は、前記各系統連系インバータは、前記同期確認タイミング信号に換えて、自己の前記微小変動のタイミングで所定の信号を他の前記系統連系インバータに送信することを特徴とする請求項2乃至5のいずれか1に記載の分散型電源システム。
  7. 前記各系統連系インバータは、前記交流電力の周波数又は周期を微小変動させて単独運転を検出することを特徴とする請求項1乃至6のいずれか1に記載の分散型電源システム。
  8. 前記各系統連系インバータは、前記交流電力の有効電力又は無効電力を微小変動させて単独運転を検出することを特徴とする請求項1乃至6のいずれか1に記載の分散型電源システム。
  9. 前記通信路は、前記各系統連系インバータ及び前記コントローラに電源を供給する電源線を流用することを特徴とする請求項1乃至8のいずれか1に記載の分散型電源システム。
  10. コンピュータに請求項1乃至9のいずれか1に記載の機能を実現させるための分散型電源システムの制御プログラム。
JP2003145424A 2003-05-22 2003-05-22 分散型電源システム及び分散型電源システムの制御プログラム Expired - Fee Related JP3952298B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003145424A JP3952298B2 (ja) 2003-05-22 2003-05-22 分散型電源システム及び分散型電源システムの制御プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003145424A JP3952298B2 (ja) 2003-05-22 2003-05-22 分散型電源システム及び分散型電源システムの制御プログラム

Publications (2)

Publication Number Publication Date
JP2004350429A JP2004350429A (ja) 2004-12-09
JP3952298B2 true JP3952298B2 (ja) 2007-08-01

Family

ID=33532601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003145424A Expired - Fee Related JP3952298B2 (ja) 2003-05-22 2003-05-22 分散型電源システム及び分散型電源システムの制御プログラム

Country Status (1)

Country Link
JP (1) JP3952298B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101777230B1 (ko) 2012-07-17 2017-09-11 한국전자통신연구원 태양광 발전을 위한 인버터 시스템

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100382405C (zh) * 2005-10-18 2008-04-16 姚亦鸣 分布式可编程能源系统及其利用方法
JP2008079407A (ja) * 2006-09-20 2008-04-03 Toshiba Fuel Cell Power Systems Corp 単独運転防止装置及び方法
US20090000654A1 (en) * 2007-05-17 2009-01-01 Larankelo, Inc. Distributed inverter and intelligent gateway
GB2449427B (en) * 2007-05-19 2012-09-26 Converteam Technology Ltd Control methods for the synchronisation and phase shift of the pulse width modulation (PWM) strategy of power converters
JP5153722B2 (ja) * 2009-05-28 2013-02-27 京セラ株式会社 光電変換装置
JP5973144B2 (ja) * 2011-08-11 2016-08-23 パーパス株式会社 分散型電源装置、その制御プログラムおよびその制御方法
JP6252927B2 (ja) * 2011-10-18 2017-12-27 パナソニックIpマネジメント株式会社 配電システムおよびそれに用いられる配線器具
JP2015073399A (ja) * 2013-10-03 2015-04-16 山洋電気株式会社 分散型電源の単独運転検出装置及び方法
JP2015180125A (ja) * 2014-03-18 2015-10-08 株式会社東芝 制御装置、電力変換装置及び制御システム
AU2015242113B2 (en) * 2014-03-31 2018-05-24 Panasonic Intellectual Property Management Co., Ltd. Power conversion system
US9853689B2 (en) * 2014-11-07 2017-12-26 VoltServer, Inc. Packet energy transfer power control elements
JP6314268B2 (ja) * 2017-03-29 2018-04-18 京セラ株式会社 電力管理システム、電力管理方法、電力制御装置及び分散電源

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101777230B1 (ko) 2012-07-17 2017-09-11 한국전자통신연구원 태양광 발전을 위한 인버터 시스템

Also Published As

Publication number Publication date
JP2004350429A (ja) 2004-12-09

Similar Documents

Publication Publication Date Title
JP3952298B2 (ja) 分散型電源システム及び分散型電源システムの制御プログラム
CN101494383B (zh) 一种逆变器并联系统控制方法
JP6141818B2 (ja) 並列インバータ制御装置
CN103907262B (zh) Ups的并行控制和保护
JP5645768B2 (ja) 無停電電源システム
JPH11175490A (ja) 縮退制御方法、多重化制御装置
CN102222901B (zh) 一种模块化多电平柔性直流输电系统控制设备顺控流程
CN103946768A (zh) 并联逆变器系统的故障检测
CN102624075B (zh) 模块化ups系统多机并联方法及连接方案
JP2015198458A (ja) インバータシステム及び複数のインバータの並列同期運転制御方法
US11133675B2 (en) Method and apparatus for synchronizing start-up of grid-forming inverters
WO2015032420A1 (en) Redundant point of common coupling (pcc) to reduce risk of microgrid's islanding
WO2014138344A2 (en) Systems and methods for master arbitration
CN100479295C (zh) 并联不间断电源同步切换控制方法及装置
JP2000270482A (ja) 自然エネルギ発電装置の系統連係方法
JP2018091828A (ja) デジタル電力変電所の保護ゾーン内での時刻源同期のためのシステムおよび方法
JP2682251B2 (ja) 多重化制御装置
JPH081350A (ja) インバータ式抵抗溶接機の並列システム
CN101291058B (zh) 用于交流源系统的双交流母线同步装置
JP2013085412A (ja) 系統連系パワーコンディショナ
CN105226810B (zh) 多ups系统同步供电系统及方法
CN106814643B (zh) 一种双机热备的控制方法及系统
JP3353549B2 (ja) 系統連系用インバータの単独運転検出装置
JPH0946909A (ja) 並列多重連系分散電源の単独運転検出装置
JP2001078363A (ja) 太陽光発電装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees