JP4110524B2 - Light emitting device and method for manufacturing light emitting device - Google Patents

Light emitting device and method for manufacturing light emitting device Download PDF

Info

Publication number
JP4110524B2
JP4110524B2 JP2003077403A JP2003077403A JP4110524B2 JP 4110524 B2 JP4110524 B2 JP 4110524B2 JP 2003077403 A JP2003077403 A JP 2003077403A JP 2003077403 A JP2003077403 A JP 2003077403A JP 4110524 B2 JP4110524 B2 JP 4110524B2
Authority
JP
Japan
Prior art keywords
layer
light emitting
bonding
light
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003077403A
Other languages
Japanese (ja)
Other versions
JP2004288788A (en
Inventor
雅人 山田
和徳 萩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2003077403A priority Critical patent/JP4110524B2/en
Publication of JP2004288788A publication Critical patent/JP2004288788A/en
Application granted granted Critical
Publication of JP4110524B2 publication Critical patent/JP4110524B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Description

【0001】
【発明が属する技術分野】
この発明は発光素子及びその製造方法に関する。
【0002】
【従来の技術】
【特許文献1】
特開平7−66455号公報
【特許文献2】
特開2001−339100号公報
【0003】
発光ダイオードや半導体レーザー等の発光素子に使用される材料及び素子構造は、長年にわたる進歩の結果、素子内部における光電変換効率が理論上の限界に次第に近づきつつある。従って、一層高輝度の素子を得ようとした場合、素子からの光取出し効率が極めて重要となる。例えば、AlGaInP混晶により発光層部が形成された発光素子は、薄いAlGaInP(あるいはGaInP)活性層を、それよりもバンドギャップの大きいn型AlGaInPクラッド層とp型AlGaInPクラッド層とによりサンドイッチ状に挟んだダブルへテロ構造を採用することにより、高輝度の素子を実現できる。このようなAlGaInPダブルへテロ構造は、AlGaInP混晶がGaAsと格子整合することを利用して、GaAs単結晶基板上にAlGaInP混晶からなる各層をエピタキシャル成長させることにより形成できる。そして、これを発光素子として利用する際には、通常、GaAs単結晶基板をそのまま素子基板として利用することも多い。しかしながら、発光層部を構成するAlGaInP混晶はGaAsよりもバンドギャップが大きいため、発光した光がGaAs基板に吸収されて十分な光取出し効率が得られにくい難点がある。この問題を解決するために、半導体多層膜からなる反射層を基板と発光層部との間に挿入する方法(例えば特許文献1)も提案されているが、積層された半導体層の屈折率の違いを利用するため、限られた角度で入射した光しか反射されず、光取出し効率の大幅な向上は原理的に期待できない。
【0004】
そこで、特許文献2をはじめとする種々の公報には、成長用のGaAs基板を剥離する一方、補強のための導電性の素子基板(半導体又は金属にて構成される)を、反射用のAu層を介して剥離面に貼り合わせる技術が開示されている。このAu層は反射率が高く、また、反射率の入射角依存性が小さい利点がある。
【0005】
【発明が解決しようとする課題】
しかしながら、上記の方法では、貼り合わせの際に反射層をなすAu層において、剥離等や反射率の低下等の問題が生じやすかった。特に、素子基板が半導体にて構成される場合、貼り合わせ熱処理の際に、例えばSi等の素子基板成分とAu層成分との間で共晶等の冶金的な反応が生じやすく、上記の問題は一層顕著となる。
【0006】
本発明の課題は、金属層を介して発光層部と素子基板とを貼り合わせた構造を有する発光素子において、貼り合わせ熱処理時における素子基板と金属層との冶金的な反応を効果的に防止でき、ひいては、該反応による貼り合わせ強度や反射率の低下などによる不良を生じにくい構造の発光素子と、その製造方法とを提供することにある。
【0007】
【課題を解決するための手段及び作用・発明の効果】
上記の課題を解決するために、本発明の発光素子は、
発光層部を有した化合物半導体層の第一主表面を光取出面とし、該化合物半導体層の第二主表面側に、前記発光層部からの光を前記光取出面側に反射させる反射面を有した主金属層を介して素子基板が結合された発光素子であって、
前記素子基板は全体が前記導電性材料にて構成されて、その素子基板の少なくとも前記主金属層側の主表面を含む部分が、カーボンよりなる無機導電相を主体とする導電性材料にて構成されると共に、前記発光層部はAlGaInP混晶によって形成されていることを特徴とする。
なお、本明細書において「主体」とは、最も質量含有率の高い成分のことを意味し、「相」とは、物理的境界により他と区別される物質系の均一な部分を意味する。また、本明細書において「主金属層」とは、化合物半導体層と素子基板との間に位置する金属層であって、反射面を形成するととともに、化合物半導体層と素子基板とを結合する役割を担う金属層のことをいう。従って、後述の接合金属層は主金属層には属さないものとする。
【0008】
上記本発明の発光素子によると、上記素子基板は、主金属層との接触面がカーボン(C)よりなる無機導電相を主体とする導電性材料にて構成されているため、カーボンが分子内に有する強固な共有結合により、主金属層との間で冶金的な反応が極めて起こり難い。したがって、反射面における反射率の低下を防止することが可能となる。
【0009】
また、発光素子では発光強度を得るため、発光層部にできるだけ大電流を流すことが望ましい。そのため、素子基板にはそれに耐え得る導電性が求められ、更には大電流により発生した熱を十分に放散できる熱伝導性(ヒートシンクとしての役割)も求められる。カーボン又は炭化ケイ素は導電性及び熱伝導性に優れるため、素子基板の全体を上記導電性材料にて構成することで、そのような素子基板を実現できる。一般に、カーボン及び炭化ケイ素は、金属に近い導電性及び熱伝導性を有する。なお、炭化ケイ素の導電性はカーボンよりも若干劣り、半導体に分類されている。
【0010】
上記導電性材料は、無機導電相と金属との複合材とすることができる。このような複合材は、無機導電相(カーボン又は炭化ケイ素)単独よりも優れた導電性及び熱伝導性を有する。また、強度及び加工性も優れたものとなり、素子基板として好適に用いることができる。
【0011】
また、上記複合材は、無機導電相よりなる基質中に金属が分散されている構造とすることができ、このような構造とすることで、導電性及び熱伝導性等の特性が均質な素子基板を得ることができる。具体的には、上記複合材は、無機導電相よりなる多孔質基質に金属が含浸されてなることを特徴とする。これは例えば、無機導電相(カーボン又は炭化ケイ素)よりなる多孔質基質に、溶融した金属を公知の溶湯鍛造法により含浸させることによって得ることが可能である。また、多孔質基質とすることで、スパッタリングあるいは真空蒸着等の手段で複合材の表面に金属層を形成する際に、アンカー効果により強固な金属層を得ることができる。
【0012】
上記複合材に含まれる金属については、具体的に、無機導電相がカーボンである場合は、Al、Cu及びMgから選択される1種以上の金属を主成分とすることができ、また無機導電相が炭化ケイ素である場合は、Al及びCuから選択される1種以上の金属を主成分とすることができる。以上により、導電性及び熱伝導性に優れ、さらに強度及び加工性にも優れた素子基板を有する発光素子を得ることができる。
【0013】
次に、本発明の発光素子においては、主金属層は、Auを主成分とするAu系結合層を有するものとすることができる。このような構成とすることで、化合物半導体層と素子基板との結合強度を高めることができる。詳しくは後述する。
【0014】
また、上記Au系結合層を有する発光素子においては、Au系結合層により反射面を形成することができる。Au系結合層は化学的に安定であり、酸化等による反射率劣化を生じにくいので、反射面の形成材質として好適である。本発明では、素子基板をカーボン又は炭化ケイ素よりなる無機導電相を主体とする導電性材料にて構成することにより、素子基板とAu系結合層との間の冶金的な反応を極めて効果的に抑制することが可能であるので、良好な反射率の反射面をAu系結合層により形成できる。
【0015】
Au系結合層により反射面を形成する場合、Au系結合層と化合物半導体層との間に、Auを主成分とする接合金属層を、Au系結合層の主表面上に分散する形で配置することができる。Au系結合層は、発光層部への通電経路の一部をなす。しかし、Au系結合層を化合物半導体よりなる発光層部に直接接合すると、接触抵抗が高くなり、直列抵抗が増加して発光効率が低下する場合がある。Au系結合層を、Au系接合金属層を介して発光層部に接合することにより接触抵抗の低減を図ることができる。ただし、Au系接合金属層は、コンタクト確保のために必要な合金成分を比較的多量に配合する必要があり、反射率が若干劣る。そこで、接合金属層をAu系結合層の主表面上に分散形成しておけば、接合金属層の非形成領域ではAu系結合層による高い反射率を確保できる。
【0016】
接合金属層としては、これと接する化合物半導体層をn型のIII−V族化合物半導体(例えば、前述の(AlGa1−xIn1−yP(ただし、0≦x≦1,0≦y≦1))にて構成する場合、AuGeNi接合金属層を採用することにより接触抵抗の低減効果が特に高くなる。この場合、該化合物半導体層の貼り合わせ側主表面にAuGeNi接合金属層を形成し、該AuGeNi接合金属層を覆うようにAu系結合層(前記第一Au系層)を形成することができる。この場合、AuGeNi接合金属層と化合物半導体層との合金化熱処理は、例えば350℃以上500℃以下にて行うことにより、接触抵抗の低減効果が高められる。
【0017】
なお、光取出効果を十分に高めるために、Au系結合層に対する接合金属層の形成面積率(Au系結合層の全面積にて接合金属層の形成面積を除した値である)は、1%以上25%以下とすることが望ましい。接合金属層の形成面積率が1%未満では接触抵抗の低減効果が十分でなくなり、25%を超えると反射強度が低下することにつながる。また、Au系結合層は、接合金属層よりもAu含有率を高く設定しておくことで、接合金属層の非形成領域において、Au系結合層の反射率を一層高めることができる。
【0018】
一方、上記Au系結合層を有する発光素子においては、Au系結合層と化合物半導体層との間に介挿されたAgを主成分とするAg系層により反射面を形成してもよい。Ag系層は、Au系結合層と比べて安価であり、しかも可視光の略全波長域(350nm以上700nm以下)に渡って良好な反射率を示すので、反射率の波長依存性が小さい。その結果、素子の発光波長によらず高い光取出効率を実現できる。またAlのような金属と比較すれば、酸化皮膜等の形成による反射率低下も生じにくい。
【0019】
図6は、鏡面研磨した種々の金属表面における反射率を示すものであり、プロット点「■」はAgの反射率を、プロット点「△」はAuの反射率を、プロット点「◆」はAlの反射率(比較例)である。また、プロット点「×」はAgPdCu合金のものである。Agの反射率は、350nm以上700nm以下(また、それより長波長側の赤外域)、特に、380nm以上700nm以下にて、可視光の反射率が特に良好である。
【0020】
他方、Auは有色金属であり、図6に示す反射率からも明らかなように、波長570nm以下の可視光域に吸収があり(特に550nm以下)、発光層部のピーク発光波長が570nm以下に存在する場合に反射率が低下する。その結果、発光強度が低下しやすいほか、取出される光のスペクトルが、吸収により本来の発光スペクトルとは異なるものとなり、発光色調の変化も招きやすくなる。しかしながら、Agは、波長570nm以下の可視光域においても反射率は極めて良好である。すなわち、発光層部のピーク発光波長が570nm以下(特に550nm以下、さらには500nm以下)である場合、Ag系層の反射面はAu系金属よりも高い光取出し効率を実現できる。
【0021】
他方、図6に示すように、Alは反射率において吸収ピークを生じないが、生じないが、酸化皮膜形成による反射率低下があるため、可視光域での反射率は多少低い値(例えば85〜92%)に留まっている。しかし、Ag系金属は酸化皮膜が形成されにくいため、Alよりも高い反射率を可視光域に確保できる。具体的には、波長400nm以上(特に450nm以上)においてAlよりも良好な反射率を示していることがわかる。
【0022】
なお、図6のAlの反射率は、機械研磨と化学研磨とにより、表面酸化皮膜の形成を抑制した状態で鏡面化したAl表面について測定したものであり、実際には酸化皮膜が厚く形成されることにより、図6に示すデータよりもさらに反射率が低下する可能性がある。Agの場合、図6においては、350nm以上400nm以下の短波長域ではAlより反射率が劣っているが、酸化皮膜がAlよりはるかに形成されにくい。従って、実際に発光素子上に反射金属層として形成した場合は、Ag系層の採用により、この波長域においてもAlを上回る反射率を達成することが可能である。また、この波長域でも、Agの反射率はAuと比較すれば高い。
【0023】
以上を総合すれば、Ag系層は、350nm以上700nm以下(望ましくは400nm以上570nm以下、さらに望ましくは450nm以上550nm以下)の波長域にピーク発光波長を有する発光層部の場合、光取出効率の改善効果が特に顕著になるといえる。上記のようなピーク発光波長を有する発光層部は、例えば(AlGa1−xIn1−yP(ただし、0≦x≦1,0≦y≦1)又はInGaAl1−x−yN(0≦x≦1,0≦y≦1,x+y≦1)により、第一導電型クラッド層、活性層及び第二導電型クラッド層がこの順序にて積層されたダブルへテロ構造を有するものとして構成することができる。
【0024】
Ag系層を反射面形成に用いる場合は、Ag系層と化合物半導体層との間に、Agを主成分とするAg系接合金属層をAg系層の主表面上に分散する形で配置することができる。Ag系接合金属層は、これと接する化合物半導体層をn型のIII−V族化合物半導体(例えば、前述の(AlGa1−xIn1−yP(ただし、0≦x≦1,0≦y≦1))にて構成する場合、AgGeNi接合金属層を採用することにより接触抵抗の低減効果が特に高くなる。Ag系層に対するAg系接合金属層の形成面積率は、前述のAu系接合金属層と同様、1%以上25%以下とすることが望ましい。
【0025】
次に、上記Au系結合層を有する本発明の発光素子の製造方法は、
化合物半導体層の光取出面になるのと反対側の主表面を貼り合わせ側主表面として、該貼り合わせ側主表面上に、Auを主成分とした、Au系結合層となるべき第一Au系層を配置し、
素子基板の、発光層部側に位置することが予定された主表面を貼り合わせ側主表面として、該貼り合わせ側主表面上に、Auを主成分とした、Au系結合層となるべき第二Au系層を配置し、
それら第一Au系層と第二Au系層とを密着させて貼り合わせることを特徴とする。
【0026】
素子基板と化合物半導体層とを貼り合わせる際には、素子基板と化合物半導体層とを、Au系結合層を介して重ね合わせ、その状態で貼り合わせ熱処理することにより行うことが好ましい。
【0027】
これら本発明の製造方法によると、化合物半導体層側と素子基板側に第一及び第二の各Au系結合層を振り分けて形成し、これらを相互に密着させて貼り合わせる。Au系結合層同士は比較的低温でも容易に一体化するので、貼り合わせの熱処理温度が低くとも十分な貼り合わせ強度が得られる。
【0028】
なお、本発明において金属層の具体的な形成方法としては、真空蒸着やスパッタリングなどの気相成膜法のほか、無電解メッキあるいは電解メッキなどの電気化学的な成膜法を採用することもできる。
【0029】
【発明の実施の形態】
以下、本発明の実施の形態を添付の図面を参照して説明する。
図1は、本発明の一実施形態である発光素子100を示す概念図である。発光素子100は、素子基板をなす金属含浸カーボン基板7の第一主表面上に主金属層10を介して発光層部24が貼り合わされた構造を有してなる。
【0030】
発光層部24は、ノンドープ(AlGa1−xIn1−yP(ただし、0≦x≦0.55,0.45≦y≦0.55)混晶からなる活性層5を、第一導電型クラッド層、本実施形態ではp型(AlGa1−zIn1−yP(ただしx<z≦1)からなるp型クラッド層6と、前記第一導電型クラッド層とは異なる第二導電型クラッド層、本実施形態ではn型(AlGa1−zIn1−yP(ただしx<z≦1)からなるn型クラッド層4とにより挟んだ構造を有し、活性層5の組成に応じて、発光波長を、緑色から赤色領域(発光波長(ピーク発光波長)が550nm以上670nm以下)にて調整できる。発光素子100においては、金属電極9側にp型AlGaInPクラッド層6が配置されており、主金属層10側にn型AlGaInPクラッド層4が配置されている。従って、通電極性は金属電極9側が正である。なお、ここでいう「ノンドープ」とは、「ドーパントの積極添加を行わない」との意味であり、通常の製造工程上、不可避的に混入するドーパント成分の含有(例えば1013〜1016/cm程度を上限とする)をも排除するものではない。
【0031】
また、発光層部24の基板7に面しているのと反対側の主表面上には、AlGaAsよりなる電流拡散層20が形成され、その主表面の略中央に、発光層部24に発光駆動電圧を印加するための金属電極(例えばAu電極)9が、該主表面の一部を覆うように形成されている。電流拡散層20の主表面における、金属電極9の周囲の領域は、発光層部24からの光取出領域をなす。また、金属含浸カーボン基板7の裏面にはその全体を覆うように金属電極(裏面電極:例えばAu電極である)15が形成されている。
【0032】
金属含浸カーボン基板7は、多孔質カーボン(C)に、溶融した金属(例えばAl等)を公知の溶湯鍛造法によって含浸させて製造されたものであり、その厚みは例えば100μm以上500μm以下である。なお、金属含浸カーボン基板7の代わりに、多孔質炭化ケイ素(SiC)を用いて上記と同様の方法で製造した金属含浸炭化ケイ素基板を素子基板にすることも可能である。
【0033】
そして、金属含浸カーボン基板7は、発光層部24に対し、主金属層10を挟んで貼り合わされている。主金属層10は全体がAu系結合層として構成されている。なお、本実施形態においてAu系結合層は、純AuもしくはAu含有率が95質量%以上のAu合金よりなる。
【0034】
発光層部24と主金属層10との間には、接合金属層としてAuGeNi接合金属層32(例えばGe:15質量%、Ni:10質量%)が形成されており、素子の直列抵抗低減に貢献している。AuGeNi接合金属層32は、主金属層10の主表面上に分散形成され、その形成面積率は1%以上25%以下である。
【0035】
発光層部24からの光は、光取出面側に直接放射される光に、主金属層10による反射光が重畳される形で取出される。主金属層10の厚さは、反射効果を十分に確保するため、80nm以上とすることが望ましい。また、厚さの上限には制限は特にないが、反射効果が飽和するため、コストとの兼ね合いにより適当に定める(例えば1μm以下)。
【0036】
以下、図1の発光素子100の製造方法について説明する。
まず、図2の工程1に示すように、発光層成長用基板をなす半導体単結晶基板であるGaAs単結晶基板1の主表面に、p型GaAsバッファ層2を例えば0.5μm、AlAsからなる剥離層3を例えば0.5μm、さらにp型AlGaAsよりなる電流拡散層20を例えば5μm、この順序にてエピタキシャル成長させる。また、その後、発光層部24として、1μmのp型AlGaInPクラッド層6、0.6μmのAlGaInP活性層(ノンドープ)5、及び1μmのn型AlGaInPクラッド層4を、この順序にエピタキシャル成長させる。
【0037】
次に、工程2に示すように、発光層部24の主表面に、AuGeNi接合金属層32を分散形成する。AuGeNi接合金属層32を形成後、次に、350℃以上500℃以下の温度域で合金化熱処理を行う。その後、AuGeNi接合金属層32を覆うように第一Au系層10aを形成する。発光層部24とAuGeNi接合金属層32との間には、上記合金化熱処理により合金化層が形成され、直列抵抗が大幅に低減される。他方、工程3に示すように、別途用意した金属含浸カーボン基板7には、片方の主表面に第二Au系層10bを形成し、また他方の主表面には裏面電極層15(例えばAu系金属よりなるもの)を形成する。以上の工程で各金属層は、スパッタリングあるいは真空蒸着等を用いて行うことができる。
【0038】
そして、工程4に示すように、金属含浸カーボン基板7側の第二Au系層10bを、発光層部24上に形成された第一Au系層10aに重ね合わせて圧迫して、例えば200℃にて貼り合わせ熱処理することにより、基板貼り合わせ体50を作る。金属含浸カーボン基板7は、第一Au系層10a及び第二Au系層10bを介して発光層部24に貼り合わせられる。また、第一Au系層10aと第二Au系層10bとは上記貼り合わせ熱処理により一体化して主金属層10となる。第一Au系層10a及び第二Au系層10bが、いずれも酸化しにくいAuを主体に構成されているため、上記貼り合わせ熱処理は、例えば大気中でも問題なく行うことができる。
【0039】
本実施形態においては、強固な共有結合を有するカーボンを主体とする金属含浸カーボン基板7によって素子基板が構成されているため、接触する金属含浸カーボン基板7と主金属層10(Au系結合層)との間で冶金的な反応が生じることがない。したがって、最終的に得られる主金属層10(Au系結合層)の反射面が、良好な反射率を実現することができる。
【0040】
次に、工程5に進み、上記基板貼り合わせ体50を、例えば10%フッ酸水溶液からなるエッチング液に浸漬し、バッファ層2と発光層部24との間に形成したAlAs剥離層3を選択エッチングすることにより、GaAs単結晶基板1(発光層部24からの光に対して不透明である)を、発光層部24とこれに接合された金属含浸カーボン基板7との積層体50aから除去する。なお、AlAs剥離層3に代えてAlInPよりなるエッチストップ層を形成しておき、GaAsに対して選択エッチング性を有する第一エッチング液(例えばアンモニア/過酸化水素混合液)を用いてGaAs単結晶基板1をGaAsバッファ層2とともにエッチング除去し、次いでAlInPに対して選択エッチング性を有する第二エッチング液(例えば塩酸:Al酸化層除去用にフッ酸を添加してもよい)を用いてエッチストップ層をエッチング除去する工程を採用することもできる。
【0041】
そして、工程6に示すように、GaAs単結晶基板1の除去により露出した電流拡散層20の主表面の一部を覆うように、ワイヤボンディング用の電極9(ボンディングパッド:図1)を形成する。以下、通常の方法によりダイシングして半導体チップとし、これを支持体に固着してリード線のワイヤボンディング等を行った後、樹脂封止をすることにより最終的な発光素子が得られる。
【0042】
以上の実施形態では、第一Au系層10aが反射面を形成していたが、図3の発光素子200のごとく、第一Au系層10aと発光層部24との間にAg系層10cを介挿することもできる。この場合、接合金属層は、Au系接合金属層に代えてAgGeNi(例えばGe:15質量%、Ni:10質量%)よりなるAg系接合金属層132を分散形成する。その他の部分については、図1の発光素子100と同一である。図4は、その製造工程の一例を示すものである。図2の製造工程との相違点は、工程2においてAu系接合金属層32に代えてAg系接合金属層132を分散形成し、350℃以上660℃以下の温度域で合金化熱処理を行ない、その後、Ag系層10c及び第一Au系層10aをこの順序で形成する点にある。これ以外は、基本的に図2と同じである。
【0043】
なお、発光層成長用基板をエッチングにより除去する際に、そのエッチング液によりAg系層10cが腐食を受ける可能性がある場合は、次のようにするとよい。すなわち、工程3に示すように、Ag系層10cと接する第一Au系層10aを、該第一Au系層10aの外周縁よりもAg系層10cの外周縁が内側に位置するように、Ag系層10cよりも大面積にて形成する。これにより、Ag系層10cは第一Au系層10aに包まれる形となり、Ag系層10cの外周面が、耐食性の高い第一Au系層10aの外周縁部10eにより保護されるので、工程5において、発光層成長用基板(GaAs単結晶基板1)をエッチングしても、その影響がAg系層10cに及びにくくなる。GaAs単結晶基板1を発光層成長用基板として用い、これをアンモニア/過酸化水素混合液をエッチング液として用いて溶解・除去する場合、Agは該エッチング液に特に腐食されやすいが、上記の構造を採用すれば、問題なくGaAs単結晶基板1を溶解除去できる。
【0044】
また、発光層部24の各層は、AlGaInN混晶により形成することもできる。発光層部24を成長させるための発光層成長用基板は、GaAs単結晶基板に代えて、例えばサファイア基板(絶縁体)やSiC単結晶基板が使用される。また、発光層部24の各層は、上記実施形態では、基板側からn型クラッド層4、活性層5及びp型クラッド層6の順になっていたが、これを反転させ、基板側からp型クラッド、活性層及びn型クラッド層の順に形成してもよい。
【0045】
また、図5(工程3)に示すように、主金属層10を金属含浸カーボン基板(素子基板)7と発光層部(化合物半導体層)24とのいずれか一方の側(図5では発光層部24側)にのみ形成して貼り合わせを行ってもよい。この場合、貼り合せ熱処理温度(工程4)は、200℃以上700℃以下と、図2と比較して多少高く設定しなければならない。
【図面の簡単な説明】
【図1】本発明の適用対象となる発光素子の第一実施形態を積層構造にて示す模式図。
【図2】図1の発光素子の、製造工程の一例を示す説明図。
【図3】本発明の適用対象となる発光素子の第二実施形態を積層構造にて示す模式図。
【図4】図3の発光素子の、製造工程の一例を示す説明図。
【図5】図1の発光素子の、製造工程の別例を示す説明図。
【図6】種々の金属における反射率を示す図。
【符号の説明】
1 GaAs単結晶基板(発光層成長用基板)
4 n型クラッド層(第二導電型クラッド層)
5 活性層
6 p型クラッド層(第一導電型クラッド層)
7 金属含浸カーボン基板(素子基板)
9 金属電極
10 主金属層
10a 第一Au系層
10b 第二Au系層
10c Ag系層
24 発光層部
32 AuGeNi接合金属層
132 AgGeNi接合金属層
100,200 発光素子
[0001]
[Technical field to which the invention belongs]
The present invention relates to a light emitting device and a method for manufacturing the same.
[0002]
[Prior art]
[Patent Document 1]
Japanese Patent Laid-Open No. 7-66455 [Patent Document 2]
Japanese Patent Laid-Open No. 2001-339100
As a result of many years of progress in materials and element structures used in light-emitting elements such as light-emitting diodes and semiconductor lasers, the photoelectric conversion efficiency inside the elements is gradually approaching the theoretical limit. Therefore, when an element with higher luminance is to be obtained, the light extraction efficiency from the element is extremely important. For example, in a light emitting device having a light emitting layer portion formed of AlGaInP mixed crystal, a thin AlGaInP (or GaInP) active layer is sandwiched between an n-type AlGaInP cladding layer and a p-type AlGaInP cladding layer having a larger band gap. By adopting a sandwiched double hetero structure, a high-luminance element can be realized. Such an AlGaInP double heterostructure can be formed by epitaxially growing each layer of an AlGaInP mixed crystal on a GaAs single crystal substrate by utilizing the lattice matching of the AlGaInP mixed crystal with GaAs. When this is used as a light emitting element, a GaAs single crystal substrate is usually used as an element substrate as it is. However, since the AlGaInP mixed crystal constituting the light emitting layer has a larger band gap than GaAs, the emitted light is absorbed by the GaAs substrate, and it is difficult to obtain sufficient light extraction efficiency. In order to solve this problem, a method (for example, Patent Document 1) in which a reflective layer made of a semiconductor multilayer film is inserted between a substrate and a light emitting layer portion has also been proposed. Since the difference is used, only light incident at a limited angle is reflected, and a significant improvement in light extraction efficiency cannot be expected in principle.
[0004]
Therefore, in various publications including Patent Document 2, a GaAs substrate for growth is peeled off, while a conductive element substrate for reinforcement (made of a semiconductor or metal) is used as a reflective Au substrate. A technique for bonding to a release surface through a layer is disclosed. This Au layer has an advantage that the reflectivity is high and the dependency of the reflectivity on the incident angle is small.
[0005]
[Problems to be solved by the invention]
However, in the above method, problems such as peeling and a decrease in reflectance tend to occur in the Au layer that forms the reflective layer during bonding. In particular, when the element substrate is made of a semiconductor, a metallurgical reaction such as a eutectic is likely to occur between the element substrate component such as Si and the Au layer component during the bonding heat treatment, which causes the above-mentioned problem. Becomes even more prominent.
[0006]
An object of the present invention is to effectively prevent a metallurgical reaction between an element substrate and a metal layer during a bonding heat treatment in a light emitting element having a structure in which a light emitting layer portion and an element substrate are bonded via a metal layer. It is possible to provide a light-emitting element having a structure in which defects due to bonding strength and reflectance due to the reaction are less likely to occur, and a method for manufacturing the light-emitting element.
[0007]
[Means for solving the problems and functions / effects of the invention]
In order to solve the above-described problems, the light-emitting element of the present invention includes:
The first main surface of the compound semiconductor layer having the light emitting layer portion is used as a light extraction surface, and the second main surface side of the compound semiconductor layer is a reflecting surface that reflects light from the light emitting layer portion to the light extraction surface side. A light emitting device in which an element substrate is bonded through a main metal layer having
The element substrate is entirely composed of the conductive material, and at least a portion including the main surface on the main metal layer side of the element substrate is composed of a conductive material mainly composed of an inorganic conductive phase made of carbon. is Rutotomoni, the light emitting layer portion is characterized by being formed by AlGaInP mixed crystal.
In the present specification, “main body” means a component having the highest mass content, and “phase” means a uniform part of a material system that is distinguished from others by physical boundaries. Further, in this specification, the “main metal layer” is a metal layer located between the compound semiconductor layer and the element substrate, and forms a reflective surface and also serves to bond the compound semiconductor layer and the element substrate. The metal layer that bears Therefore, the bonding metal layer described later does not belong to the main metal layer.
[0008]
According to the light emitting element of the present invention, since the element substrate is the contact surface between the main metal layer is composed of a conductive material mainly composed of inorganic conductive phase consisting of carbon (C), carbon in the molecule Due to the strong covalent bond, the metallurgical reaction with the main metal layer hardly occurs. Therefore, it is possible to prevent a decrease in reflectance on the reflecting surface.
[0009]
Further, in order to obtain light emission intensity in the light emitting element, it is desirable to flow as much current as possible through the light emitting layer portion. Therefore, the element substrate is required to have conductivity that can withstand the element substrate, and further, thermal conductivity (role as a heat sink) that can sufficiently dissipate heat generated by a large current is also required. Since carbon or silicon carbide is excellent in conductivity and thermal conductivity, such an element substrate can be realized by configuring the entire element substrate with the conductive material. In general, carbon and silicon carbide have conductivity and thermal conductivity close to metals. Note that the conductivity of silicon carbide is slightly inferior to carbon and is classified as a semiconductor.
[0010]
The conductive material may be a composite material of an inorganic conductive phase and a metal. Such a composite material has better conductivity and thermal conductivity than the inorganic conductive phase (carbon or silicon carbide) alone. Further, the strength and workability are excellent, and it can be suitably used as an element substrate.
[0011]
In addition, the composite material can have a structure in which a metal is dispersed in a substrate made of an inorganic conductive phase. By using such a structure, elements having uniform characteristics such as conductivity and thermal conductivity can be obtained. A substrate can be obtained. Specifically, the composite material is characterized in that a porous substrate made of an inorganic conductive phase is impregnated with a metal. This can be obtained, for example, by impregnating a molten substrate made of an inorganic conductive phase (carbon or silicon carbide) with a molten metal by a known melt forging method. In addition, by using a porous substrate, a strong metal layer can be obtained by an anchor effect when the metal layer is formed on the surface of the composite material by means such as sputtering or vacuum deposition.
[0012]
Regarding the metal contained in the composite material, specifically, when the inorganic conductive phase is carbon, one or more metals selected from Al, Cu and Mg can be the main component, and the inorganic conductive phase When the phase is silicon carbide, the main component can be one or more metals selected from Al and Cu. As described above, a light-emitting element having an element substrate that is excellent in conductivity and thermal conductivity and further excellent in strength and workability can be obtained.
[0013]
Next, in the light emitting device of the present invention, the main metal layer may have an Au-based bonding layer containing Au as a main component. With such a configuration, the bond strength between the compound semiconductor layer and the element substrate can be increased. Details will be described later.
[0014]
Further, in the light emitting element having the Au-based coupling layer, the reflecting surface can be formed by the Au-based coupling layer. Since the Au-based bonding layer is chemically stable and does not easily cause reflectance deterioration due to oxidation or the like, it is suitable as a material for forming the reflecting surface. In the present invention, the element substrate is made of a conductive material mainly composed of an inorganic conductive phase made of carbon or silicon carbide, so that the metallurgical reaction between the element substrate and the Au-based bonding layer is extremely effectively performed. Since it can be suppressed, a reflective surface with good reflectance can be formed by the Au-based coupling layer.
[0015]
When a reflective surface is formed by an Au-based bonding layer, a bonding metal layer containing Au as a main component is disposed between the Au-based bonding layer and the compound semiconductor layer so as to be dispersed on the main surface of the Au-based bonding layer. can do. The Au-based coupling layer forms a part of the energization path to the light emitting layer portion. However, when the Au-based bonding layer is directly bonded to the light emitting layer portion made of a compound semiconductor, the contact resistance increases, the series resistance increases, and the light emission efficiency may decrease. Contact resistance can be reduced by bonding the Au-based bonding layer to the light emitting layer portion via the Au-based bonding metal layer. However, the Au-based bonding metal layer needs to contain a relatively large amount of alloy components necessary for securing a contact, and the reflectance is slightly inferior. Therefore, if the bonding metal layer is dispersedly formed on the main surface of the Au-based bonding layer, a high reflectance by the Au-based bonding layer can be ensured in the region where the bonding metal layer is not formed.
[0016]
As the bonding metal layer, a compound semiconductor layer in contact with the n-type III-V group compound semiconductor (for example, (Al x Ga 1-x ) y In 1-y P (where 0 ≦ x ≦ 1, In the case of 0 ≦ y ≦ 1)), the effect of reducing the contact resistance is particularly enhanced by adopting the AuGeNi bonded metal layer. In this case, an AuGeNi bonding metal layer can be formed on the bonded main surface of the compound semiconductor layer, and an Au-based bonding layer (the first Au-based layer) can be formed so as to cover the AuGeNi bonding metal layer. In this case, the alloying heat treatment of the AuGeNi bonding metal layer and the compound semiconductor layer is performed at, for example, 350 ° C. or more and 500 ° C. or less, thereby enhancing the contact resistance reduction effect.
[0017]
In order to sufficiently enhance the light extraction effect, the formation area ratio of the bonding metal layer to the Au-based bonding layer (the value obtained by dividing the formation area of the bonding metal layer by the total area of the Au-based bonding layer) is 1 % Or more and 25% or less is desirable. If the formation area ratio of the bonding metal layer is less than 1%, the effect of reducing the contact resistance is not sufficient, and if it exceeds 25%, the reflection intensity decreases. In addition, the Au-based bonding layer can further increase the reflectance of the Au-based bonding layer in the non-formed region of the bonding metal layer by setting the Au content higher than that of the bonding metal layer.
[0018]
On the other hand, in the light emitting element having the Au-based bonding layer, the reflective surface may be formed of an Ag-based layer mainly composed of Ag interposed between the Au-based bonding layer and the compound semiconductor layer. The Ag-based layer is less expensive than the Au-based bonding layer and exhibits a good reflectance over almost the entire wavelength range of visible light (350 nm to 700 nm), and therefore the wavelength dependency of the reflectance is small. As a result, high light extraction efficiency can be realized regardless of the emission wavelength of the element. Further, compared to a metal such as Al, the reflectance is less likely to decrease due to the formation of an oxide film or the like.
[0019]
FIG. 6 shows the reflectivity of various mirror-polished metal surfaces. The plot point “■” indicates the reflectivity of Ag, the plot point “Δ” indicates the reflectivity of Au, and the plot point “♦” indicates the reflectivity. It is the reflectance (comparative example) of Al. The plotted point “×” is for the AgPdCu alloy. The reflectance of Ag is particularly good at a reflectance of 350 nm to 700 nm (and an infrared region longer than that), particularly 380 nm to 700 nm.
[0020]
On the other hand, Au is a colored metal, and as is apparent from the reflectance shown in FIG. 6, absorption is in the visible light region with a wavelength of 570 nm or less (particularly 550 nm or less), and the peak emission wavelength of the light emitting layer portion is 570 nm or less. If present, reflectivity is reduced. As a result, the emission intensity is likely to decrease, and the extracted light spectrum is different from the original emission spectrum due to absorption, and the emission color tone is likely to change. However, Ag has a very good reflectance even in a visible light region having a wavelength of 570 nm or less. That is, when the peak emission wavelength of the light emitting layer portion is 570 nm or less (particularly 550 nm or less, and further 500 nm or less), the reflection surface of the Ag-based layer can realize higher light extraction efficiency than the Au-based metal.
[0021]
On the other hand, as shown in FIG. 6, Al does not cause an absorption peak in the reflectance, but does not occur, but the reflectance in the visible light region is somewhat low (for example, 85) because of a decrease in reflectance due to oxide film formation. -92%). However, since Ag-based metal is difficult to form an oxide film, a higher reflectance than Al can be secured in the visible light region. Specifically, it can be seen that the reflectance is better than that of Al at a wavelength of 400 nm or more (especially 450 nm or more).
[0022]
The reflectivity of Al in FIG. 6 was measured on a mirror-finished Al surface with the formation of a surface oxide film suppressed by mechanical polishing and chemical polishing, and in actuality, a thick oxide film was formed. As a result, there is a possibility that the reflectance is further lowered than the data shown in FIG. In the case of Ag, in FIG. 6, the reflectance is inferior to Al in a short wavelength region of 350 nm or more and 400 nm or less, but an oxide film is much less likely to be formed than Al. Therefore, when it is actually formed as a reflective metal layer on the light emitting element, it is possible to achieve a reflectance higher than that of Al even in this wavelength region by adopting an Ag-based layer. Even in this wavelength region, the reflectance of Ag is higher than that of Au.
[0023]
In summary, the Ag-based layer has a light extraction efficiency of a light emitting layer portion having a peak emission wavelength in a wavelength region of 350 nm to 700 nm (preferably 400 nm to 570 nm, more preferably 450 nm to 550 nm). It can be said that the improvement effect becomes particularly remarkable. The light emitting layer portion having the above peak emission wavelength is, for example, (Al x Ga 1-x ) y In 1-y P (where 0 ≦ x ≦ 1, 0 ≦ y ≦ 1) or In x Ga y Al 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, x + y ≦ 1), a double layer in which the first conductive type cladding layer, the active layer, and the second conductive type cladding layer are stacked in this order. It can be configured as having a heterostructure.
[0024]
In the case of using an Ag-based layer for reflection surface formation, an Ag-based bonding metal layer mainly composed of Ag is disposed between the Ag-based layer and the compound semiconductor layer so as to be dispersed on the main surface of the Ag-based layer. be able to. In the Ag-based junction metal layer, the compound semiconductor layer in contact with the n-type III-V group compound semiconductor (for example, (Al x Ga 1-x ) y In 1-y P (where 0 ≦ x ≦ 1 , 0 ≦ y ≦ 1)), the effect of reducing the contact resistance is particularly high by adopting the AgGeNi bonded metal layer. The formation area ratio of the Ag-based bonding metal layer to the Ag-based layer is desirably 1% or more and 25% or less, like the Au-based bonding metal layer described above.
[0025]
Next, the manufacturing method of the light emitting device of the present invention having the Au-based bonding layer is as follows.
The main surface opposite to the light extraction surface of the compound semiconductor layer is the main surface of the bonding side, and the first Au to be the Au-based bonding layer, which is mainly composed of Au, on the main surface of the bonding side Place the system layer,
The main surface of the element substrate that is scheduled to be located on the light emitting layer side is used as a bonding-side main surface. On the bonding-side main surface, the Au-based coupling layer that is mainly composed of Au is formed. Two Au-based layers are arranged,
The first Au-based layer and the second Au-based layer are adhered and bonded together.
[0026]
When the element substrate and the compound semiconductor layer are bonded together, the element substrate and the compound semiconductor layer are preferably overlapped with each other through an Au-based bonding layer and bonded and heat-treated in that state.
[0027]
According to these production methods of the present invention, the first and second Au-based bonding layers are formed separately on the compound semiconductor layer side and the element substrate side, and these are adhered to each other and bonded together. Since the Au-based bonding layers are easily integrated even at a relatively low temperature, a sufficient bonding strength can be obtained even if the heat treatment temperature for the bonding is low.
[0028]
In the present invention, as a specific method for forming the metal layer, in addition to a vapor deposition method such as vacuum deposition or sputtering, an electrochemical deposition method such as electroless plating or electrolytic plating may be employed. it can.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a conceptual diagram showing a light emitting device 100 according to an embodiment of the present invention. The light emitting element 100 has a structure in which the light emitting layer portion 24 is bonded to the first main surface of the metal-impregnated carbon substrate 7 constituting the element substrate via the main metal layer 10.
[0030]
The light emitting layer portion 24 includes the active layer 5 made of a non-doped (Al x Ga 1-x ) y In 1-y P (where 0 ≦ x ≦ 0.55, 0.45 ≦ y ≦ 0.55) mixed crystal. , the first-conductivity-type cladding layer, in this embodiment the p-type cladding layer 6 made of p-type (Al z Ga 1-z) y in 1-y P ( except x <z ≦ 1), wherein the first conductivity type the second-conductivity-type cladding layer different from the clad layer, in this embodiment interposed by an n-type (Al z Ga 1-z) y in 1-y P ( except x <z ≦ 1) n-type cladding layer 4 made of According to the composition of the active layer 5, the emission wavelength can be adjusted in the green to red region (the emission wavelength (peak emission wavelength) is 550 nm or more and 670 nm or less). In the light emitting device 100, the p-type AlGaInP cladding layer 6 is disposed on the metal electrode 9 side, and the n-type AlGaInP cladding layer 4 is disposed on the main metal layer 10 side. Therefore, the conduction polarity is positive on the metal electrode 9 side. The term “non-dope” as used herein means “does not actively add dopant”, and contains a dopant component inevitably mixed in a normal manufacturing process (for example, 10 13 to 10 16 / cm 3). It is not excluded that the upper limit is about 3 ).
[0031]
A current diffusion layer 20 made of AlGaAs is formed on the main surface of the light emitting layer 24 opposite to the surface facing the substrate 7, and the light emitting layer 24 emits light at substantially the center of the main surface. A metal electrode (for example, Au electrode) 9 for applying a driving voltage is formed so as to cover a part of the main surface. A region around the metal electrode 9 on the main surface of the current diffusion layer 20 forms a light extraction region from the light emitting layer portion 24. Further, a metal electrode (back electrode: for example, an Au electrode) 15 is formed on the back surface of the metal-impregnated carbon substrate 7 so as to cover the entire surface.
[0032]
The metal-impregnated carbon substrate 7 is manufactured by impregnating porous carbon (C) with a molten metal (for example, Al) by a known molten metal forging method, and the thickness thereof is, for example, 100 μm or more and 500 μm or less. . Instead of the metal-impregnated carbon substrate 7, a metal-impregnated silicon carbide substrate manufactured by a method similar to the above using porous silicon carbide (SiC) can be used as an element substrate.
[0033]
The metal-impregnated carbon substrate 7 is bonded to the light emitting layer portion 24 with the main metal layer 10 interposed therebetween. The main metal layer 10 is entirely configured as an Au-based bonding layer. In this embodiment, the Au-based bonding layer is made of pure Au or an Au alloy having an Au content of 95% by mass or more.
[0034]
An AuGeNi bonding metal layer 32 (for example, Ge: 15% by mass, Ni: 10% by mass) is formed as a bonding metal layer between the light emitting layer portion 24 and the main metal layer 10 to reduce the series resistance of the element. Contributing. The AuGeNi bonding metal layer 32 is formed in a dispersed manner on the main surface of the main metal layer 10, and the formation area ratio thereof is 1% or more and 25% or less.
[0035]
The light from the light emitting layer portion 24 is extracted in a form in which the light reflected directly from the main metal layer 10 is superimposed on the light emitted directly to the light extraction surface side. The thickness of the main metal layer 10 is desirably 80 nm or more in order to ensure a sufficient reflection effect. Moreover, although there is no restriction | limiting in particular in the upper limit of thickness, since a reflection effect is saturated, it determines suitably (for example, 1 micrometer or less) by balance with cost.
[0036]
Hereinafter, a method for manufacturing the light emitting device 100 of FIG. 1 will be described.
First, as shown in Step 1 of FIG. 2, a p-type GaAs buffer layer 2 is made of, for example, 0.5 μm and AlAs on the main surface of a GaAs single crystal substrate 1 which is a semiconductor single crystal substrate forming a light emitting layer growth substrate. The peeling layer 3 is epitaxially grown in this order, for example, 0.5 μm, and the current diffusion layer 20 made of p-type AlGaAs is, for example, 5 μm. Thereafter, a 1 μm p-type AlGaInP cladding layer 6, a 0.6 μm AlGaInP active layer (non-doped) 5, and a 1 μm n-type AlGaInP cladding layer 4 are epitaxially grown in this order as the light emitting layer portion 24.
[0037]
Next, as shown in step 2, the AuGeNi bonding metal layer 32 is dispersedly formed on the main surface of the light emitting layer portion 24. After the AuGeNi bonding metal layer 32 is formed, an alloying heat treatment is then performed in a temperature range of 350 ° C. or more and 500 ° C. or less. Thereafter, the first Au-based layer 10 a is formed so as to cover the AuGeNi bonding metal layer 32. An alloying layer is formed between the light emitting layer portion 24 and the AuGeNi bonding metal layer 32 by the alloying heat treatment, and the series resistance is greatly reduced. On the other hand, as shown in Step 3, a separately prepared metal-impregnated carbon substrate 7 is formed with a second Au-based layer 10b on one main surface, and a back electrode layer 15 (for example, an Au-based material) on the other main surface. Made of metal). In the above steps, each metal layer can be formed by sputtering or vacuum deposition.
[0038]
Then, as shown in step 4, the second Au-based layer 10b on the metal-impregnated carbon substrate 7 side is superposed on the first Au-based layer 10a formed on the light emitting layer portion 24 and pressed, for example, at 200 ° C. The substrate bonded body 50 is made by performing a heat treatment for bonding at. The metal-impregnated carbon substrate 7 is bonded to the light emitting layer portion 24 via the first Au-based layer 10a and the second Au-based layer 10b. Further, the first Au-based layer 10a and the second Au-based layer 10b are integrated by the bonding heat treatment to become the main metal layer 10. Since both the first Au-based layer 10a and the second Au-based layer 10b are mainly composed of Au that is difficult to oxidize, the bonding heat treatment can be performed without any problem even in the atmosphere, for example.
[0039]
In the present embodiment, since the element substrate is constituted by the metal-impregnated carbon substrate 7 mainly composed of carbon having a strong covalent bond, the metal-impregnated carbon substrate 7 and the main metal layer 10 (Au-based bonding layer) that are in contact with each other. There is no metallurgical reaction between the two. Therefore, the reflective surface of the main metal layer 10 (Au-based coupling layer) finally obtained can realize a good reflectance.
[0040]
Next, proceeding to step 5, the substrate bonded body 50 is immersed in an etching solution made of, for example, a 10% hydrofluoric acid aqueous solution, and the AlAs release layer 3 formed between the buffer layer 2 and the light emitting layer portion 24 is selected. By etching, the GaAs single crystal substrate 1 (which is opaque to the light from the light emitting layer portion 24) is removed from the stacked body 50a of the light emitting layer portion 24 and the metal-impregnated carbon substrate 7 bonded thereto. . It should be noted that an etch stop layer made of AlInP is formed in place of the AlAs release layer 3, and a GaAs single crystal is used by using a first etching solution (for example, ammonia / hydrogen peroxide mixed solution) having selective etching properties with respect to GaAs. Etch and remove the substrate 1 together with the GaAs buffer layer 2 and then etch stop using a second etchant that has selective etching properties with respect to AlInP (for example, hydrochloric acid: hydrofluoric acid may be added to remove the Al oxide layer) A step of etching away the layer can also be employed.
[0041]
Then, as shown in step 6, a wire bonding electrode 9 (bonding pad: FIG. 1) is formed so as to cover a part of the main surface of the current diffusion layer 20 exposed by removing the GaAs single crystal substrate 1. . Thereafter, the semiconductor chip is diced by an ordinary method, and this is fixed to a support and wire bonding of a lead wire is performed, followed by resin sealing to obtain a final light emitting element.
[0042]
In the above embodiment, the first Au-based layer 10a forms a reflective surface, but the Ag-based layer 10c is interposed between the first Au-based layer 10a and the light-emitting layer portion 24 as in the light-emitting element 200 of FIG. Can also be inserted. In this case, the bonding metal layer is formed by dispersing an Ag-based bonding metal layer 132 made of AgGeNi (for example, Ge: 15 mass%, Ni: 10 mass%) instead of the Au-based bonding metal layer. Other parts are the same as those of the light emitting device 100 of FIG. FIG. 4 shows an example of the manufacturing process. The difference from the manufacturing process of FIG. 2 is that the Ag-based bonding metal layer 132 is dispersedly formed in Step 2 instead of the Au-based bonding metal layer 32, and alloying heat treatment is performed in a temperature range of 350 ° C. or higher and 660 ° C. or lower. Thereafter, the Ag-based layer 10c and the first Au-based layer 10a are formed in this order. The rest is basically the same as FIG.
[0043]
In addition, when the Ag-type layer 10c may be corroded by the etching solution when the light emitting layer growth substrate is removed by etching, the following method is preferable. That is, as shown in step 3, the first Au-based layer 10a in contact with the Ag-based layer 10c is arranged such that the outer peripheral edge of the Ag-based layer 10c is located on the inner side than the outer peripheral edge of the first Au-based layer 10a. It is formed in a larger area than the Ag-based layer 10c. As a result, the Ag-based layer 10c is wrapped in the first Au-based layer 10a, and the outer peripheral surface of the Ag-based layer 10c is protected by the outer peripheral edge portion 10e of the first Au-based layer 10a having high corrosion resistance. In FIG. 5, even if the light emitting layer growth substrate (GaAs single crystal substrate 1) is etched, the influence is less likely to affect the Ag-based layer 10c. When the GaAs single crystal substrate 1 is used as a light emitting layer growth substrate and dissolved / removed using an ammonia / hydrogen peroxide mixed solution as an etching solution, Ag is particularly easily corroded by the etching solution. Can be used to dissolve and remove the GaAs single crystal substrate 1 without problems.
[0044]
Moreover, each layer of the light emitting layer part 24 can also be formed by AlGaInN mixed crystal. For example, a sapphire substrate (insulator) or a SiC single crystal substrate is used as the light emitting layer growth substrate for growing the light emitting layer portion 24 instead of the GaAs single crystal substrate. In the above embodiment, each layer of the light emitting layer portion 24 is in the order of the n-type cladding layer 4, the active layer 5, and the p-type cladding layer 6 from the substrate side. The clad, the active layer, and the n-type clad layer may be formed in this order.
[0045]
Further, as shown in FIG. 5 (Step 3), the main metal layer 10 is formed on either side of the metal-impregnated carbon substrate (element substrate) 7 and the light emitting layer portion (compound semiconductor layer) 24 (in FIG. 5, the light emitting layer). It may be formed and bonded only on the part 24 side). In this case, the bonding heat treatment temperature (step 4) must be set to 200 ° C. or more and 700 ° C. or less, which is slightly higher than that in FIG.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a first embodiment of a light emitting device to which the present invention is applied, in a laminated structure.
2 is an explanatory diagram showing an example of a manufacturing process of the light-emitting element shown in FIG.
FIG. 3 is a schematic diagram showing a second embodiment of a light-emitting element to which the present invention is applied, in a laminated structure.
4 is an explanatory diagram showing an example of a manufacturing process of the light-emitting element shown in FIG. 3;
5 is an explanatory diagram showing another example of the manufacturing process of the light-emitting element shown in FIG. 1. FIG.
FIG. 6 is a diagram showing the reflectance of various metals.
[Explanation of symbols]
1 GaAs single crystal substrate (light emitting layer growth substrate)
4 n-type cladding layer (second conductivity type cladding layer)
5 active layer 6 p-type cladding layer (first conductivity type cladding layer)
7 Metal-impregnated carbon substrate (element substrate)
9 Metal electrode 10 Main metal layer 10a First Au-based layer 10b Second Au-based layer 10c Ag-based layer 24 Light emitting layer portion 32 AuGeNi bonded metal layer 132 AgGeNi bonded metal layer 100, 200 Light emitting element

Claims (6)

発光層部を有した化合物半導体層の第一主表面を光取出面とし、該化合物半導体層の第二主表面側に、前記発光層部からの光を前記光取出面側に反射させる反射面を有した主金属層を介して素子基板が結合された発光素子であって、
前記素子基板は全体が前記導電性材料にて構成されて、その素子基板の少なくとも前記主金属層側の主表面を含む部分が、カーボンよりなる無機導電相を主体とする導電性材料にて構成されると共に、
前記発光層部はAlGaInP混晶によって形成されていることを特徴とする発光素子。
The first main surface of the compound semiconductor layer having the light emitting layer portion is used as a light extraction surface, and the second main surface side of the compound semiconductor layer is a reflecting surface that reflects light from the light emitting layer portion to the light extraction surface side. A light emitting device in which an element substrate is bonded through a main metal layer having
The element substrate is entirely composed of the conductive material, and at least a portion including the main surface on the main metal layer side of the element substrate is composed of a conductive material mainly composed of an inorganic conductive phase made of carbon. is Rutotomoni,
The light emitting element is characterized in that the light emitting layer portion is formed of AlGaInP mixed crystal .
前記主金属層は、Auを主成分とするAu系結合層を有することを特徴とする請求項に記載の発光素子。The light emitting device according to claim 1 , wherein the main metal layer has an Au-based coupling layer containing Au as a main component. 前記Au系結合層が前記反射面を形成してなることを特徴とする請求項に記載の発光素子。The light-emitting element according to claim 2 , wherein the Au-based coupling layer is formed with the reflective surface. 前記Au系結合層と前記化合物半導体層との間に介挿されたAgを主成分とするAg系層が前記反射面を形成してなることを特徴とする請求項に記載の発光素子。The light emitting device according to claim 2 , wherein an Ag-based layer mainly composed of Ag interposed between the Au-based bonding layer and the compound semiconductor layer forms the reflective surface. 請求項ないしのいずれか1項に記載の発光素子の製造方法であって、
前記化合物半導体層の光取出面になるのと反対側の主表面を貼り合わせ側主表面として、該貼り合わせ側主表面上に、Auを主成分とした、前記Au系結合層となるべき第一Au系層を配置し、
前記素子基板の、前記発光層部側に位置することが予定された主表面を貼り合わせ側主表面として、該貼り合わせ側主表面上に、Auを主成分とした、前記Au系結合層となるべき第二Au系層を配置し、
それら第一Au系層と第二Au系層とを密着させて貼り合わせることを特徴とする発光素子の製造方法。
A method for manufacturing a light emitting device according to any one of claims 2 to 4 ,
The main surface opposite to the light extraction surface of the compound semiconductor layer is used as a bonding-side main surface, and the Au-based bonding layer that is mainly composed of Au is formed on the bonding-side main surface. One Au-based layer,
The main surface of the element substrate that is scheduled to be located on the light emitting layer portion side is used as a bonding-side main surface, and the Au-based coupling layer mainly composed of Au is formed on the bonding-side main surface; Arrange the second Au-based layer to be
A method for manufacturing a light emitting device, wherein the first Au-based layer and the second Au-based layer are adhered and bonded together.
前記素子基板と前記化合物半導体層とを、前記Au系結合層を介して重ね合わせ、その状態で貼り合わせ熱処理することにより、前記素子基板と前記化合物半導体層とを貼り合わせることを特徴とする請求項に記載の発光素子の製造方法。The element substrate and the compound semiconductor layer are bonded to each other by superimposing the element substrate and the compound semiconductor layer through the Au-based bonding layer and performing a bonding heat treatment in that state. Item 6. A method for manufacturing a light-emitting element according to Item 5 .
JP2003077403A 2003-03-20 2003-03-20 Light emitting device and method for manufacturing light emitting device Expired - Fee Related JP4110524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003077403A JP4110524B2 (en) 2003-03-20 2003-03-20 Light emitting device and method for manufacturing light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003077403A JP4110524B2 (en) 2003-03-20 2003-03-20 Light emitting device and method for manufacturing light emitting device

Publications (2)

Publication Number Publication Date
JP2004288788A JP2004288788A (en) 2004-10-14
JP4110524B2 true JP4110524B2 (en) 2008-07-02

Family

ID=33292162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003077403A Expired - Fee Related JP4110524B2 (en) 2003-03-20 2003-03-20 Light emitting device and method for manufacturing light emitting device

Country Status (1)

Country Link
JP (1) JP4110524B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060097385A1 (en) * 2004-10-25 2006-05-11 Negley Gerald H Solid metal block semiconductor light emitting device mounting substrates and packages including cavities and heat sinks, and methods of packaging same
JP4687109B2 (en) * 2005-01-07 2011-05-25 ソニー株式会社 Manufacturing method of integrated light emitting diode
JP4841909B2 (en) * 2005-09-14 2011-12-21 昭和電工株式会社 Nitride semiconductor light emitting device
JP4791119B2 (en) * 2005-09-16 2011-10-12 昭和電工株式会社 Method for manufacturing nitride-based semiconductor light-emitting device
JP2009049371A (en) * 2007-07-26 2009-03-05 Sharp Corp Nitride-based compound semiconductor light emitting element, and method of manufacturing the same
JP2010109081A (en) * 2008-10-29 2010-05-13 Denki Kagaku Kogyo Kk Metal matrix composite substrate for led light emitting device, and led light emitting device using the same
CN102318093B (en) * 2009-02-13 2016-05-25 电化株式会社 For composite substrate, its manufacture method and the LED light-emitting component of LED light-emitting component
US8890189B2 (en) 2009-07-31 2014-11-18 Denki Kagaku Kogyo Kabushiki Kaisha Wafer for LED mounting, method for manufacturing same, and LED-mounted structure using the wafer
JP5296638B2 (en) * 2009-08-28 2013-09-25 電気化学工業株式会社 LED mounting structure, manufacturing method thereof, and LED mounting substrate
KR101172950B1 (en) 2009-12-02 2012-08-10 정경화 Graphite substrate for light emitting diode and light emitting diode using the same
KR101047647B1 (en) 2010-01-15 2011-07-07 엘지이노텍 주식회사 Light emitting device, light emitting device package and method for fabricating the same

Also Published As

Publication number Publication date
JP2004288788A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
US7041529B2 (en) Light-emitting device and method of fabricating the same
JP4050444B2 (en) Light emitting device and manufacturing method thereof
TWI330411B (en)
JP2004207508A (en) Light emitting element and its manufacturing method thereof
JP4110524B2 (en) Light emitting device and method for manufacturing light emitting device
JP4121551B2 (en) Light emitting device manufacturing method and light emitting device
JP3997523B2 (en) Light emitting element
JP3951300B2 (en) Light emitting device and method for manufacturing light emitting device
JP4062111B2 (en) Method for manufacturing light emitting device
JP2005197296A (en) Light-emitting element and its manufacturing process
JP3950801B2 (en) Light emitting device and method for manufacturing light emitting device
JP2005243954A (en) Light emitting element, and its manufacturing method
WO2004097948A1 (en) Light-emitting device and light-emitting device manufacturing method
JP2005079298A (en) Light emitting element and method of manufacturing the same
JP4114566B2 (en) Semiconductor bonded assembly and method for manufacturing the same, light emitting device and method for manufacturing the same
JP5196288B2 (en) Light emitting device manufacturing method and light emitting device
JP4120796B2 (en) Light emitting device and method for manufacturing light emitting device
JP2005259912A (en) Manufacturing method of light emitting element
JP4697650B2 (en) Light emitting element
JP2004235505A (en) Ohmic electrode structure for light emitting element and semiconductor element
JP4918245B2 (en) Light emitting diode and manufacturing method thereof
JP5224859B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2005123530A (en) Method for manufacturing light emitting element
JP4108439B2 (en) Light emitting device manufacturing method and light emitting device
JP2005347714A (en) Light emitting device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees