JP3951300B2 - Light emitting device and method for manufacturing light emitting device - Google Patents

Light emitting device and method for manufacturing light emitting device Download PDF

Info

Publication number
JP3951300B2
JP3951300B2 JP2003200443A JP2003200443A JP3951300B2 JP 3951300 B2 JP3951300 B2 JP 3951300B2 JP 2003200443 A JP2003200443 A JP 2003200443A JP 2003200443 A JP2003200443 A JP 2003200443A JP 3951300 B2 JP3951300 B2 JP 3951300B2
Authority
JP
Japan
Prior art keywords
metal layer
layer
light emitting
reflective
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003200443A
Other languages
Japanese (ja)
Other versions
JP2005044849A5 (en
JP2005044849A (en
Inventor
和徳 萩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2003200443A priority Critical patent/JP3951300B2/en
Priority to TW093117110A priority patent/TW200511610A/en
Priority to PCT/JP2004/009722 priority patent/WO2005008793A1/en
Publication of JP2005044849A publication Critical patent/JP2005044849A/en
Publication of JP2005044849A5 publication Critical patent/JP2005044849A5/ja
Application granted granted Critical
Publication of JP3951300B2 publication Critical patent/JP3951300B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は発光素子及びその製造方法に関する。
【0002】
【従来の技術】
【特許文献1】
特開平7−66455号公報
【特許文献2】
特開2001−339100号公報
【非特許文献1】
日経エレクトロニクス2002年10月21日号124頁〜132頁
【0003】
発光ダイオードや半導体レーザー等の発光素子に使用される材料及び素子構造は、長年にわたる進歩の結果、素子内部における光電変換効率が理論上の限界に次第に近づきつつある。従って、一層高輝度の素子を得ようとした場合、素子からの光取出し効率が極めて重要となる。例えば、AlGaInP混晶により発光層部が形成された発光素子は、薄いAlGaInP(あるいはGaInP)活性層を、それよりもバンドギャップの大きいn型AlGaInPクラッド層とp型AlGaInPクラッド層とによりサンドイッチ状に挟んだダブルへテロ構造を採用することにより、高輝度の素子を実現できる。このようなAlGaInPダブルへテロ構造は、AlGaInP混晶がGaAsと格子整合することを利用して、GaAs単結晶基板上にAlGaInP混晶からなる各層をエピタキシャル成長させることにより形成できる。そして、これを発光素子として利用する際には、通常、GaAs単結晶基板をそのまま素子基板として利用することも多い。しかしながら、発光層部を構成するAlGaInP混晶はGaAsよりもバンドギャップが大きいため、発光した光がGaAs基板に吸収されて十分な光取出し効率が得られにくい難点がある。この問題を解決するために、半導体多層膜からなる反射層を基板と発光素子との間に挿入する方法(例えば特許文献1)も提案されているが、積層された半導体層の屈折率の違いを利用するため、限られた角度で入射した光しか反射されず、光取出し効率の大幅な向上は原理的に期待できない。
【0004】
そこで、特許文献2には、成長用のGaAs基板を剥離する一方、補強用の素子基板(導電性を有するもの)を、反射用のAu層を介して剥離面に貼り合わせる技術が開示されている。このAu層は反射率が高く、また、反射率の入射角依存性が小さい利点がある。しかし、Au層は、白色光下にて黄色に着色して見える事実からも明らかな通り、特定波長帯の光に対して吸収が大きく、ピーク波長が該波長域に設定された発光素子の場合、吸収による反射率の低下を生ずる問題がある。一方、非特許文献1には、反射率の波長依存性がAuよりも小さいAlにて反射層を構成することにより、反射強度を高めるようにした発光素子が開示されている。該非特許文献1の素子構造においては、発光層部とシリコン基板からなる素子基板との間にAl反射層が配置され、さらに、Al反射層とシリコン基板との間には、シリコン基板と発光層部との貼り合わせ接合を容易にするために、Au層を介在させている。具体的には、発光層部側に形成したAl反射層を覆うようにAu層を形成し、他方シリコン基板側にもAu層を形成して、それらAu層同士を密着させて貼り合わせを行なうようにしている。
【0005】
【発明が解決しようとする課題】
しかし、非特許文献1の構成では、Al層とAu層とが接触して形成されているが、貼り合わせを比較的低温で行なっても、反射層をなすAl層がAu層と拡散により合金化し、反射率が低下してしまう問題を生ずる。
【0006】
本発明の課題は、発光層部を反射金属層で覆い、さらに、その反射金属層を、別の結合用金属層を介して素子基板と貼り合せた構造を有する発光素子において、結合用金属層から反射金属層への成分拡散を効果的に防止でき、ひいては、該拡散による反射率低下などの不良を生じにくい発光素子と、その製造方法とを提供することにある。
【0007】
【課題を解決するための手段及び作用・効果】
上記の課題を解決するために、本発明の発光素子は、
発光層部を有した化合物半導体層の第一主表面を光取出面とし、該化合物半導体層の第二主表面側に、前記発光層部からの光を前記光取出面側に反射させる反射面を有した反射金属層が形成され、該反射金属層が結合用金属層を介して素子基板に結合されるとともに、前記反射金属層と前記結合用金属層との間に、該結合用金属層の金属成分が前記反射金属層側に拡散することを阻止する反射金属層側拡散阻止層が介挿され、さらに、前記素子基板と前記結合用金属層との間に、導電性材料にて構成され、かつ、前記素子基板に由来した成分の前記結合用金属層への拡散を阻止する基板側拡散阻止層が介挿されてなることを特徴とする
【0008】
上記本発明の発光素子は、反射金属層と結合用金属層との間に反射金属層側拡散阻止層を介挿することにより、結合用金属層から反射金属層へ成分拡散が生ずること、ひいては、該成分拡散による反射金属層の反射率低下を効果的に抑制でき、ひいては高輝度の発光素子を実現できる。
【0009】
また、本発明の発光素子の製造方法は、
発光層部を有した化合物半導体層の第一主表面を光取出面とし、該化合物半導体層の第二主表面側に、発光層部からの光を光取出面側に反射させる反射面を有した反射金属層が形成され、該反射金属層が結合用金属層を介して素子基板に結合された発光素子の製造方法において、
化合物半導体層の貼り合わせ側主表面と、素子基板の貼り合わせ側主表面との間に、反射金属層と、結合用金属層の金属成分が反射金属層側に拡散することを阻止する反射金属層側拡散阻止層と、前記結合用金属層と、前記素子基板に由来した成分の前記結合用金属層への拡散を阻止する基板側拡散阻止層とが、化合物半導体層の側からこの順序で積層された形で介在するように重ね合わせて貼り合せすることを特徴とする。
【0010】
上記本発明の発光素子の製造方法によると、反射金属層と結合用金属層との間に反射金属層側拡散阻止層を介在させて貼り合せを行なうので、貼り合わせ時又は貼り合わせ後に結合用金属層から反射金属層へ成分拡散が生ずること、引いては、該成分拡散による反射金属層の反射率低下等を効果的に抑制でき、ひいては高輝度の発光素子を容易に実現できる。特に、貼り合わせの際に、拡散の進行しやすい熱処理を行なう場合は、本発明の効果は一層顕著となる。
【0011】
結合用金属層は、反射金属層単独では素子基板との貼り合わせが比較的困難な場合に、反射金属層と素子基板との間に介在して、その貼り合わせを補助する役割を果たすものであり、発光層部からの光に対する反射率そのものは反射金属層よりは劣っていることが多い。このように、発光層部からの光に対して反射金属層よりも反射率の低い金属が使用される場合、結合用金属層からの金属成分が反射金属層に拡散したとき、反射率低下の不具合が生じやすくなるのは当然であるといえる。そこで、本発明のごとく、結合用金属層と反射金属層との間に反射金属層側拡散阻止層を介挿しておけば、上記拡散による反射率低下を抑制する効果がとりわけ顕著である。
【0012】
具体的には、結合用金属層がAuを主成分とするAu系金属にて構成される場合である(なお、本明細書において「主成分」とは、最も質量含有率の高い成分のことをいう)。Auは化学的に安定であり、しかもAlのような厚く強固な不働態被膜も形成されにくいので、結合用金属層の材質として好適である。特に、化合物半導体層の貼り合わせ側主表面に、該主表面側から金属反射層と反射金属層側拡散阻止層と第一Au系金属層とをこの順で形成する一方、素子基板の貼り合わせ側主表面に第二Au系金属層を形成し、それら第一Au系金属層と第二Au系金属層とを密着させて貼り合わせる方法を採用すると、Au系金属層同士の親和力が強いために、比較的低温でも十分な貼り合わせ強度を容易に得られる利点がある。
【0013】
しかし、Auは前述の通り、特定波長帯の光に対して強い吸収を示し、該波長帯の光に対する反射率は決して良好ではない。図4は、研磨した種々の金属表面における反射率を示すものであり、プロット点「△」がAuの反射率である。Auは波長670nm以下の可視光域に強い吸収があり(特に650nm以下:600nm以下ではさらに吸収が大きい)、Au系結合用金属層から反射金属層への拡散が多量に生ずると、発光層部のピーク発光波長が670nm以下に存在する場合に反射率低下が著しくなる。その結果、発光強度が低下しやすいほか、取り出される光のスペクトルが、吸収により本来の発光スペクトルとは異なるものとなり、発光色調の変化も招きやすくなる。しかし、本発明のごとく反射金属層側拡散阻止層を介挿しておけば、上記の不具合を効果的に抑制できる。
【0014】
一方、反射金属層は、Alを主成分とするAl系金属にて構成することができる。図4に示すAl層の反射率の波長依存性(プロット点「◆」)によると、波長550nm未満の可視光域においても、Auのような強い吸収はなく、また、Auに比べるとはるかに安価であり、汎用の反射層として本発明に好適に使用できる。特に、波長400nm以上550nm以下の青色から緑色にかけての発光波長域に対しては、Auよりも反射率が良好であり、光取出し効率の向上にも寄与する。
【0015】
しかし、Al系反射金属層にAu系結合用金属層が直接接して形成されていると、本発明者が検討したところ、115℃程度までの比較的低温域においてもAu系結合用金属層からAl系反射金属層へのAuの拡散が顕著に進み、反射率の低下が著しくなること、特に波長400nm以上550nm以下の青色から緑色の発光波長域での反射率の低下が著しくなることが判明した。しかし、本発明のごとく反射金属層側拡散阻止層を介挿しておけば、該不具合を効果的に抑制できる。
【0016】
また、反射金属層の反射面を形成する部分は、Agを主成分とするAg系反射層とすることもできる。Ag系反射金属層は、可視光の略全波長域(350nm以上700nm)に渡ってAu系金属よりも良好な反射率を示し、反射率の波長依存性が小さい。その結果、素子の発光波長によらず高い光取出効率を実現できる。またAu系反射金属層と比較した場合、青色から緑色の発光に対しても、酸化皮膜等の形成による反射率低下も生じにくい。図4のプロット点「■」はAgの反射率の波長依存性を示す。また、プロット点「×」はAgPdCu合金である。Agの反射率は、350nm以上700nm以下(また、それより長波長側の赤外域)、特に、380nm以上700nm以下にて、可視光の反射率が特に良好である。当然、ピーク波長が400nm以上550nm以下の青色から緑色の発光波長域においても良好な反射率が得られる。なお、前述のAl系反射金属層はAg系反射金属層と比較しても安価であるが、酸化皮膜形成による反射率低下があるため、可視光域での反射率は多少低い値(例えば85〜92%)に留まっている。他方、Ag系反射金属膜はAl系反射金属層よりは酸化皮膜が形成されにくいため、Alよりも高い反射率を可視光域に確保できる。そして、本発明のごとく反射金属層側拡散阻止層を介挿しておけば、Au系結合金属層からAg系反射金属層へのAu成分拡散を効果的に抑制できる。
【0017】
Au系結合金属層を用いる場合、反射金属層側拡散阻止層は、具体的には、Ti、Ni及びCrのいずれか一つを主成分とする金属層とすることができる。Ti、NiないしCrを主成分とする金属は、Auに対する拡散係数が小さく、反射金属層へのAu成分拡散を抑制する効果に優れているので、本発明に好適に採用できる。該反射金属層側拡散阻止層の厚さは、1nm以上10μm以下とすることが望ましい。厚さが1nm未満では拡散防止効果が十分でなくなり、10μmを超えると効果が飽和して、製造コストの無駄な高騰につながる。なお、反射金属層側拡散阻止層は具体的には工業用の純Ti、純Niないし純Crを採用することもできるが、Auに対する拡散防止効果が損なわれない範囲にて、副成分を含有させることが可能である。例えば、適量のPd添加は、Ti、NiないしCrを主成分とする金属の耐食性を向上させる効果がある。また、TiとNi、Crとの合金を用いることもできる。
【0018】
次に、本発明の発光素子は、素子基板と結合用金属層との間に、導電性材料にて構成され、かつ、素子基板に由来した成分の結合用金属層への拡散を阻止する基板側拡散阻止層を介挿することができる。該構造によると、素子基板から結合用金属層への成分拡散が基板側拡散阻止層によりブロックされ、ひいては該拡散による結合用金属層の変質を効果的に抑制することができる。その結果、結合用金属層と素子基板との密着強度低下や、さらには反射金属層への素子基板の成分拡散による反射率低下などといった不具合が効果的に抑制され、また、これら不具合による発光素子の製品歩留まりの低下も生じにくい。
【0019】
上記構成は、結合用金属層がAuを主成分とするAu系金属層とされてなり、素子基板がSi基板である場合に適用されたときに特に効果が大きい。すなわち、Si基板はドーピングにより発光素子として十分な導電性を容易に確保することができ、しかも安価である。しかし、SiとAuとは比較的低温で共晶反応を起こしやすく(Au−Si二元系の共晶温度は363℃であるが、それ以外の合金成分が介在するとさらに共晶温度が低下することもありえる)、貼り合わせを熱処理により行なう場合は、基板側のSiのAu系金属層側への拡散も進みやすい。その結果、金属層中のAu系層は該Si拡散による反射率低下を招きやすい。しかしながら、Au系金属層とSi基板との間に基板側拡散阻止層を設けておくと、Au系金属層へのSiの拡散を効果的に抑制することができる。
【0020】
Au系金属層とSi基板とを用いる場合、基板側拡散阻止層は、具体的には、Ti、Ni及びCrのいずれか一つを主成分とする金属層とすることができる。Ti、NiないしCrを主成分とする金属は、Au系金属層へのSiの拡散抑制効果に特に優れているので、本発明に好適に採用できる。また、該基板側拡散阻止層の厚さは、1nm以上10μm以下とすることが望ましい。厚さが1nm未満では拡散防止効果が十分でなくなり、10μmを超えると効果が飽和して、製造コストの無駄な高騰につながる。なお、基板側拡散阻止層は具体的には工業用の純Ti、純Niないし純Crを採用することもできるが、Au系金属層へのSiの拡散防止効果が損なわれない範囲にて、Pdなどの副成分を含有させることが可能であり、また、TiとNi、Crとの合金を用いることもできる。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態を添付の図面を参照して説明する。
図1は、本発明の一実施形態である発光素子100を示す概念図である。発光素子100は、素子基板をなす導電性基板であるn型Si(シリコン)単結晶よりなるSi基板7の第一主表面上に金属層10を介して発光層部24が貼り合わされた構造を有してなる。
【0022】
発光層部24は、ノンドープ(AlGa1−xIn1−yP(ただし、0≦x≦0.55,0.45≦y≦0.55)混晶からなる活性層5を、第一導電型クラッド層、本実施形態ではp型(AlGa1−zIn1−yP(ただしx<z≦1)からなるp型クラッド層6と、前記第一導電型クラッド層とは異なる第二導電型クラッド層、本実施形態ではn型(AlGa1−zIn1−yP(ただしx<z≦1)からなるn型クラッド層4とにより挟んだ構造を有し、活性層5の組成に応じて、発光波長を、緑色から赤色領域(発光波長(ピーク発光波長)が550nm以上670nm以下)にて調整できる。発光素子100においては、金属電極9側にp型AlGaInPクラッド層6が配置されており、結合用金属層10k側にn型AlGaInPクラッド層4が配置されている。従って、通電極性は金属電極9側が正である。なお、ここでいう「ノンドープ」とは、「ドーパントの積極添加を行なわない」との意味であり、通常の製造工程上、不可避的に混入するドーパント成分の含有(例えば1013〜1016/cm程度を上限とする)をも排除するものではない。
【0023】
また、発光層部24の基板7に面しているのと反対側の主表面上には、AlGaAsよりなる電流拡散層20が形成され、その主表面の略中央に、発光層部24に発光駆動電圧を印加するための金属電極(例えばAu電極)9が、該主表面の一部を覆うように形成されている。電流拡散層20の主表面における、金属電極9の周囲の領域は、発光層部24からの光取出領域をなす。また、Si単結晶基板7の裏面にはその全体を覆うように金属電極(裏面電極:例えばAu電極である)15が形成されている。金属電極15がAu電極である場合、金属電極15とSi単結晶基板7との間には基板側コンタクト金属層として、AuSbコンタクト金属層16が介挿される。なお、AuSbコンタクト金属層16に代えてAuSnコンタクト金属層を基板側コンタクト金属層として用いてもよい。
【0024】
Si単結晶基板7は、Si単結晶インゴットをスライス・研磨して製造されたものであり、その厚みは例えば100μm以上500μm以下である。そして、発光層部24に対し金属層10を挟んで貼り合わされている。また、金属層10は、発光層部24側の反射金属層10cと、発光層部24側の結合用金属層10aと、Si基板7側の結合用金属層10bと、さらに、反射金属層10cと結合用金属層10a,10b(=10k)との間に介在する反射金属層側拡散阻止層10fとからなる。反射金属層10cは、本実施形態ではAl系金属層(Al層)であり、結合用金属層10a,10b(=10k)はAu系金属層(たとえばAu層)である。さらに、反射金属層側拡散阻止層10fはTi系金属層(例えばTi層)であり、その厚さは1nm以上10μm以下(本実施形態では200nm)である。反射金属層側拡散阻止層10fは、Ti系金属層に代えてNi系金属層(例えばNi層)あるいはCr系金属層(例えばCr層)としてもよい。
【0025】
一方、発光層部24と反射金属層10cとの間には、発光層部側コンタクト金属層としてAuGeNiコンタクト金属層32(例えばGe:15質量%、Ni:10質量%)が形成されており、素子の直列抵抗低減に貢献している。AuGeNiコンタクト金属層32は、発光層部24の主表面上に分散形成され、その形成面積率は1%以上25%以下である。また、Si単結晶基板7と結合用金属層10kとの間には、Si単結晶基板7の主表面と接する形で、基板側コンタクト金属層としてのAuSbコンタクト金属層31(例えばSb:5質量%)が形成されている。なお、AuSbコンタクト金属層31に代えてAuSnコンタクト金属層を用いてもよい。
【0026】
そして、該AuSbコンタクト金属層31の全面が、Ti系金属層(例えばTi層)からなる基板側拡散阻止層10dにより覆われている。基板側拡散阻止層10dの厚さは1nm以上10μm以下(本実施形態では200nm)である。なお、基板側拡散阻止層10dはTi系金属層に代えてNi系金属層(例えばNi層)あるいはCr系金属層(例えばCr層)としてもよい。そして、該基板側拡散阻止層10dの全面を覆う形で、これと接するように結合用金属層10k(Au系金属層)が配置されている。
【0027】
発光層部24からの光は、光取出面側に直接放射される光に、反射金属層10cによる反射光が重畳される形で取り出される。反射金属層10cの厚さは、反射効果を十分に確保するため、80nm以上とすることが望ましい。また、厚さの上限には制限は特にないが、反射効果が飽和するため、コストとの兼ね合いにより適当に定める(例えば1μm程度)。また、結合用金属層10kの層厚は200nm以上10μm以下とする。
【0028】
以下、図1の発光素子100の製造方法について説明する。
まず、図2の工程1に示すように、発光層成長用基板をなす半導体単結晶基板であるGaAs単結晶基板1の主表面に、p型GaAsバッファ層2を例えば0.5μm、AlAsからなる剥離層3を例えば0.5μm、さらにp型AlGaAsよりなる電流拡散層20を例えば5μm、この順序にて周知のMOVPE(Metal-Organic Vapor Phase Epitaxy)法等によりエピタキシャル成長させる。また、その後、発光層部24として、1μmのp型AlGaInPクラッド層6、0.6μmのAlGaInP活性層(ノンドープ)5、及び1μmのn型AlGaInPクラッド層4を、この順序にエピタキシャル成長させる。
【0029】
次に、工程2に示すように、発光層部24の主表面に、AuGeNiコンタクト金属層32を分散形成する。AuGeNiコンタクト金属層32を形成後、次に、350℃以上500℃以下の温度域で合金化熱処理を行なう。発光層部24とAuGeNiコンタクト金属層32との間には、上記合金化熱処理により合金化層が形成され、直列抵抗が大幅に低減される。その後、AuGeNiコンタクト金属層32を覆うようにAl系金属層からなる反射金属層10cを形成し(厚さ例えば300nm)、次いでTi系金属層からなる反射金属層側拡散阻止層10f(厚さ:例えば200nm)を形成する。そして、それら反射金属層10c及び反射金属層側拡散阻止層10fをさらに覆う形で、結合金属層となる第一Au系金属層10a(厚さ:例えば2μm)を形成する。このとき、Al系反射金属層10cは発光層部24の主表面の外周縁部を除く領域を覆うように形成し、第一Au系金属層10aを、反射金属層10cの外周縁よりも外側に張り出すように形成して、Al系反射金属層10cの周側面を第一Au系金属層10aにより覆う。
【0030】
他方、工程3に示すように、別途用意したSi単結晶基板7(n型)の両方の主表面に基板側コンタクト金属層となるAuSbコンタクト金属層31,16(前述の通りAuSnコンタクト金属層でもよい)を形成し、100℃以上500℃以下の温度域で合金化熱処理を行なう。そして、AuSbコンタクト金属層31上には、Ti系金属層からなる基板側拡散阻止層10d(厚さ:例えば200nm)及び第二Au系金属層10b(厚さ:例えば2μm)をこの順序にて形成する。また、AuSbコンタクト金属層16上には裏面電極層15(例えばAu系金属層からなるもの)を形成する。以上の工程で各金属層は、スパッタリングあるいは真空蒸着等を用いて行なうことができる。
【0031】
そして、工程4に示すように、Si単結晶基板7側の第二Au系金属層10bを、発光層部24上に形成された第一Au系金属層10aに重ね合わせて圧迫して、80℃以上500℃以下、例えば200℃にて貼り合せ熱処理することにより、基板貼り合わせ体50を作る。Si単結晶基板7は、第一Au系金属層10a及び第二Au系金属層10bを介して発光層部24に貼り合わせられる。また、第一Au系金属層10aと第二Au系金属層10bとは上記貼り合せ熱処理により一体化して結合用金属層10kとなる。第一Au系金属層10a及び第二Au系金属層10bが、いずれも酸化しにくいAuを主体に構成されているため、上記貼り合せ熱処理は、例えば大気中でも問題なく行なうことができる。
【0032】
ここで、第一Au系金属層10aとAl系金属からなる金属反射層10cとの間には、Ti系金属層からなる金属反射層側拡散阻止層10fが介挿されている。金属反射層10cがAl系金属層の場合、もし金属反射層側拡散阻止層10fが省略されていると、115℃前後の低温でも第一Au系金属層10aから金属反射層10cへのAu成分の拡散が著しく、これにより、金属反射層10cの反射率が低下する不具合につながる(特に、波長400nm以上550nm以下の青色から緑色にかけての発光波長域)。しかし、上記のように金属反射層側拡散阻止層10fを設けると、貼り合わせ熱処理時の第一Au系金属層10aから金属反射層10cへのAu成分の拡散が効果的に抑制され、金属反射層10cの反射率を良好に保つことができる。また、360℃までであれば、貼り合わせの熱処理温度を上昇させても、Al系金属からなる金属反射層10cへのAuの拡散が顕著とならず、ひいては貼り合わせ温度を高めることで貼り合わせ強度を向上することができる。
【0033】
また、第二Au系金属層10bとSi単結晶基板7(AuSbコンタクト金属層31)との間には、Ti系金属層からなる基板側拡散阻止層10dが介挿されている。上記貼り合せ熱処理時にSi単結晶基板7から第二Au系金属層10bに向けたSi成分の拡散が上記基板側拡散阻止層10dによりブロックされ、貼り合わせにより一体化した結合用金属層(第一Au系金属層/第二Au系金属層)10a,10bひいては反射金属層10c側へのSi成分の染み出しが効果的に抑制される。その結果、最終的に得られる反射金属層10cの反射面がSi成分により汚染される不具合が防止され、良好な反射率を実現することができる。また、第二Au系金属層10b(結合用金属層)を蒸着等により形成したりする際の熱履歴により、Si単結晶基板7からAuSbコンタクト金属層31を突き抜けてSiが拡散し、第二Au系金属層10bの最表面にそのSiが湧き上がることがある。この沸き上がったSiが酸化されると、第二Au系金属層(結合用金属層)10bと第一Au系金属層(結合用金属層)10aとの貼り合わせが著しく阻害される場合がある。しかし、上記のように基板側拡散阻止層10dを形成しておけば、該Siの湧き上がりひいては酸化が効果的に抑制され、結合用金属層10kによるSi単結晶基板7と発光層部(化合物半導体層)24との貼り合せ強度をより高めることができる。
【0034】
次に、工程5に進み、上記基板貼り合わせ体50を、例えば10%フッ酸水溶液からなるエッチング液に浸漬し、バッファ層2と電流拡散層20との間に形成したAlAs剥離層3を選択エッチングすることにより、GaAs単結晶基板1(発光層部24からの光に対して不透明である)を、発光層部24とこれに接合されたSi単結晶基板7との積層体50aから剥離する。なお、AlAs剥離層3に代えてAlInPよりなるエッチストップ層を形成しておき、GaAsに対して選択エッチング性を有する第一エッチング液(例えばアンモニア/過酸化水素混合液)を用いてGaAs単結晶基板1をGaAsバッファ層2とともにエッチング除去し、次いでAlInPに対して選択エッチング性を有する第二エッチング液(例えば塩酸:Al酸化層除去用にフッ酸を添加してもよい)を用いてエッチストップ層をエッチング除去する工程を採用することもできる。
【0035】
Al系金属層からなる反射金属層10cは、第一Au系金属層10aに包まれる形となり、Al系反射金属層10cの外周面が、耐食性の高い第一Au系金属層10aの外周縁部10eにより保護されるので、工程5において、発光層成長用基板(GaAs単結晶基板1)をエッチングしても、その影響がAl系反射金属層10cに及びにくくなる。GaAs単結晶基板1を発光層成長用基板として用い、これをアンモニア/過酸化水素混合液をエッチング液として用いて溶解・除去する場合、Alは該エッチング液に特に腐食されやすいが、上記の構造を採用すれば、問題なくGaAs単結晶基板1を溶解除去できる。
【0036】
そして、工程6に示すように、GaAs単結晶基板1の除去により露出した電流拡散層20の主表面の一部を覆うように、ワイヤボンディング用の電極(ボンディングパッド:図1)を形成する。以下、通常の方法によりダイシングして半導体チップとし、これを支持体に固着してリード線のワイヤボンディング等を行なった後、樹脂封止をすることにより最終的な発光素子が得られる。
【0037】
以上の実施形態では、Al系金属からなる反射金属層10cを用いていたが、図3の発光素子200のごとく、Ag系金属からなる反射金属層10gを用いることもできる。この場合、発光層部側コンタクト金属層として、AgGeNi(例えばGe:15質量%、Ni:10質量%)よりなるAg系コンタクト金属層132を分散形成する。その他の部分については、図1の発光素子100と同一である。
【図面の簡単な説明】
【図1】本発明の発光素子の第一実施形態を積層構造にて示す模式図。
【図2】図1の発光素子の、製造工程の一例を示す説明図。
【図3】本発明の発光素子の第二実施形態を積層構造にて示す模式図。
【図4】種々の金属における反射率を示す図。
【符号の説明】
1 GaAs単結晶基板(発光層成長用基板)
4 n型クラッド層(第二導電型クラッド層)
5 活性層
6 p型クラッド層(第一導電型クラッド層)
7 Si単結晶基板(素子基板)
9 金属電極
10a 第一Au系金属層(結合金属層)
10b 第二Au系金属層(結合金属層)
10c 反射金属層(Al系金属層)
10g 反射金属層(Ag系金属層)
10d 基板側拡散阻止層(Ti系金属層)
10f 反射金属層側拡散阻止層(Ti系金属層)
24 発光層部
100,200 発光素子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light emitting device and a method for manufacturing the same.
[0002]
[Prior art]
[Patent Document 1]
Japanese Patent Laid-Open No. 7-66455 [Patent Document 2]
JP 2001-339100 A [Non-Patent Document 1]
Nikkei Electronics October 21, 2002, pages 124-132
As a result of many years of progress in materials and element structures used in light-emitting elements such as light-emitting diodes and semiconductor lasers, the photoelectric conversion efficiency inside the elements is gradually approaching the theoretical limit. Therefore, when an element with higher luminance is to be obtained, the light extraction efficiency from the element is extremely important. For example, in a light emitting device having a light emitting layer portion formed of AlGaInP mixed crystal, a thin AlGaInP (or GaInP) active layer is sandwiched between an n-type AlGaInP cladding layer and a p-type AlGaInP cladding layer having a larger band gap. By adopting a sandwiched double hetero structure, a high-luminance element can be realized. Such an AlGaInP double heterostructure can be formed by epitaxially growing each layer of an AlGaInP mixed crystal on a GaAs single crystal substrate by utilizing the lattice matching of the AlGaInP mixed crystal with GaAs. When this is used as a light emitting element, a GaAs single crystal substrate is usually used as an element substrate as it is. However, since the AlGaInP mixed crystal constituting the light emitting layer has a larger band gap than GaAs, the emitted light is absorbed by the GaAs substrate, and it is difficult to obtain sufficient light extraction efficiency. In order to solve this problem, a method (for example, Patent Document 1) in which a reflective layer made of a semiconductor multilayer film is inserted between a substrate and a light emitting element has also been proposed. Therefore, only light incident at a limited angle is reflected, and a significant improvement in light extraction efficiency cannot be expected in principle.
[0004]
Therefore, Patent Document 2 discloses a technique in which a growth GaAs substrate is peeled off while a reinforcing element substrate (having conductivity) is bonded to a peeled surface through a reflective Au layer. Yes. This Au layer has an advantage that the reflectivity is high and the dependency of the reflectivity on the incident angle is small. However, as is apparent from the fact that the Au layer appears to be colored yellow under white light, the Au layer has a large absorption with respect to light in a specific wavelength band, and the light emitting device has a peak wavelength set in the wavelength range. There is a problem in that the reflectance decreases due to absorption. On the other hand, Non-Patent Document 1 discloses a light-emitting element in which the reflection intensity is increased by forming a reflection layer with Al whose wavelength dependency of reflectance is smaller than that of Au. In the element structure of Non-Patent Document 1, an Al reflective layer is disposed between a light emitting layer portion and an element substrate made of a silicon substrate, and further, a silicon substrate and a light emitting layer are disposed between the Al reflective layer and the silicon substrate. In order to facilitate the bonding and bonding with the part, an Au layer is interposed. Specifically, an Au layer is formed so as to cover the Al reflective layer formed on the light emitting layer side, and an Au layer is also formed on the other silicon substrate side, and the Au layers are adhered to each other and bonded together. I am doing so.
[0005]
[Problems to be solved by the invention]
However, in the configuration of Non-Patent Document 1, the Al layer and the Au layer are formed in contact with each other. However, even when the bonding is performed at a relatively low temperature, the Al layer forming the reflective layer is alloyed with the Au layer by diffusion. This causes a problem that the reflectance decreases.
[0006]
An object of the present invention is to provide a bonding metal layer in a light emitting device having a structure in which a light emitting layer portion is covered with a reflective metal layer, and the reflective metal layer is bonded to an element substrate through another bonding metal layer. It is an object of the present invention to provide a light emitting element that can effectively prevent the diffusion of components from the metal to the reflective metal layer, and thus hardly causes defects such as a decrease in reflectance due to the diffusion, and a method for manufacturing the same.
[0007]
[Means for solving the problems and actions / effects]
In order to solve the above-described problems, the light-emitting element of the present invention includes:
The first main surface of the compound semiconductor layer having a light emitting layer portion and the light extraction surface, the second main surface side of the compound semiconductor layer, a reflective surface for reflecting light from the light emitting layer portion on the light extraction surface side are reflective metal layer is formed having a said with reflective metal layer is bonded to the element substrate through a bonding metal layer, between the bonding metal layer and the reflective metal layer, said binding metal layer A diffusion preventing layer on the side of the reflective metal layer that prevents the metal component of the metal from diffusing to the reflective metal layer side is interposed, and further, a conductive material is used between the element substrate and the coupling metal layer. In addition, a substrate-side diffusion blocking layer that blocks diffusion of components derived from the element substrate into the bonding metal layer is interposed .
[0008]
In the light emitting device of the present invention, component diffusion occurs from the coupling metal layer to the reflection metal layer by interposing the reflection metal layer side diffusion blocking layer between the reflection metal layer and the coupling metal layer, and thus Therefore, it is possible to effectively suppress a decrease in the reflectance of the reflective metal layer due to the diffusion of the components, thereby realizing a light-emitting element with high luminance.
[0009]
In addition, the method for manufacturing the light emitting device of the present invention includes:
The first main surface of the compound semiconductor layer having the light emitting layer portion is used as a light extraction surface, and a reflection surface that reflects light from the light emitting layer portion to the light extraction surface side is provided on the second main surface side of the compound semiconductor layer. In the method of manufacturing a light emitting device, the reflective metal layer is formed, and the reflective metal layer is bonded to the element substrate through the bonding metal layer.
Reflective metal that prevents the metal component of the reflective metal layer and the bonding metal layer from diffusing to the reflective metal layer side between the bonded main surface of the compound semiconductor layer and the bonded main surface of the element substrate a layer-side diffusion blocking layers, wherein a bonding metal layer, and the substrate-side diffusion barrier layer for preventing diffusion to the bonding metal layer of components derived from the element substrate, in this order from the side of the compound semiconductor layer It is characterized by being laminated and bonded so as to intervene in a stacked form.
[0010]
According to the method for manufacturing a light emitting device of the present invention, since the reflection metal layer side diffusion blocking layer is interposed between the reflection metal layer and the bonding metal layer, the bonding is performed. Component diffusion occurs from the metal layer to the reflective metal layer, and in turn, the reflectance reduction of the reflective metal layer due to the component diffusion can be effectively suppressed, and thus a high-luminance light-emitting element can be easily realized. In particular, the effect of the present invention becomes more remarkable when heat treatment that facilitates diffusion is performed during bonding.
[0011]
The bonding metal layer is interposed between the reflective metal layer and the element substrate to assist the bonding when the reflection metal layer alone is relatively difficult to bond to the element substrate. In many cases, the reflectance itself with respect to light from the light emitting layer is inferior to that of the reflective metal layer. Thus, when a metal having a lower reflectance than the reflective metal layer is used for light from the light emitting layer portion, when the metal component from the bonding metal layer diffuses into the reflective metal layer, the reflectance decreases. It can be said that defects are likely to occur. Therefore, as in the present invention, if a reflection metal layer side diffusion blocking layer is interposed between the coupling metal layer and the reflection metal layer, the effect of suppressing the reduction in reflectance due to the diffusion is particularly remarkable.
[0012]
Specifically, this is a case where the bonding metal layer is composed of an Au-based metal containing Au as a main component (in this specification, “main component” is a component having the highest mass content). Say). Since Au is chemically stable and a thick and strong passive film such as Al is hardly formed, it is suitable as a material for the bonding metal layer. In particular, the metal reflective layer, the reflective metal layer side diffusion blocking layer, and the first Au-based metal layer are formed in this order from the main surface side to the bonding side main surface of the compound semiconductor layer, while the element substrate is bonded. When the second Au-based metal layer is formed on the side main surface and the first Au-based metal layer and the second Au-based metal layer are adhered and bonded together, the affinity between the Au-based metal layers is strong. In addition, there is an advantage that sufficient bonding strength can be easily obtained even at a relatively low temperature.
[0013]
However, as described above, Au exhibits strong absorption with respect to light in a specific wavelength band, and the reflectance with respect to light in the wavelength band is never good. FIG. 4 shows the reflectance on various polished metal surfaces, and the plot point “Δ” is the reflectance of Au. Au has strong absorption in the visible light region with a wavelength of 670 nm or less (especially, absorption is larger at 650 nm or less: 600 nm or less), and when a large amount of diffusion from the Au-based coupling metal layer to the reflective metal layer occurs, the light emitting layer portion In the case where the peak emission wavelength of is present at 670 nm or less, the reflectance is significantly reduced. As a result, the emission intensity is likely to decrease, and the spectrum of the extracted light becomes different from the original emission spectrum due to absorption, and the emission color tone is likely to change. However, if the reflective metal layer side diffusion blocking layer is interposed as in the present invention, the above-described problems can be effectively suppressed.
[0014]
On the other hand, the reflective metal layer can be made of an Al-based metal containing Al as a main component. According to the wavelength dependence of the reflectance of the Al layer shown in FIG. 4 (plot point “♦”), there is no strong absorption like Au even in the visible light region with a wavelength of less than 550 nm, and much more than Au. It is inexpensive and can be suitably used in the present invention as a general-purpose reflective layer. In particular, the reflectance is better than Au for the light emission wavelength range from 400 nm to 550 nm in the range from blue to green, which contributes to the improvement of light extraction efficiency.
[0015]
However, when the Au-based coupling metal layer is formed in direct contact with the Al-based reflective metal layer, the present inventor has examined that the Au-based coupling metal layer is formed even in a relatively low temperature range up to about 115 ° C. It has been found that the diffusion of Au into the Al-based reflective metal layer has progressed significantly, leading to a significant decrease in reflectivity, and in particular, a significant decrease in reflectivity in the blue to green emission wavelength range of wavelengths from 400 nm to 550 nm. did. However, if the reflective metal layer side diffusion blocking layer is interposed as in the present invention, the above problem can be effectively suppressed.
[0016]
Moreover, the part which forms the reflective surface of a reflective metal layer can also be made into Ag type reflective layer which has Ag as a main component. The Ag-based reflective metal layer exhibits better reflectivity than the Au-based metal over almost the entire wavelength range (350 nm to 700 nm) of visible light, and the wavelength dependency of the reflectivity is small. As a result, high light extraction efficiency can be realized regardless of the emission wavelength of the element. Further, when compared with the Au-based reflective metal layer, the reflectance is less likely to be reduced due to the formation of an oxide film or the like for blue to green light emission. The plot point “■” in FIG. 4 indicates the wavelength dependence of the reflectance of Ag. The plotted point “x” is an AgPdCu alloy. The reflectance of Ag is particularly good at a reflectance of 350 nm to 700 nm (and an infrared region longer than that), particularly 380 nm to 700 nm. Naturally, a good reflectance can be obtained even in a blue to green emission wavelength region having a peak wavelength of 400 nm or more and 550 nm or less. The Al-based reflective metal layer described above is less expensive than the Ag-based reflective metal layer, but the reflectance in the visible light region is somewhat lower (for example, 85) because of the decrease in reflectance due to the formation of an oxide film. -92%). On the other hand, since an Ag-based reflective metal film is less likely to form an oxide film than an Al-based reflective metal layer, a higher reflectance than Al can be secured in the visible light region. If the reflection metal layer side diffusion blocking layer is interposed as in the present invention, Au component diffusion from the Au-based coupling metal layer to the Ag-based reflection metal layer can be effectively suppressed.
[0017]
In the case of using the Au-based bonding metal layer, the reflection metal layer side diffusion blocking layer can be specifically a metal layer mainly composed of any one of Ti, Ni and Cr. A metal mainly composed of Ti, Ni, or Cr has a small diffusion coefficient with respect to Au and is excellent in the effect of suppressing the diffusion of the Au component into the reflective metal layer, and thus can be suitably used in the present invention. The thickness of the reflective metal layer side diffusion blocking layer is desirably 1 nm or more and 10 μm or less. If the thickness is less than 1 nm, the diffusion preventing effect is not sufficient, and if it exceeds 10 μm, the effect is saturated, leading to a wasteful increase in manufacturing cost. In addition, the reflective metal layer side diffusion blocking layer can specifically adopt pure Ti, pure Ni or pure Cr for industrial use, but contains subcomponents as long as the effect of preventing diffusion against Au is not impaired. It is possible to make it. For example, addition of an appropriate amount of Pd has an effect of improving the corrosion resistance of a metal mainly composed of Ti, Ni, or Cr. An alloy of Ti, Ni, and Cr can also be used.
[0018]
Next, the light emitting device of the present invention is composed of a conductive material between the element substrate and the bonding metal layer, and prevents the components derived from the element substrate from diffusing into the bonding metal layer. A side diffusion blocking layer can be interposed. According to this structure, component diffusion from the element substrate to the bonding metal layer is blocked by the substrate-side diffusion blocking layer, and as a result, alteration of the bonding metal layer due to the diffusion can be effectively suppressed. As a result, problems such as a decrease in adhesion strength between the bonding metal layer and the element substrate and a decrease in reflectivity due to component diffusion of the element substrate to the reflective metal layer are effectively suppressed. The product yield is not easily reduced.
[0019]
The above configuration is particularly effective when applied when the bonding metal layer is an Au-based metal layer containing Au as a main component and the element substrate is a Si substrate. That is, the Si substrate can easily ensure sufficient conductivity as a light emitting element by doping, and is inexpensive. However, Si and Au are likely to cause a eutectic reaction at a relatively low temperature (the eutectic temperature of the Au—Si binary system is 363 ° C., but the eutectic temperature is further lowered when other alloy components are present. In the case where bonding is performed by heat treatment, the diffusion of Si on the substrate side to the Au-based metal layer side is also likely to proceed. As a result, the Au-based layer in the metal layer tends to cause a decrease in reflectance due to the Si diffusion. However, if a substrate side diffusion blocking layer is provided between the Au-based metal layer and the Si substrate, Si diffusion into the Au-based metal layer can be effectively suppressed.
[0020]
When the Au-based metal layer and the Si substrate are used, specifically, the substrate-side diffusion blocking layer can be a metal layer mainly containing any one of Ti, Ni, and Cr. A metal containing Ti, Ni, or Cr as a main component is particularly excellent in the effect of suppressing the diffusion of Si into the Au-based metal layer, and thus can be suitably employed in the present invention. The thickness of the substrate side diffusion blocking layer is preferably 1 nm or more and 10 μm or less. If the thickness is less than 1 nm, the diffusion preventing effect is not sufficient, and if it exceeds 10 μm, the effect is saturated, leading to a wasteful increase in manufacturing cost. In addition, although the substrate side diffusion blocking layer can specifically employ industrial pure Ti, pure Ni or pure Cr, in a range where the effect of preventing diffusion of Si to the Au-based metal layer is not impaired, Subcomponents such as Pd can be contained, and an alloy of Ti, Ni, and Cr can also be used.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a conceptual diagram showing a light emitting device 100 according to an embodiment of the present invention. The light emitting element 100 has a structure in which a light emitting layer portion 24 is bonded to a first main surface of a Si substrate 7 made of an n-type Si (silicon) single crystal, which is a conductive substrate forming an element substrate, with a metal layer 10 interposed therebetween. Have.
[0022]
The light emitting layer portion 24 includes the active layer 5 made of a non-doped (Al x Ga 1-x ) y In 1-y P (where 0 ≦ x ≦ 0.55, 0.45 ≦ y ≦ 0.55) mixed crystal. , the first-conductivity-type cladding layer, in this embodiment the p-type cladding layer 6 made of p-type (Al z Ga 1-z) y in 1-y P ( except x <z ≦ 1), wherein the first conductivity type the second-conductivity-type cladding layer different from the clad layer, in this embodiment interposed by an n-type (Al z Ga 1-z) y in 1-y P ( except x <z ≦ 1) n-type cladding layer 4 made of According to the composition of the active layer 5, the emission wavelength can be adjusted in the green to red region (the emission wavelength (peak emission wavelength) is 550 nm or more and 670 nm or less). In the light emitting device 100, the p-type AlGaInP cladding layer 6 is disposed on the metal electrode 9 side, and the n-type AlGaInP cladding layer 4 is disposed on the coupling metal layer 10k side. Therefore, the conduction polarity is positive on the metal electrode 9 side. The term “non-doped” as used herein means “does not actively add dopant”, and contains a dopant component inevitably mixed in a normal manufacturing process (for example, 10 13 to 10 16 / cm 3). It is not excluded that the upper limit is about 3 ).
[0023]
A current diffusion layer 20 made of AlGaAs is formed on the main surface of the light emitting layer 24 opposite to the surface facing the substrate 7, and the light emitting layer 24 emits light at substantially the center of the main surface. A metal electrode (for example, Au electrode) 9 for applying a driving voltage is formed so as to cover a part of the main surface. A region around the metal electrode 9 on the main surface of the current diffusion layer 20 forms a light extraction region from the light emitting layer portion 24. Further, a metal electrode (back electrode: for example, an Au electrode) 15 is formed on the back surface of the Si single crystal substrate 7 so as to cover the entire surface. When the metal electrode 15 is an Au electrode, an AuSb contact metal layer 16 is interposed between the metal electrode 15 and the Si single crystal substrate 7 as a substrate-side contact metal layer. Instead of the AuSb contact metal layer 16, an AuSn contact metal layer may be used as the substrate-side contact metal layer.
[0024]
The Si single crystal substrate 7 is manufactured by slicing and polishing a Si single crystal ingot, and the thickness thereof is, for example, 100 μm or more and 500 μm or less. Then, the light emitting layer portion 24 is bonded with the metal layer 10 interposed therebetween. The metal layer 10 includes a reflective metal layer 10c on the light emitting layer portion 24 side, a coupling metal layer 10a on the light emitting layer portion 24 side, a coupling metal layer 10b on the Si substrate 7 side, and a reflective metal layer 10c. And a reflection metal layer side diffusion blocking layer 10f interposed between the coupling metal layers 10a and 10b (= 10k). In this embodiment, the reflective metal layer 10c is an Al-based metal layer (Al layer), and the coupling metal layers 10a and 10b (= 10k) are Au-based metal layers (for example, Au layers). Further, the reflection metal layer side diffusion blocking layer 10f is a Ti-based metal layer (for example, a Ti layer), and has a thickness of 1 nm to 10 μm (200 nm in this embodiment). The reflective metal layer side diffusion blocking layer 10f may be a Ni-based metal layer (for example, a Ni layer) or a Cr-based metal layer (for example, a Cr layer) instead of the Ti-based metal layer.
[0025]
On the other hand, an AuGeNi contact metal layer 32 (for example, Ge: 15 mass%, Ni: 10 mass%) is formed as the light emitting layer section side contact metal layer between the light emitting layer section 24 and the reflective metal layer 10 c. This contributes to reducing the series resistance of the element. The AuGeNi contact metal layer 32 is dispersedly formed on the main surface of the light emitting layer portion 24 , and the formation area ratio thereof is 1% or more and 25% or less. An AuSb contact metal layer 31 (for example, Sb: 5 mass) as a substrate-side contact metal layer is in contact with the main surface of the Si single crystal substrate 7 between the Si single crystal substrate 7 and the bonding metal layer 10k. %) Is formed. Note that an AuSn contact metal layer may be used in place of the AuSb contact metal layer 31.
[0026]
The entire surface of the AuSb contact metal layer 31 is covered with a substrate side diffusion blocking layer 10d made of a Ti-based metal layer (for example, a Ti layer). The thickness of the substrate-side diffusion blocking layer 10d is 1 nm or more and 10 μm or less (200 nm in this embodiment). The substrate-side diffusion blocking layer 10d may be a Ni-based metal layer (for example, Ni layer) or a Cr-based metal layer (for example, Cr layer) instead of the Ti-based metal layer. A coupling metal layer 10k (Au-based metal layer) is arranged so as to cover the entire surface of the substrate-side diffusion blocking layer 10d so as to be in contact therewith.
[0027]
The light from the light emitting layer portion 24 is extracted in a form in which the light reflected directly from the light extraction surface is superimposed on the light reflected by the reflective metal layer 10c. The thickness of the reflective metal layer 10c is desirably 80 nm or more in order to ensure a sufficient reflection effect. Moreover, although there is no restriction | limiting in particular in the upper limit of thickness, since a reflective effect is saturated, it determines suitably (for example, about 1 micrometer) by balance with cost. The layer thickness of the coupling metal layer 10k is 200 nm or more and 10 μm or less.
[0028]
Hereinafter, a method for manufacturing the light emitting device 100 of FIG. 1 will be described.
First, as shown in Step 1 of FIG. 2, a p-type GaAs buffer layer 2 is made of, for example, 0.5 μm and AlAs on the main surface of a GaAs single crystal substrate 1 which is a semiconductor single crystal substrate forming a light emitting layer growth substrate. The peeling layer 3 is epitaxially grown by, for example, the well-known MOVPE (Metal-Organic Vapor Phase Epitaxy) method in this order, for example, 0.5 μm, and the current diffusion layer 20 made of p-type AlGaAs, for example, 5 μm. Thereafter, a 1 μm p-type AlGaInP cladding layer 6, a 0.6 μm AlGaInP active layer (non-doped) 5, and a 1 μm n-type AlGaInP cladding layer 4 are epitaxially grown in this order as the light emitting layer portion 24.
[0029]
Next, as shown in step 2, AuGeNi contact metal layers 32 are dispersedly formed on the main surface of the light emitting layer portion 24. After forming the AuGeNi contact metal layer 32, an alloying heat treatment is then performed in a temperature range of 350 ° C. or more and 500 ° C. or less. An alloying layer is formed between the light emitting layer portion 24 and the AuGeNi contact metal layer 32 by the alloying heat treatment, and the series resistance is greatly reduced. Thereafter, a reflective metal layer 10c made of an Al-based metal layer is formed so as to cover the AuGeNi contact metal layer 32 (thickness, for example, 300 nm), and then the reflective metal layer-side diffusion blocking layer 10f made of a Ti-based metal layer (thickness: For example, 200 nm). Then, a first Au-based metal layer 10a (thickness: 2 μm, for example) serving as a bonding metal layer is formed so as to further cover the reflective metal layer 10c and the reflective metal layer side diffusion blocking layer 10f. At this time, the Al-based reflective metal layer 10c is formed so as to cover a region excluding the outer peripheral edge portion of the main surface of the light emitting layer portion 24, and the first Au-based metal layer 10a is disposed outside the outer peripheral edge of the reflective metal layer 10c. The peripheral surface of the Al-based reflective metal layer 10c is covered with the first Au-based metal layer 10a.
[0030]
On the other hand, as shown in step 3, AuSb contact metal layers 31 and 16 (which are AuSn contact metal layers as described above) are formed on both main surfaces of a separately prepared Si single crystal substrate 7 (n-type). And alloying heat treatment is performed in a temperature range of 100 ° C. or more and 500 ° C. or less. Then, on the AuSb contact metal layer 31, a substrate side diffusion blocking layer 10d (thickness: for example 200 nm) made of a Ti-based metal layer and a second Au-based metal layer 10b (thickness: for example 2 μm) are arranged in this order. Form. Further, a back electrode layer 15 (for example, made of an Au-based metal layer) is formed on the AuSb contact metal layer 16. In the above steps, each metal layer can be formed by sputtering or vacuum deposition.
[0031]
Then, as shown in step 4, the second Au-based metal layer 10 b on the Si single crystal substrate 7 side is overlapped with the first Au-based metal layer 10 a formed on the light emitting layer portion 24 and pressed, so that 80 The substrate bonded body 50 is formed by performing a bonding heat treatment at a temperature of not less than 500 ° C. and not more than 500 ° C., for example, 200 ° C. The Si single crystal substrate 7 is bonded to the light emitting layer portion 24 via the first Au-based metal layer 10a and the second Au-based metal layer 10b. Further, the first Au-based metal layer 10a and the second Au-based metal layer 10b are integrated by the bonding heat treatment to form a bonding metal layer 10k. Since both the first Au-based metal layer 10a and the second Au-based metal layer 10b are mainly composed of Au that is difficult to oxidize, the bonding heat treatment can be performed without any problem even in the atmosphere, for example.
[0032]
Here, between the first Au-based metal layer 10a and the metal reflective layer 10c made of an Al-based metal, a metal reflective layer side diffusion blocking layer 10f made of a Ti-based metal layer is interposed. When the metal reflection layer 10c is an Al-based metal layer, if the metal reflection layer-side diffusion blocking layer 10f is omitted, the Au component from the first Au-based metal layer 10a to the metal reflection layer 10c even at a low temperature around 115 ° C. This leads to a problem that the reflectance of the metal reflective layer 10c is lowered (particularly, the emission wavelength region from blue to green having a wavelength of 400 nm to 550 nm). However, when the metal reflection layer side diffusion blocking layer 10f is provided as described above, diffusion of the Au component from the first Au-based metal layer 10a to the metal reflection layer 10c during the bonding heat treatment is effectively suppressed, and the metal reflection is suppressed. The reflectance of the layer 10c can be kept good. If the temperature is up to 360 ° C., even if the heat treatment temperature for bonding is increased, the diffusion of Au into the metal reflective layer 10c made of an Al-based metal does not become significant, and as a result, the bonding temperature is increased. Strength can be improved.
[0033]
Further, a substrate-side diffusion blocking layer 10d made of a Ti metal layer is interposed between the second Au metal layer 10b and the Si single crystal substrate 7 (AuSb contact metal layer 31). During the bonding heat treatment, diffusion of the Si component from the Si single crystal substrate 7 toward the second Au-based metal layer 10b is blocked by the substrate-side diffusion blocking layer 10d and integrated by bonding (first metal layer) (Au-based metal layer / second Au-based metal layer) 10a, 10b, and consequently the seepage of the Si component toward the reflective metal layer 10c is effectively suppressed. As a result, the problem that the reflective surface of the finally obtained reflective metal layer 10c is contaminated by the Si component is prevented, and a good reflectance can be realized. Further, due to the thermal history when the second Au-based metal layer 10b (bonding metal layer) is formed by vapor deposition or the like, Si penetrates through the AuSb contact metal layer 31 from the Si single crystal substrate 7, and the second The Si may spring up on the outermost surface of the Au-based metal layer 10b. When the heated Si is oxidized, the bonding of the second Au-based metal layer (bonding metal layer) 10b and the first Au-based metal layer (bonding metal layer) 10a may be significantly inhibited. However, if the substrate side diffusion blocking layer 10d is formed as described above, the Si upwelling and the oxidation are effectively suppressed, and the Si single crystal substrate 7 and the light emitting layer portion (compound) are formed by the bonding metal layer 10k. The bonding strength with the semiconductor layer 24 can be further increased.
[0034]
Next, the process proceeds to step 5, and the substrate bonded body 50 is immersed in an etching solution made of, for example, a 10% hydrofluoric acid aqueous solution, and the AlAs release layer 3 formed between the buffer layer 2 and the current diffusion layer 20 is selected. By etching, the GaAs single crystal substrate 1 (which is opaque to the light from the light emitting layer portion 24) is peeled from the stacked body 50a of the light emitting layer portion 24 and the Si single crystal substrate 7 bonded thereto. . It should be noted that an etch stop layer made of AlInP is formed in place of the AlAs release layer 3, and a GaAs single crystal is used by using a first etching solution (for example, ammonia / hydrogen peroxide mixed solution) having selective etching properties with respect to GaAs. Etch and remove the substrate 1 together with the GaAs buffer layer 2 and then etch stop using a second etchant that has selective etching properties with respect to AlInP (for example, hydrochloric acid: hydrofluoric acid may be added to remove the Al oxide layer) A step of etching away the layer can also be employed.
[0035]
The reflective metal layer 10c made of an Al-based metal layer is enclosed in the first Au-based metal layer 10a, and the outer peripheral surface of the Al-based reflective metal layer 10c is the outer peripheral edge of the first Au-based metal layer 10a having high corrosion resistance. since it is protected by 10e, in step 5, even when etching the light-emitting layer growing substrate (GaAs single crystal substrate 1), the effect is less likely Oyobi the Al-based reflective metal layer 10c. When the GaAs single crystal substrate 1 is used as a light emitting layer growth substrate and dissolved / removed using an ammonia / hydrogen peroxide mixed solution as an etching solution, Al is particularly easily corroded by the etching solution. Can be used to dissolve and remove the GaAs single crystal substrate 1 without problems.
[0036]
Then, as shown in step 6, an electrode for wire bonding (bonding pad: FIG. 1) is formed so as to cover a part of the main surface of the current diffusion layer 20 exposed by removing the GaAs single crystal substrate 1. Thereafter, the semiconductor chip is diced by a usual method, and this is fixed to a support and wire bonding of a lead wire is performed, followed by resin sealing to obtain a final light emitting element.
[0037]
In the above embodiment, the reflective metal layer 10c made of Al-based metal is used. However, the reflective metal layer 10g made of Ag-based metal can be used as in the light emitting element 200 of FIG. In this case, an Ag-based contact metal layer 132 made of AgGeNi (for example, Ge: 15 mass%, Ni: 10 mass%) is dispersedly formed as the light emitting layer portion side contact metal layer. Other parts are the same as those of the light emitting device 100 of FIG.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a first embodiment of a light emitting device of the present invention in a laminated structure.
2 is an explanatory diagram showing an example of a manufacturing process of the light-emitting element shown in FIG.
FIG. 3 is a schematic view showing a second embodiment of the light-emitting element of the present invention in a laminated structure.
FIG. 4 is a diagram showing the reflectance of various metals.
[Explanation of symbols]
1 GaAs single crystal substrate (light emitting layer growth substrate)
4 n-type cladding layer (second conductivity type cladding layer)
5 active layer 6 p-type cladding layer (first conductivity type cladding layer)
7 Si single crystal substrate (element substrate)
9 Metal electrode 10a First Au-based metal layer (binding metal layer)
10b Second Au-based metal layer (bonded metal layer)
10c Reflective metal layer (Al-based metal layer)
10g Reflective metal layer (Ag metal layer)
10d Substrate side diffusion blocking layer (Ti metal layer)
10f Reflective metal layer side diffusion blocking layer (Ti-based metal layer)
24 Light emitting layer part 100,200 Light emitting element

Claims (12)

発光層部を有した化合物半導体層の第一主表面を光取出面とし、該化合物半導体層の第二主表面側に、前記発光層部からの光を前記光取出面側に反射させる反射面を有した反射金属層が形成され、該反射金属層が結合用金属層を介して素子基板に結合されるとともに、前記反射金属層と前記結合用金属層との間に、該結合用金属層の金属成分が前記反射金属層側に拡散することを阻止する反射金属層側拡散阻止層が介挿され、
さらに、前記素子基板と前記結合用金属層との間に、導電性材料にて構成され、かつ、前記素子基板に由来した成分の前記結合用金属層への拡散を阻止する基板側拡散阻止層が介挿されてなることを特徴とする発光素子。
The first main surface of the compound semiconductor layer having the light emitting layer portion is used as a light extraction surface, and the second main surface side of the compound semiconductor layer is a reflecting surface that reflects light from the light emitting layer portion to the light extraction surface side. A reflective metal layer is formed, and the reflective metal layer is coupled to the element substrate via the coupling metal layer, and the coupling metal layer is interposed between the reflective metal layer and the coupling metal layer. A reflection metal layer side diffusion blocking layer that prevents diffusion of the metal component of the metal component to the reflection metal layer side is inserted,
Further, a substrate-side diffusion blocking layer that is formed of a conductive material between the element substrate and the bonding metal layer and blocks diffusion of components derived from the element substrate into the bonding metal layer. A light-emitting element characterized by being inserted .
前記結合用金属層は、前記発光層部からの光に対して前記反射金属層よりも反射率の低い金属が使用されることを特徴とする請求項1記載の発光素子。  The light emitting device according to claim 1, wherein the coupling metal layer is made of a metal having a lower reflectance than the reflective metal layer with respect to light from the light emitting layer portion. 前記結合用金属層がAuを主成分とするAu系金属層とされることを特徴とする請求項1又は請求項2記載の発光素子。  The light-emitting element according to claim 1, wherein the bonding metal layer is an Au-based metal layer containing Au as a main component. 前記反射金属層がAlを主成分とするAl系金属とされることを特徴とする請求項3記載の発光素子。  4. The light emitting device according to claim 3, wherein the reflective metal layer is an Al-based metal containing Al as a main component. 前記反射金属層がAgを主成分とするAg系金属とされることを特徴とする請求項3記載の発光素子。  4. The light emitting device according to claim 3, wherein the reflective metal layer is made of an Ag-based metal containing Ag as a main component. 前記反射金属層側拡散阻止層が、Ti、Ni及びCrのいずれか一つを主成分とする金属層であることを特徴とする請求項3ないし請求項5のいずれか1項に記載の発光素子。  6. The light emitting device according to claim 3, wherein the reflection metal layer side diffusion blocking layer is a metal layer mainly composed of any one of Ti, Ni, and Cr. element. 前記反射金属層側拡散阻止層の厚さが1nm以上10μm以下であることを特徴とする請求項6記載の発光素子。  The light emitting device according to claim 6, wherein the reflective metal layer side diffusion blocking layer has a thickness of 1 nm to 10 μm. 前記結合用金属層がAuを主成分とするAu系金属層とされてなり、前記素子基板がSi基板であることを特徴とする請求項1に記載の発光素子。2. The light emitting device according to claim 1, wherein the bonding metal layer is an Au-based metal layer containing Au as a main component, and the device substrate is a Si substrate. 前記基板側拡散阻止層がTi、Ni及びCrのいずれか一つを主成分とする金属層であることを特徴とする請求項8記載の発光素子。9. The light emitting device according to claim 8, wherein the substrate side diffusion blocking layer is a metal layer mainly containing any one of Ti, Ni and Cr. 請求項1ないし請求項9のいずれか1項に記載の発光素子の製造方法であって、A method for manufacturing a light emitting device according to any one of claims 1 to 9,
発光層部を有した化合物半導体層の第一主表面を光取出面とし、該化合物半導体層の第二主表面側に、前記発光層部からの光を前記光取出面側に反射させる反射面を有した反射金属層が形成され、該反射金属層が結合用金属層を介して素子基板に結合された発光素子の製造方法において、The first main surface of the compound semiconductor layer having the light emitting layer portion is used as a light extraction surface, and the second main surface side of the compound semiconductor layer is a reflecting surface that reflects light from the light emitting layer portion to the light extraction surface side. In a method for manufacturing a light emitting device, a reflective metal layer having a reflective metal layer is formed, and the reflective metal layer is bonded to an element substrate through a bonding metal layer.
前記化合物半導体層の貼り合わせ側主表面と、前記素子基板の貼り合わせ側主表面との間に、前記反射金属層と、前記結合用金属層の金属成分が前記反射金属層側に拡散することを阻止する反射金属層側拡散阻止層と、前記結合用金属層と、前記素子基板に由来した成分の前記結合用金属層への拡散を阻止する基板側拡散阻止層とが、前記化合物半導体層の側からこの順序で積層された形で介在するように重ね合わせて貼り合わせすることを特徴とする発光素子の製造方法。The metal component of the reflective metal layer and the bonding metal layer diffuses to the reflective metal layer side between the bonded main surface of the compound semiconductor layer and the bonded main surface of the element substrate. A reflection metal layer side diffusion prevention layer that inhibits diffusion, the coupling metal layer, and a substrate side diffusion prevention layer that inhibits diffusion of components derived from the element substrate into the coupling metal layer, the compound semiconductor layer. A method for manufacturing a light-emitting element, wherein the light-emitting elements are stacked and bonded so as to be interposed in the form of being laminated in this order from the side.
前記貼り合わせの際に熱処理を行なうことを特徴とする請求項10記載の発光素子の製造方法。The method for manufacturing a light-emitting element according to claim 10, wherein heat treatment is performed during the bonding. 前記化合物半導体層の前記貼り合わせ側主表面に、該主表面側から前記金属反射層と前記反射金属層側拡散阻止層と第一Au系金属層とをこの順で形成する一方、前記素子基板の貼り合わせ側主表面に第二Au系金属層を形成し、それら第一Au系金属層と第二Au系金属層とを密着させて貼り合わせることを特徴とする請求項10又は請求項11に記載の発光素子の製造方法。On the main surface of the compound semiconductor layer, the metal reflective layer, the reflective metal layer side diffusion blocking layer, and the first Au-based metal layer are formed in this order from the main surface side. 12. A second Au-based metal layer is formed on the bonding-side main surface of the first and second Au-based metal layers, and the first Au-based metal layer and the second Au-based metal layer are adhered and bonded together. The manufacturing method of the light emitting element as described in any one of.
JP2003200443A 2003-07-23 2003-07-23 Light emitting device and method for manufacturing light emitting device Expired - Fee Related JP3951300B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003200443A JP3951300B2 (en) 2003-07-23 2003-07-23 Light emitting device and method for manufacturing light emitting device
TW093117110A TW200511610A (en) 2003-07-23 2004-06-15 Light-emitting component, and production method for light-emitting component
PCT/JP2004/009722 WO2005008793A1 (en) 2003-07-23 2004-07-08 Light emitting element and production method for light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003200443A JP3951300B2 (en) 2003-07-23 2003-07-23 Light emitting device and method for manufacturing light emitting device

Publications (3)

Publication Number Publication Date
JP2005044849A JP2005044849A (en) 2005-02-17
JP2005044849A5 JP2005044849A5 (en) 2006-08-03
JP3951300B2 true JP3951300B2 (en) 2007-08-01

Family

ID=34074474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003200443A Expired - Fee Related JP3951300B2 (en) 2003-07-23 2003-07-23 Light emitting device and method for manufacturing light emitting device

Country Status (3)

Country Link
JP (1) JP3951300B2 (en)
TW (1) TW200511610A (en)
WO (1) WO2005008793A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060131327A (en) * 2005-06-16 2006-12-20 엘지전자 주식회사 Method of manufacturing light emitting diode
JP2007103689A (en) * 2005-10-05 2007-04-19 Matsushita Electric Ind Co Ltd Semiconductor light emitting device
US8283683B2 (en) 2006-11-07 2012-10-09 Opto Tech Corporation Chip-bonding light emitting diode chip
TWI324403B (en) * 2006-11-07 2010-05-01 Opto Tech Corp Light emitting diode and method manufacturing the same
TWI370555B (en) * 2006-12-29 2012-08-11 Epistar Corp Light-emitting diode and method for manufacturing the same
JP5416363B2 (en) * 2008-05-01 2014-02-12 日立金属株式会社 Semiconductor light emitting device and manufacturing method thereof
TWI395349B (en) * 2009-10-20 2013-05-01 Just Innovation Corp Light emitting diode chip and fabricating method thereof
TWI405358B (en) * 2010-03-16 2013-08-11 Just Innovation Corp Light emitting diode chip and fabricating method thereof
KR101710359B1 (en) * 2010-08-20 2017-02-27 엘지이노텍 주식회사 Light emitting device
JP6376430B2 (en) * 2013-09-04 2018-08-22 大日本印刷株式会社 Display device with touch panel sensor and touch position detection function

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49107475A (en) * 1973-02-15 1974-10-12
JPH084095B2 (en) * 1985-03-26 1996-01-17 日本電気株式会社 Method for manufacturing semiconductor device
JP2000294837A (en) * 1999-04-05 2000-10-20 Stanley Electric Co Ltd Gallium nitride compound semiconductor light emitting element
JP4050444B2 (en) * 2000-05-30 2008-02-20 信越半導体株式会社 Light emitting device and manufacturing method thereof
JP4024994B2 (en) * 2000-06-30 2007-12-19 株式会社東芝 Semiconductor light emitting device

Also Published As

Publication number Publication date
TWI342074B (en) 2011-05-11
WO2005008793A1 (en) 2005-01-27
TW200511610A (en) 2005-03-16
JP2005044849A (en) 2005-02-17

Similar Documents

Publication Publication Date Title
US7041529B2 (en) Light-emitting device and method of fabricating the same
US20040104395A1 (en) Light-emitting device, method of fabricating the same, and OHMIC electrode structure for semiconductor device
JP4004378B2 (en) Semiconductor light emitting device
TWI330411B (en)
JP4159865B2 (en) Nitride compound semiconductor light emitting device manufacturing method
US20040026703A1 (en) Light emitting element and method for manufacturing the same
JP2004207508A (en) Light emitting element and its manufacturing method thereof
JP3951300B2 (en) Light emitting device and method for manufacturing light emitting device
JP4110524B2 (en) Light emitting device and method for manufacturing light emitting device
JP3997523B2 (en) Light emitting element
JP4121551B2 (en) Light emitting device manufacturing method and light emitting device
JP2005197296A (en) Light-emitting element and its manufacturing process
JP4062111B2 (en) Method for manufacturing light emitting device
JP4697650B2 (en) Light emitting element
JP3950801B2 (en) Light emitting device and method for manufacturing light emitting device
JP2005079298A (en) Light emitting element and method of manufacturing the same
JP5196288B2 (en) Light emitting device manufacturing method and light emitting device
WO2004097948A1 (en) Light-emitting device and light-emitting device manufacturing method
JP2010212401A (en) Optical semiconductor apparatus and method of manufacturing the same
JP4114566B2 (en) Semiconductor bonded assembly and method for manufacturing the same, light emitting device and method for manufacturing the same
JP4120796B2 (en) Light emitting device and method for manufacturing light emitting device
JP2004235505A (en) Ohmic electrode structure for light emitting element and semiconductor element
JP2005123530A (en) Method for manufacturing light emitting element
JP2005109220A (en) Light-emitting element
JP2005347714A (en) Light emitting device and its manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070415

R150 Certificate of patent or registration of utility model

Ref document number: 3951300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees