JP3951093B2 - 内燃機関の排気浄化促進装置 - Google Patents

内燃機関の排気浄化促進装置 Download PDF

Info

Publication number
JP3951093B2
JP3951093B2 JP2000400304A JP2000400304A JP3951093B2 JP 3951093 B2 JP3951093 B2 JP 3951093B2 JP 2000400304 A JP2000400304 A JP 2000400304A JP 2000400304 A JP2000400304 A JP 2000400304A JP 3951093 B2 JP3951093 B2 JP 3951093B2
Authority
JP
Japan
Prior art keywords
exhaust
fuel
reduction effect
valve
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000400304A
Other languages
English (en)
Other versions
JP2002201931A (ja
Inventor
保樹 田村
川島  一仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2000400304A priority Critical patent/JP3951093B2/ja
Priority to DE60117468T priority patent/DE60117468T2/de
Priority to US10/204,980 priority patent/US6729123B2/en
Priority to PCT/JP2001/011654 priority patent/WO2002053889A1/ja
Priority to EP01272921A priority patent/EP1347156B1/en
Publication of JP2002201931A publication Critical patent/JP2002201931A/ja
Application granted granted Critical
Publication of JP3951093B2 publication Critical patent/JP3951093B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気浄化促進装置に係り、詳しくは、排気中の有害物質の排出量低減効果を高める技術に関する。
【0002】
【関連する背景技術】
排気中の有害物質(HC、CO、H2等の未燃物の他、スモーク、NOx等を含む)を低減させることを目的とした技術として、触媒上での反応を利用した排気浄化技術が知られている。
しかしながら、当該排気浄化技術では、触媒が活性化されるまでの間にHC等の未燃物が大気放出されるという問題があり、このように触媒活性化までに放出される有害物質量は、コールドモードでの全放出量の9割にも達する場合があり重要な問題となっている。
【0003】
そこで、例えば特開平3−117611号、特開平4−183921号公報に開示されるように、排気圧上昇により冷態時の触媒を早期活性化させる技術が開発されている。
また、特開平5−231195号、特開平8−158897号公報に開示されるように、排気圧上昇と吸排気弁のオーバラップ開度の変更により内部EGRを変更し、これにより未燃物(HC等)の大気放出を抑制する技術が開発されている。
【0004】
また、主噴射(リーン空燃比設定)とは別に副噴射を行い、主噴射で残存した酸素と副噴射による未燃燃料を排気系(燃焼室(排気弁部を含む。以下同じ)からエキゾーストマニホールドを含む。以下同じ。)内で反応させることにより有害物質を低減させる2段燃焼技術が知られている。
【0005】
【発明が解決しようとする課題】
ところが、上記特開平3−117611号、特開平4−183921号公報に開示された触媒と排気圧上昇とを組み合わせた技術の場合、実際には当該技術による効果は明確に示されておらず、本出願人の調査によれば、触媒活性効果、排気(もしくは触媒)の昇温効果はともに小さいものとなっている。
【0006】
また、上記特開平5−231195号、特開平8−158897号公報に開示された技術の場合においても、上記触媒と排気圧上昇とを組み合わせた技術と同様に、内部EGRの増量だけでは、触媒活性効果、排気(もしくは触媒)昇温効果を十分に得られないという問題がある。この場合、吸排気弁の開閉時期を変更する高価な装置が必要となりコストが増大するという問題もある。
【0007】
また、2段燃焼技術の場合には、排気システムにより性能が大きく左右されるという問題がある。例えば、排気慣性或いは排気脈動の利用が小さいクラムシェル型エキゾーストマニホールドシステムでは排気干渉等が大きいために排気系内での反応が促進される一方、出力的に不利であり、排気慣性或いは排気脈動の利用が大きいデュアル型エキゾーストマニホールドシステムでは出力的に有利である一方、排気干渉等が小さいために排気系内での反応が小さいという問題がある。また、クラムシェル型エキゾーストマニホールドシステムを使用した場合には、排気系内の反応により排温を上昇させて触媒を早期に活性化することができるが、実際には排気系内での反応は不十分であるために反応しない未燃物(HC等)が残存し、触媒が活性化されるまでの間は未燃物が大気放出されるという問題が依然として残る。
【0008】
つまり、従来の技術では、触媒が活性化するまでの運転条件下において、有害物質の大気放出を十分に抑制することができず、触媒昇温中において有害物質の大気放出を抑制しつつ触媒を早期に活性化することは困難である。特に、デュアル型エキゾーストマニホールドシステムを使用して2段燃焼を行った場合には、2段燃焼の効果が小さいために、反応しなかった未燃燃料がそのまま有害物質として大気放出されるというマイナスの効果が発生する。
【0009】
本発明はこのような問題点を解決するためになされたもので、その目的とするところは、排気系内の反応を利用して有害物質を低減させる技術において、広範囲に亘る種類のエキゾーストマニホールドシステムにおいても、また内燃機関の広範囲に亘る運転条件下においても、有害物質の低減効果を増強可能な内燃機関の排気浄化促進装置を提供することにある。
【0010】
【課題を解決するための手段】
上記した目的を達成するために、請求項1の発明では、内燃機関の排気管に介装された触媒と、上記内燃機関の排気中の有害物質の排出量を低減することを目的として、上記内燃機関の冷態時に主燃焼用の燃料とは別に排気系に燃料を供給する燃料供給手段と、該燃料供給手段よりも排気下流側に設けられ、該燃料供給手段による前記有害物質の排出量の低減効果を高めるよう排気の流動状態を制御する低減効果増強手段とを備えることを特徴とする。
【0011】
従って、主燃焼用の燃料とは別に排気系に追加燃料が供給されると、この追加燃料は排気系内において排気中に含まれる余剰の酸素と反応して排気昇温が行われ、これにより排気中の主燃焼による未燃物も反応することになるが、この際、低減効果増強手段により排気の流動状態が制御されて酸素が追加燃料や未燃物と反応し易い状態とされると、追加燃料或いは未燃物と排気系内における酸素との反応が飛躍的に促進され、追加燃料や未燃物はほぼ完全に酸素と反応することになり、燃料供給手段による有害物質の排出量の低減効果が増強される。これにより、排気中の有害物質の排出が抑制されつつ排気温度が確実に上昇することとなり、排気系下流側に触媒を有する場合には、触媒が急速に昇温することになり、有害物質の排出量を低減しながら当該触媒を早期に活性化することが可能となる
【0012】
さらに、本発明では、燃料供給手段による有害物質の排出量の低減効果を低減効果増強手段により増強するものであるため、広範囲に亘る種類のエキゾーストマニホールドシステム(クラムシェル型、デュアル型、シングル型等)においても、また内燃機関の広範囲に亘る運転条件下(始動時、暖機運転時等)においても、有害物質の排出量の低減効果が良好に増強される。即ち、燃料供給手段によって排気系に追加燃料が供給されると、エキゾーストマニホールドシステムの種類や内燃機関の運転条件に拘わらず、この燃料供給手段による操作だけで有害物質の排出量の低減効果は基本的に発生し、低減効果増強手段はこのような既に発生している低減効果を確実に増強させるよう作用することになる。
【0013】
また、一般に触媒には硫黄等が付着して排気浄化効率が低下するものであり(被毒)、当該被毒した触媒は主として高温下で再生されるのであるが、このように触媒が急速に昇温して高温にまで達すると、より低負荷運転域においても、有害物質を排出することなく被毒した触媒を確実に再生可能である。
さらに、一時的に低減効果増強量を低下させると同時に燃料供給手段による燃料供給度合を低下させることを繰り返すことで、燃料の大気放出を抑制しつつ、高温ガスを早期に触媒に供給させるようにして、触媒をより早期に活性化することが可能をなる。
また、請求項2の発明では、前記低減効果増強手段は、排気圧、排気密度及び排気流速の少なくともいずれか一つを変更することを特徴とする。
【0014】
従って、排気圧の上昇、排気密度の増大、排気流速の低下(増強要因)のうち少なくとも一つ以上が起こり、容易にして排気中の酸素が追加燃料や未燃物と反応し易い状態とされる。これにより、排気系内の排気反応が改善され、有害物質の排出量の低減効果が増強される。ここに、排気系内の排気反応には、排気管(エキゾーストマニホールドを含む。以下同じ。)内の反応以外に燃焼室内の反応及び排気弁部での反応も含まれる。即ち、上記増強要因により、排気管内での反応が改善されたり、燃焼室内圧が上昇して燃焼室内での反応が改善されたり、排気弁通過時の断熱圧縮或いは断熱膨張による反応が改善される。
【0015】
また、請求項3の発明では、前記低減効果増強手段は、排気管の断面積を変更することを特徴とする。
従って、排気管の断面積が減少させられると、排気圧の上昇、排気密度の増大、排気流速の低下(増強要因)のうち少なくとも一つ以上が起こり、排気管の断面積を変更するという簡単な構成且つ低コストにして有害物質の排出量の低減効果が確実に増強される。
【0016】
また、請求項4の発明では、排気圧が所定値以下の時に排気管断面積を変更することを特徴とする。
これにより、排気圧の変化による内燃機関のトルク変動の低減が図られ、内燃機関の運転フィーリングの悪化が抑制されながら、有害物質の排出量の低減効果が確実に増強される。
【0017】
また、請求項5の発明では、前記燃料供給手段は、燃焼室内に主燃焼用の燃料を供給した後、該主燃焼の火炎消滅時期以降且つ排気弁の開弁開始時期以前に再度燃焼室内に燃料を供給することを特徴とする。
これにより、燃料供給手段により供給した燃料が、自ら反応しやすい状態に改質され、また冷却による一時的な反応低下が抑制される。つまり、主燃焼の火炎消滅時期以降且つ排気弁の開弁開始時期以前に燃焼室に燃料を再供給することにより、追加燃料の燃焼室内での反応が促進される。そして、低減効果増強手段の作用と相まって有害物質の排出量が確実に低減される。
【0018】
また、請求項6の発明では、前記燃料供給手段は、排気系のうち燃焼室よりも下流且つ低減効果増強手段による制御の影響を受ける領域内に燃料を供給することを特徴とする。
これにより、燃焼室内に追加燃料を再供給しなくても、例えば低減効果増強手段による制御の影響を受ける排気管内に燃料を供給することで、低減効果増強手段の作用により排気系内での反応が促進され、有害物質の排出量が確実に低減される。
【0019】
【発明の実施の形態】
以下、本発明の実施例を添付図面に基づいて説明する。
図1を参照すると、本発明に係る内燃機関の排気浄化促進装置の概略構成図が示されており、以下、当該排気浄化促進装置の構成を説明する。
同図に示すように、内燃機関であるエンジン本体(以下、単にエンジンという)1としては、例えば、燃料噴射モードを切換えることで吸気行程での燃料噴射(吸気行程噴射)とともに圧縮行程での燃料噴射(圧縮行程噴射)を実施可能な筒内噴射型火花点火式ガソリンエンジンが採用される。この筒内噴射型のエンジン1は、容易にして理論空燃比(ストイキ)での運転やリッチ空燃比での運転(リッチ空燃比運転)の他、リーン空燃比での運転(リーン空燃比運転)が実現可能である。
【0020】
同図に示すように、エンジン1のシリンダヘッド2には、各気筒毎に点火プラグ4とともに電磁式の燃料噴射弁6が取り付けられており、これにより、燃料を燃焼室内に直接噴射可能である。なお、燃料噴射弁6は排気系に燃料を追加供給する燃料供給手段としても機能する。
点火プラグ4には高電圧を出力する点火コイル8が接続されている。また、燃料噴射弁6には、燃料パイプ7を介して燃料タンクを擁した燃料供給装置(図示せず)が接続されている。より詳しくは、燃料供給装置には、低圧燃料ポンプと高圧燃料ポンプとが設けられており、これにより、燃料タンク内の燃料を燃料噴射弁6に対し低燃圧或いは高燃圧で供給し、該燃料を燃料噴射弁6から燃焼室内に向けて所望の燃圧で噴射可能である。この際、燃料噴射量は高圧燃料ポンプの燃料吐出圧Pinjと燃料噴射弁6の開弁時間、即ち燃料噴射時間Tinjとから決定される。
【0021】
シリンダヘッド2には、各気筒毎に略直立方向に吸気ポートが形成されており、各吸気ポートと連通するようにして吸気マニホールド10の一端がそれぞれ接続されている。なお、吸気マニホールド10には吸入空気量を調節する電磁式のスロットル弁14が設けられている。
また、シリンダヘッド2には、各気筒毎に略水平方向に排気ポートが形成されており、各排気ポートと連通するようにして排気マニホールド12の一端がそれぞれ接続されている。排気マニホールド12としては、ここでは、図2(a)に示すようなデュアル型エキゾーストマニホールドシステムが採用される。その他、排気マニホールド12は、図2(b)に示すようなシングル型エキゾーストマニホールドシステムであっても、また図2(c)に示すようなクラムシェル型エキゾーストマニホールドシステムであってもよい。
【0022】
デュアル型エキゾーストマニホールドシステムからなる排気マニホールド12では、#1気筒と#4気筒からの排気、#2気筒と#3気筒からの排気がそれぞれ合流するように構成されており(燃焼順序が#1→#3→#4→#2の場合)、これにより、当該排気マニホールド12では、上述したように、排気干渉が少なくされ、排気慣性或いは排気脈動の大きな効果が得られる。一方、クラムシェル型エキゾーストマニホールドシステムの場合には、上述したように、排気干渉が大きく反応が促進されるという利点を有しているが、排気慣性或いは排気脈動の効果は小さい。
【0023】
なお、当該筒内噴射型のエンジン1は既に公知のものであるため、その構成の詳細については説明を省略する。
排気マニホールド12の他端には排気管(排気通路)20が接続されている。
排気管20は、通常の1重管路であってもよいが、ここでは、全長に亘り、図3(a)に縦断面で示すように、外管20aと当該外管20aよりもやや小径の内管20bからなる2重管路とされており、内管20b内のみならず外管20aと内管20bとの間の副通路をも排ガスが流通する。このように外管20aと内管20bとの間の副通路を排ガスが流れると、当該副通路を流れる排ガスは外管20aを介して外気によって冷却されるものの、内管20b内を流れる排ガスの主流は直接外気と熱交換することがないので、排気温度の低下が防止され、排ガスは高温に保持される。
【0024】
なお、2重管路の形態は、内管20b内を流れる排ガスの主流が直接外気と熱交換しないようなものであれば、図3(b)のように副通路の終端が閉じたものであってもよく、また、図3(c)のように副通路の始端と終端の両方を閉じて内部に単なる空気層を形成するようなものであってもよい。
また、排気管20は、上述したように排気マニホールド12としてデュアル型エキゾーストマニホールドシステムが採用されているため、デュアル部分では、#1気筒と#4気筒からの排気及び#2気筒と#3気筒からの排気がそれぞれ独立して流れる。そのため、この範囲では、通常は排気管20が二股管路から構成されるが、ここでは、図4(a)に横断面で示すように、排気管20の中央において管路が仕切られて2本の管路が構成されている。つまり、排気管20は上流側から一定距離に亘り断面θ形状をしている。これにより、外気との熱交換が少なくされ、排気温度の低下が防止される。なお、排気管20を上記2重管路とした場合には、図4(b)のように、内管20bのみが断面θ形状をしている。
【0025】
そして、排気管20には、排気浄化触媒装置として三元触媒30が介装されている。この三元触媒30は、担体に活性貴金属として銅(Cu),コバルト(Co),銀(Ag),白金(Pt),ロジウム(Rh),パラジウム(Pd)のいずれかを有している。
また、同図に示すように、排気管20には、排気圧を検出する排気圧センサ22が配設されている。
【0026】
さらに、排気管20の三元触媒30よりも下流の部分には、本発明に係る低減効果増強装置(低減効果増強手段)40が介装されている。低減効果増強装置40は、排ガス中の有害物質(HC、CO、H2等の未燃物の他、スモーク、NOx等を含む)の低減を促進させることを目的とする装置であり、排気圧、排気密度及び排気流速(増強要因)の少なくともいずれか一つを変更することが可能に構成されている。具体的には、低減効果増強装置40は排気管20の流路面積を調節可能な密閉型開閉弁42が電子コントロールユニット(ECU)60に電気的に接続されて構成されている。
【0027】
図5に示すように、開閉弁42としては種々の方式が考えられる。なお、開閉弁42はアクチュエータで作動するが、ここではアクチュエータは省略してある。
例えば、図5(a)に閉弁状態を示し、図5(b)に開弁状態を示すように、開閉弁42は、排気管20を貫通する軸43回りに円盤44が回転することで排気管20の流路面積を調節するバタフライ弁で構成される。
【0028】
この場合、図5(c)に示すように、全閉時において円盤44の周縁が排気管20(2重管路の場合には内管20b)の内面と当接するようにしておくのがよく、さらに、図5(d)や図5(e)に拡大して示すように、円盤44の周縁と当接する排気管20の内面に角溝20c或いは丸溝20dを設け、円盤44の周縁と排気管20の内面とを面接触させるのがよい。これにより、閉弁時における流路の遮断度合いが向上する。
【0029】
また、排気管20(2重管路の場合には内管20b)に、図5(f)、(g)に示すように、閉弁時に円盤44の周縁を受け止めるストッパ45を内方に向けて立設するようにしてもよく、このようにしても、円盤44の周縁とストッパ45とが面接触し、閉弁時における流路の遮断度合いが向上する。
また、図6(a)に閉弁状態を示し、図6(b)に開弁状態を示すように、開閉弁42は、中央に通気口46の設けられた円盤44’からなるバタフライ弁であってもよい。このように通気口46が設けられていると、全閉時において、排ガスが僅かながら通気口46を流通することになり、エンジン1の負担が軽減される。
【0030】
また、図7(a)に流路方向で視た閉弁状態を示し、図7(b)に開弁状態を示すように、開閉弁42は、円盤47の一端が排気管20に回動自在に支持され、円盤47が回動することで排気管20の流路面積を調節する一般的な開閉弁であってもよい。この場合、上記同様、円盤47の中央には通気口48を設けておくのがよく、また、円盤47と排気管20とをスプリング49で接続しておくのがよい。このようにすると、スプリング49の付勢方向によって、円盤47が閉弁状態のまま固着することが防止され、或いは一定圧力以上で圧力がリリーフされてフェールセイフが図られる。
【0031】
また、図8(a)に閉弁状態を示し、図8(b)に開弁状態を示すように、開閉弁42は、一方向で内部が筒状にくり抜かれた球状弁体50が軸43回りに回転することで排気管20の流路面積を調節するボール型弁であってもよい。
また、図9(a)、(c)に閉弁状態を示し、図9(b)、(d)に開弁状態を示すように、開閉弁42は、排気管20内に流路を塞ぐよう設けられた板の開口を開閉するポペット52からなるポペット弁であってもよい。この場合、ポペット52のステム頭部にポペット弁を開弁側に付勢するスプリング54を設けるようにすれば、スプリング54の付勢方向によって、ポペット52が閉弁状態のまま固着することが防止され、或いは一定圧力以上で圧力がリリーフされてフェールセイフが図られる。
【0032】
また、図10に示すように、開閉弁42をバイパスするバイパス通路21を設け、当該バイパス通路21に排気流量を微調整可能な微調整弁24を介装するようにしてもよい。これにより、開閉弁42が全閉状態とされたときでも、開閉弁42上流の排気管20内の排気圧、排気密度及び排気流速等を自在に調整可能である。
【0033】
ECU60は、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、中央処理装置(CPU)、タイマカウンタ等を備えており、当該ECU60により、エンジン1を含めた排気浄化促進装置の総合的な制御が行われる。
ECU40の入力側には、上述した排気圧センサ22等の各種センサ類が接続されており、これらセンサ類からの検出情報が入力される。
【0034】
一方、ECU40の出力側には、上述の燃料噴射弁6、点火コイル8、スロットル弁14、開閉弁42等の各種出力デバイスが接続されており、これら各種出力デバイスには各種センサ類からの検出情報に基づき演算された燃料噴射量、燃料噴射時期、点火時期、低減効果増強量Z等がそれぞれ出力され、これにより、燃料噴射弁6から適正量の燃料が適正なタイミングで噴射され、点火プラグ4により適正なタイミングで火花点火が実施され、所望の低減効果増強量Zとなるよう適正なタイミングで開閉弁42が開閉操作される。
【0035】
なお、低減効果増強量Zを検出するセンサ、即ち排気圧センサ22等を設け、当該センサからの情報により、或いは低減効果増強量Zと相関のある指標により、低減効果増強量Zを補正するようにすれば、精度よく低減効果増強量Z(弁開度)を変更することができる。また、排気管断面積を検出するセンサ、例えばバルブ開度センサを設け、当該バルブ開度センサの出力を当該補正に用いることで低減効果増強量Z(弁開度)の精度がさらに向上する。
【0036】
また、低減効果増強量Zに基づき開閉弁42を全閉とするときには、開閉弁42の排気通過流量をゼロにしてもよいし、所定流量確保するようにしてもよい。
以下、このように構成された本発明に係る排気浄化促進装置の作用を説明する。
図11を参照すると、低減効果増強量の設定手順がフローチャートで示されており、ここでは低減効果増強量が設定される。
【0037】
ステップS10ではイグニションキーがONであるか否かが判別され、ONである場合には、ステップS12に進み、予め各システム及び運転条件(エンジン回転速度、体積効率、正味平均有効圧、排気温、吸入空気量、排気体積流量、排気質量流量、或いはこれらと相関のある指標のうちの一つ以上)によって最適化されたマップ値(固定値でも可)として低減効果増強量基準値Zbが設定される。
【0038】
そして、ステップS14において、低減効果増強量基準値Zbが各種補正に基づく補正係数Kが乗算されて補正され、これにより、低減効果増強量Zが求められる。
ここに、低減効果増強量Zは、例えば、排気圧上昇量、排気密度上昇量、排気流速低下量、排気管断面積減少量或いはこれらと相関のあるパラメータ量のうちの一つ以上とする。
【0039】
補正係数Kは、各種補正係数の積としてもよく、また、各種補正係数の大きい値取り或いは小さい値取りとしてもよく、その他の方法でもよい。実際には、各種補正は、後述するように、例えば要求出力、冷態度合い等に応じて補正される。
ステップS16では、低減効果増強量Zが上限値により制限(クリップ)される。上限値は、燃焼悪化限界値(例えば、排気圧で1000mmHg。但し、エンジンの耐失火性によっては上限値は変動する。)とすることにより、マップ値及び各種補正係数をエンジン状態と独立して設定することができる。これにより、確実に失火を抑制しつつ容易にマップ値及び各種補正係数をキャリブレーションすることができる。
【0040】
なお、当該上限値の設定においては、例えば、吸気行程噴射より圧縮行程噴射の方が耐燃焼悪化性は高いため、吸気行程噴射における上限値よりも圧縮行程噴射における上限値を大きく設定する。また、A/F、点火時期、燃料噴射時期或いは環境条件によっても耐燃焼悪化性が異なるため、上限値はこれらの影響をも考慮して設定される。この場合、筒内圧センサ、トルクセンサ、エンジン角加速度センサ、エンジン回転速度センサ、A/Fセンサ等を設け、これら各センサからの情報により燃焼状態を診断し、当該上限値を補正するようにしてもよい。
【0041】
図12を参照すると、燃料供給手段による排気系への燃料供給により排気中の有害物質を低減させる場合の低減効果増強制御の制御手順がフローチャートで示されている。
ステップS20では、始動後か否か判別する。始動後であるか否かは、例えばエンジン回転速度が所定速度以上であるか否かで判別する。始動後でなければステップS22において補正係数Kを所定値A2とし、排気系への燃料供給は行わないようにする。一方、始動後であればステップS24に進む。
【0042】
ステップS24では、エンジン1の要求出力Fdが所定値F1以下であるか否か、即ちエンジン1に高出力が要求されている状況でないか否かを判別する。ここに、要求出力Fdは、例えば、アクセル開度、スロットル開度或いはこれらと相関のある指標のうちの一つ以上を基に推定する。高出力が要求されている場合には、ステップS26において補正係数Kを所定値A3とする。一方、高出力が要求されていない場合には、ステップS28に進む。なお、補正係数Kは、図13(a)に示すように、予め設定された要求出力Fdと補正係数Kとの関係を示すマップに基づき設定するようにしてもよい。
【0043】
ステップS28では、エンジン1の状態が冷態か否かを判別する。冷態の判定は、例えば以下の条件及びこれらと相関のある条件のうちの一つ以上を含む条件とする。
・冷却水温<所定温度(例えば、50℃)
・始動後所定期間(例えば、10sec)
・油温<所定温度(例えば、40℃)
・触媒流入排気温度<所定温度(例えば、300℃)
・触媒温度<所定温度(例えば、300℃)
・スロットル開度<所定開度(例えば、20%)
ステップS28の判別により、冷態でなければステップS30において補正係数Kを所定値A4とし、一方、冷態の場合には、ステップS32において補正係数Kを所定値A1とする。なお、補正係数Kは、図13(b)に示すように、予め設定された冷態度合いと補正係数Kとの関係を示すマップに基づき設定するようにしてもよい。
【0044】
このようにして補正係数Kが設定されると、上記図11のステップS14において低減効果増強量Zが演算される。
そして、ステップS34では、低減効果増強量Zに応じて燃料供給手段により排気系内に燃料を供給する。この場合、低減効果増強量Zが所定量以上であれば燃料を供給し、所定量より少なければ燃料の供給を停止するようにしてもよく、また低減効果増強量Zに応じて燃料供給量を連続的に変更するようにしてもよい。なお、所定値A1〜A4は同じ値となってもよいし、所定値A2〜A4はゼロであってもよい。なお、燃料供給手段により供給する燃料は主噴射の燃料と同一である必要はなく、ガソリン、アルコール、プロパンガス等のいかなる燃料も含まれる。
【0045】
ところで、燃料供給手段としては、ここでは、例えば燃料噴射弁6により主噴射とは別に副噴射を行う上述の2段燃焼の技術が採用される。つまり、燃料噴射弁6によって主噴射以降に燃料が再度噴射され、これにより排気系内に燃料及び酸素が供給される。
しかしながら、これに限られず、排気管20の低減効果増強装置40よりも上流部分に燃料噴射弁6とは別に燃料供給装置を設け、燃料供給手段は、主燃焼A/Fをリーン空燃比とするとともに、当該主燃焼用の燃料を噴射する空間(燃焼室)とは別の排気空間に、主噴射とは独立に燃料を供給するようなものであってもよい。また、主燃焼A/Fをリーン空燃比とすることなく、酸素をも独立に排気系に供給するようにしてもよい。
【0046】
そして、ステップS36において、低減効果増強量Zに応じて開閉弁42の開度が調節される。詳しくは、補正係数Kが所定値A1であって、エンジン1に高出力が要求されておらず且つエンジン1が冷態状態であるときには、低減効果増強量Zが大きくされ、開閉弁42の開度、即ち排気管断面積が減少させられる。これにより、開閉弁42よりも上流の排気系の排気圧が高められ、排気密度が上昇し、排気流速が低下する。
【0047】
このように、燃料供給装置から燃料が排気系に供給され、且つ、排気系の排気圧が高められ、排気密度が上昇し、排気流速が低下すると、燃料供給装置から供給された燃料は、排気中の酸素と反応し易くなり、即ち燃焼室を含む排気系内での反応が促進されることになり、燃料供給装置からの燃料供給のみ、或いは、排気圧を高めることのみでは十分ではなかった排気中のHC、CO等の有害物質の低減効果が増強されて排気浄化が促進され、且つ、三元触媒30の早期活性化が図られる。
【0048】
図14を参照すると、例えば、触媒上流における、排気圧と始動5秒後の排気温度との関係(a)、排気圧と始動後5秒間の触媒流入HC量との関係(b)、排気圧と始動後触媒流入最大HC濃度との関係(c)が実測値として示されているが、同図より、燃料供給装置から燃料が排気系に供給されたときに排気系の排気圧が高められると、排気圧が高いほど排気温度は高く、触媒に流入するHCは少なくなっていることがわかる。なお、図14には、燃料供給装置から燃料を排気系に供給しなかった場合(2段燃焼なしの場合)、即ち排気圧を高めることのみの場合の実測値を□印で併せて示してあるが、これらと比較しても、本発明が当該排気圧を高めることのみの場合に比べてその排気昇温及びHC低減において高い効果を奏することは明確である。
【0049】
また、図15を参照すると、上記低減効果増強制御を実施した場合の実験結果(実線)が、燃料供給装置から燃料を排気系に供給せず(2段燃焼なし)、即ち排気圧を高めただけの実験結果(破線)と比較してタイムチャートで示されているが、このように、上記低減効果増強制御を実施し、燃料供給装置から燃料を排気系に供給するとともに、有害物質の低減効果を増強すべく排気圧を高圧(例えば、800mmHg)まで上昇させることにより、始動直後(ファイアリング直後)から、排気マニホールド12の出口(エキマニ出口)での排気温度、触媒温度を高めることができ、触媒入口のHC濃度をはるかに低く抑えることができる。
【0050】
さらに、図16には、排ガスがさらに三元触媒30を通過した場合の触媒出口でのHC濃度が、上記低減効果増強制御を実施した場合(実線)と排気圧を高めただけの場合(破線)とで比較してタイムチャートで示されているが、同図に示すように、本発明に係る低減効果増強制御を実施することで、大気中に放出されるHC、即ち有害物質を始動直後から大幅に低減することができ、大気中に放出される排ガスを極めてクリーンなものにできる。
【0051】
一方、補正係数Kが所定値A2〜A4であって、エンジン1が始動後でない場合や、エンジン1に高出力が要求されている場合或いはエンジン1が冷態状態でない場合には、低減効果増強量Zは小さくされ、開閉弁42の開度は小さく制限される。つまり、このような場合は、排気浄化を促進しなくてもHC、CO等の有害物質が大気中に放出されないような状況とみなすことができ、低減効果を増強せず、つまり排気圧を高めたり、排気密度を上昇させたり、排気流速を低下させたりすることなく排ガスを流通させる。
【0052】
ところで、燃料供給手段として2段燃焼を使用する場合、好ましくは主噴射を圧縮行程で行い、A/Fが20以上の超リーン空燃比となるようにするのがよく、これにより排気昇温効果及び有害物質の低減効果は増大する。また、ここでは、排気管20として2重管路、断面θ形状の管路を採用しているので、通常の一重管路や二股管路を使用する場合に比べて、排ガスを保温する効果が高く、さらに効果が増大する。特に、デュアル型エキゾーストマニホールドシステムでは、図17に示すように、デュアル部分の冷却速度が大きいため、当該デュアル部に2重管路、断面θ形状の管路を採用する効果は大きい。
【0053】
また、火炎等が存在する空間に燃料を供給すると、火炎により燃料が自ら反応しにくい状態に改質され、燃焼室内での反応が促進されないようになるという特性がある。従って、燃料は、火炎等がほとんど存在しない空間に供給することが好ましい。
図18を参照すると、2段燃焼における、副噴射終了時期と始動50秒後のエキマニ入口のHC濃度との関係の実測値が示されているが、同図に示すように、火炎が殆ど消滅する時期或いは燃料を供給する空間に火炎が存在しない時期(以下、火炎消滅時期という)以降且つ排気弁開時期以前に燃料を供給することにより、燃焼室から排出されるHC濃度は大きく低減されている。つまり、2段燃焼の場合、排気圧を高圧(例えば、700mmHg)とし、火炎が消滅した後に燃料を供給するようにすれば、排気弁が開弁するまでの間に燃焼室内でHCが十分に反応することになるのである。
【0054】
この火炎消滅時期は、機関、運転条件等によって異なり、本実施例の機関及び運転条件では、圧縮上死点後53゜程度であり、ここでは53゜ATDC以降に燃料を供給することが好ましいといえる。このことは、図19に示すように、A/Fの変化からも判断できる。つまり、火炎が存在している状態ではエネルギが解放されて燃焼室内圧が高圧状態となるが、火炎がほとんど消滅した状態ではエネルギの解放がなく燃焼室内圧は低圧状態となるため、燃料噴射弁差圧が上昇し、同一噴射期間(本実施例の場合、クランク角約7#)でもA/Fがリッチ空燃比となるが、この不連続点が圧縮上死点後53゜程度であり、これにより火炎消滅時期が圧縮上死点後53゜程度であると判断できる。なお、火炎消滅時期は前述したとおり運転条件によって異なる場合があるため、当該火炎消滅時期を筒内圧或いは排気A/Fにより検出、或いは運転条件(点火時期、A/F、EGR、エンジン回転速度、体積効率、正味平均有効圧、冷却水温、油温、吸気温、排気弁開閉時期、吸気弁開閉時期、低減効果増強量およびこれらと相関のある指標のうち一つ以上)に応じて予め求められたマップ値(固定値でもよい)として設定することにより、より確実に排気系内での反応を促進させることができる。
【0055】
また、火炎がほとんど消滅した後、排ガスは冷却され始めるため、始動直後は燃焼室内の反応が一時的に促進されにくくなる。従って、排気弁が開いて排ガスが冷却される前(当該実施例では圧縮上死点後125゜程度以前)に燃料を供給することがより好ましいといえる。
また、燃料供給時期は、低負荷ほど火炎消滅後の冷却割合が高くなるため進角側に、高負荷ほど火炎消滅後の排気温度が高く適当に改質されにくくなるため遅角側に設定することが好ましい。
【0056】
このように、燃料供給時期は、火炎消滅時期以降で排気弁開時期以前とすることが最も好ましく、これにより、供給した燃料を良好に自ら反応しやすい状態に改質することができ、また冷却による一時的な反応低下を抑制することができ、排気特性の改善と相まって確実に燃焼室内での反応を促進させることができる。即ち、低減効果増強手段の作用と相まって有害物質の排出量を確実に低減することができる。
【0057】
図20を参照すると、副噴射終了時期を45°(一点鎖線)、53°、82°(実線)、105°(破線)、160°(二点鎖線)とした場合の排気マニホールド12入口(エキマニ入口)の排気温度、HC濃度がそれぞれタイムチャートで示されているが、このように、副噴射終了時期が火炎消滅時期以降で排気弁開時期以前の53°、82°(実線)、105°(破線)である場合には、良好にHCを低減することができる。
【0058】
なお、燃料を火炎消滅時期以前に供給しても、当該燃料は排気マニホールド12や排気管20内で低減効果増強手段により反応が促進されるため、実際には、排気干渉の小さいデュアル型エキゾーストマニホールドシステム等の排気システムにおいて反応がそれほど促進されない以外は本発明の効果を十分得ることができるものであり、火炎消滅時期以前の燃料供給を妨げるものではない。また、排気弁が開いた後であっても、燃焼により排気系が暖められるため、始動直後の一時的冷却による反応低下以外は本発明の効果を十分得ることができるものであり、排気弁が開いた後の燃料供給を妨げるものでもない。
【0059】
また、図21を参照すると、低減効果増強装置40が作動する場合の点火時期、吸入空気量、A/Fの設定手順がフローチャートで示されている。
ステップS40では、低減効果増強量Zを読み込み、ステップS42〜ステップS46で点火時期、吸入空気量、A/Fに対して低減効果増強量Zに応じた補正を行う。詳しくは、基準点火時期、基準吸入空気量、基準A/Fにそれぞれ補正係数Ksa、Kq、Kafを乗算して点火時期、吸入空気量、A/Fを求める。なお、ここでは、点火時期、吸入空気量、A/Fの全てについて補正しているが、いずれか一つ以上の補正であってもよい。また、ここでは、基準値に対して補正しているが、その他の設定方法、例えば直接設定するような方法であってもよい。
【0060】
このように、排気圧、排気密度、排気流速、排気断面積或いはこれらと相関のある指標のうち一つ以上に応じて点火時期、吸入空気量、A/Fのうち一つ以上を変更することにより、低減効果増強装置40の作動によるトルク変動を抑制することができ、運転フィーリングが改善される。また、各変更時に、低減効果増強量Zの変化に応じてテーリングを行うことで、より一層運転フィーリングが改善される。
【0061】
また、図22を参照すると、排気管断面積変更可否判断を行うルーチンのフローチャートが示されており、これにより、低減効果増強量Zに応じて排気管断面積、即ち開閉弁42の開度を変更してもよい状況か否かが判断される。
ステップS50では、排気圧Pが所定圧P1より小さいか否かを判別し、排気圧Pが所定圧P1より小さい場合には、ステップS52において、排気管断面積を変更、即ち低減効果増強量Zに応じて開閉弁42の開度を変更する。
【0062】
一方、排気圧Pが所定圧P1以上である場合には、排気圧Pが、所定圧P1より小さくなるまで排気管断面積、即ち開閉弁42の開度を変更しない。
このようにすると、排気圧の変化によるトルク変動を低減でき、運転フィーリングの悪化を抑制することができる。
なお、所定圧P1は、例えば予め各システム及び運転条件(エンジン回転速度、体積効率、正味平均有効圧、排気温、吸入空気量、排気体積流量、排気質量流量、或いはこれらと相関のある指標のうち一つ以上)によって最適化された値(固定値でも可)とする。この場合、目標排気断面積は変更するが、実排気断面積は上記のように排気圧Pに応じて変更するようにしてもよい。
【0063】
ところで、排気系上流で反応促進により高温となった排ガスは、下流の三元触媒30に到達するまでに冷却により排ガス温度が低下する。その温度低下は触媒上流容積が大きいほど大きくなる。さらに、低減効果増強量Zの一つが排気流速低下量である場合には、触媒に到達するまでの時間が長くなるためにより冷却量が増大する。この場合、低減効果増強装置40を作動させている期間は排気管内での反応が促進されてHC、CO等の大気放出は十分抑制されるものの、三元触媒30が活性化する前に高出力の要求等により低減効果増強装置40の作動が解除される確率が高くなるため、有害排ガスが十分浄化されずに大気放出されるという問題が生じるおそれがある。
【0064】
そこで、本実施例では、排気管20内の反応により排ガスが昇温した後、一時的に低減効果増強量Z(少なくとも排気流速低下量を含む)を低下させて高温ガスを早期に触媒に供給させるようにしている。
図23を参照すると、排気ポートから触媒までの容積(以下、触媒上流容積という)が大きい排気系における触媒の早期活性化手法の制御手順がフローチャートで示されており、以下説明する。具体的には、当該制御は、デュアル型エキゾーストマニホールドシステムとUCCからなるシステム、即ち本実施例におけるデュアル型エキゾーストマニホールドシステムと三元触媒30からなるシステムに燃料供給手段及び低減効果増強手段とを適用させる場合の触媒早期活性化手法である。
【0065】
ステップS60では、低減効果増強量Zを一時的に低下させるためのカウンタNをリセットする。そして、次のステップS62では、冷態か否かを判別し、冷態でなければ、ステップS64において上記補正係数Kを所定値A7とし、燃料供給度合いを所定度合いB3とする。この場合、所定値A7、所定度合いB3はゼロであってもよい。一方、冷態であれば、ステップS66においてカウンタNをカウントアップし、ステップS68に進む。
【0066】
ステップS68では、カウンタNが所定範囲内(0≦N<N1)であるか否かを判別する。所定範囲内であればステップS70に進み、補正係数Kを所定値A5とし、燃料供給度合いを所定度合いB1とする。一方、所定範囲外であれば、ステップS72に進む。
ステップS72では、さらにカウンタNが所定範囲(N1≦N<N2)であるか否かを判別する。所定範囲内であれば、ステップS74に進み、補正係数Kを所定値A6とし、燃料供給度合いを所定度合いB2とする。一方、所定範囲外であれば、ステップS76に進み、カウンタNをリセットする。以下ステップS62以降を繰り返す。なお、所定値A6<所定値A5、所定度合いB2<所定度合いB1とする。また、所定値A6、所定度合いB2をゼロにしてもよい。
【0067】
これにより、補正係数Kを所定値A6として低減効果増強量Zを低下させると、燃料供給による排気管20内での反応の増強効果が低下し、反応しない燃料が大気放出される可能性があるが、同時に燃料供給度合いをも所定度合いB2のように小さくすることで、このような燃料の大気放出が防止される。
つまり、当該制御では、排気管20内の反応により排ガスが昇温した後、一時的に低減効果増強量Z(少なくとも排気流速低下量を含む)を低下させるとともに燃料供給度合いを低下させるようにしており、これにより、燃料の大気放出を抑制しつつ、高温ガスを早期に触媒に供給させるようにして、触媒を早期に活性化させることができる。
【0068】
また、ここでは、排気管20として2重管路、断面θ形状の管路を採用しているので、通常の一重管路や二股管路を使用する場合に比べて、排ガスを保温する効果が高く、さらに効果が増大する。特に、デュアル部に2重管路、断面θ形状の管路を採用することによる効果は大きい。また、燃料供給時期は、火炎消滅時期以降で排気弁開時期以前とすることが最も好ましい。また、排ガスの輸送遅れがある場合には、ステップS70或いはステップS74において、燃料供給度合いの変更と低減効果増強量Zの変更との間に時間差を設けてもよい。
【0069】
また、図24を参照すると、排気流量増大によって低減効果増強量Zを確保する場合のルーチンがフローチャートで示されており、以下説明する。
現実には、密閉型開閉弁42の密閉性能とコストとの間には密接な関係がある。従って、密閉性能が低くても低減効果増強量Zを確保できればコスト削減を図ることができる。つまり、密閉性能は全閉時の漏れ断面積によって決定されるため、同一漏れ断面積でより多くの低減効果増強量Zを確保できれば、その分、開閉弁42全閉時の漏れ断面積の大きな、より低コストな開閉弁42を採用することができる。
【0070】
そこで、ここでは、同一漏れ断面積において、排気流量が大きいほど弁上流側の圧力が上昇することに着目し、要求される排気圧に応じて排気流量を増減させ、漏れ断面積の大きい低コストな開閉弁42を採用した場合であっても排気圧を確保可能としている。
ステップS80では、要求排気圧Pdが所定排気圧P2より大きいか否かを判別する。要求排気圧Pdが所定排気圧P2以下であればそのままルーチンを抜け、所定排気圧P2より大きければ、ステップS82に進む。
【0071】
ステップS82では、主噴射を圧縮行程で行い、次にステップS84においてA/Fを所定値AF1とする。この場合、所定値AF1は空気量の多くなる20以上の超リーン空燃比、例えば30とする。なお、当該ルーチン以外において、主噴射を圧縮行程で実施することを妨げるものではない。
これにより、より大きな全閉時の漏れ断面積を有するより低コストな密閉型開閉弁42を使用することができる。また、これを応用すれば、弁開度を変更せずに排気圧を変更することも可能である。
【0072】
図25を参照すると、図12で示した低減効果増強制御の変形例、即ち2段燃焼を実施した後、トータルA/Fをスライトリーン空燃比とする低減効果増強制御のルーチンがフローチャートで示されており、以下説明する。
先ず、ステップS90では、始動後か否かを判別し、始動後でなければステップS92において補正係数Kを所定値A2とする。一方、始動後であれば、ステップS94に進む。
【0073】
ステップS94では、出力変化ΔF(絶対値)が大きいか否か判別する。出力変化ΔFは、例えばアクセル開度変化、スロットル開度変化或いはこれらと相関のある指標のうち一つ以上を基に推定する。出力変化ΔFが大きい場合には、ステップS96において補正係数Kを所定値A3とする。これにより、低減効果増強量Zの変化に伴うトルク変動に起因した運転フィーリングの悪化を緩和させることができる。一方、出力変化ΔFが小さい場合には、ステップS98に進む。
【0074】
ステップS98では、始動後所定期間t1が経過したか否かを判別し、所定期間t1が経過していなければ、ステップS100で2段燃焼により燃料を供給する。なお、始動後所定期間t1の経過判定に代えて低水温判定、低油温判定、低触媒流入排気温度判定、低触媒温度判定を行うようにしてもよいし、これらの判定を併用してもよい。
【0075】
ここで、図26を参照すると、始動後に2段燃焼を実施し、その後A/Fをリーン空燃比とした場合の触媒入口での排気温度、触媒温度、触媒下流のHC濃度の実験結果がA/Fを16(実線)、18(破線)、22(一点鎖線)とした場合のそれぞれについてタイムチャートで示されているが、同図に示すように、A/Fを16(実線)とした場合に、最も効果的に排気温度、触媒温度が昇温し、HC濃度が低減されていることがわかる。従って、ここでは、2段燃焼におけるトータルA/Fは例えば16に設定される。
【0076】
ステップS102では、補正係数Kを所定値A1とする。そして、ステップS104において、低減効果増強量Zに応じて開閉弁42の開度を調節する。これにより、上記図12の場合と同様に、燃料等の有害物質の大気放出が抑制されつつ三元触媒30が早期に活性化される。
一方、ステップS98の判別により、始動後所定期間t1の経過後であれば、ステップS106に進み、2段燃焼を中止した後、ステップS108において、冷却水温Twが所定温度T1よりも小さいか否かを判別する。なお、低水温判定に代えて始動後所定期間経過判定、低油温判定、低触媒流入排気温度判定、低触媒温度判定を行うようにしてもよいし、これらの判定を併用してもよい。
【0077】
ステップS108の判別により、冷却水温Twが所定温度T1よりも小さければ、ステップS110において、主噴射を圧縮行程で実施し、A/Fをスライトリーン空燃比(ストイキを含む弱リーン空燃比)に設定し、ステップS112において、補正係数Kを所定値A4とする。
これにより、燃料消費の大きい2段燃焼期間を最小限に抑制しつつ、触媒が再び不活性となる運転条件においても、触媒の活性状態を維持しながら、有害物質の大気放出を確実に抑制することができる。
【0078】
一方、ステップS108の判別により、冷却水温Twが所定温度T1以上であれば、スライトリーン空燃比での運転を中止し、ステップS116において、補正係数Kを所定値A5とする。
ここに、所定値A1〜A5は同じ値となってもよいし、所定値A2〜A5はゼロであってもよい。
【0079】
また、ここでは、排気管20として2重管路、断面θ形状の管路を採用しているので、通常の一重管路や二股管路を使用する場合に比べて、排ガスを保温する効果が高く、さらに効果が増大する。特に、デュアル部に2重管路、断面θ形状の管路を採用することによる効果は大きい。また、燃料供給時期は、火炎消滅時期以降で排気弁開時期以前とすることが最も好ましい。
【0080】
なお、ここでは、2段燃焼の終了後、スライトリーン空燃比での運転を行うようにしたが、これに代えて、2段燃焼の終了後に高周波高振幅でのA/F変調を行ってもよい。高周波高振幅でのA/F変調を行うと、浄化効率が常に適正な状態に維持されることになり、スライトリーン空燃比での運転と同様の効果が得られる。
【0081】
なお、上記実施例では、図1に示すように、低減効果増強装置40を三元触媒30の直下流に設けた場合について説明したが、これに限られず、低減効果増強装置40の耐熱温度が低い場合には、図27に示すように、低減効果増強装置40をできるだけ排気管20の下流に設け、低減効果増強装置40の上流に排ガス温度を低下させる冷却装置28を配置するようにしてもよい。これにより、低減効果増強装置40の耐久性を向上させながら、有害物質の低減効果を増強することができる。なお、冷却装置28は、排気管20の放熱面積を拡大させたもの、例えば排気管20にフィンを取り付けたもの、排気管20をジャバラ管にしたもの(図示)、或いはこれらを併用したものを用いる。
【0082】
一方、低減効果増強装置40の耐熱性が高い場合は、低減効果増強装置40を触媒上流に設けるようにしてもよく、この場合、排ガス低減装置40の上流の排気系容積が減少するため、低減効果増強量Zの応答性が改善されるという利点がある。
また、上記実施例では、低減効果増強装置40として開閉弁42を用いるようにしたが、吸排気系にターボチャージャを備える場合には、当該ターボチャージャのウエストゲートバルブを開閉弁42の代わりに使用することもできる。つまり、ウエストゲートバルブは開閉弁42と同様の弁機能を有しているため、低減効果増強量Zに応じて当該ウエストゲートバルブを制御するようにしても上記同様の効果が得られる。
【0083】
また、エンジン1が排気弁開時期可変装置を備えている場合には、当該排気弁開時期可変装置を開閉弁42の代わりに使用することもできる。つまり、排気弁開時期を遅らせることにより、高い燃焼室内圧を維持したり、ピストン上昇により燃焼室内圧を増大させたりすることが可能となり、これにより燃焼室内での反応を促進させることができ、排気特性の改善と相まって確実に燃焼室内での反応を促進させることができる。即ち、低減効果増強手段の作用と相まって有害物質の排出量を確実に低減することができる。
【0084】
以上で説明を終えるが、上記各ルーチンに基づく制御は、単独で行ってもよいし、2以上を併用してもよい。
また、触媒は、ここでは三元触媒を用いたが、リーンNOx触媒、HC吸着触媒等いかなる触媒であってもよく、MCC、FCC、UCCの全てに適用可能である。
【0085】
また、エンジンはガソリンエンジンに限られるものではなく、ディーゼルエンジンであってもよい。
【0086】
【発明の効果】
以上詳細に説明したように、本発明の請求項1の内燃機関の排気浄化促進装置によれば、主燃焼用の燃料とは別に排気系に追加燃料を供給し、低減効果増強手段により排気の流動状態を制御して排気中の酸素を追加燃料や未燃物と反応し易い状態とするので、追加燃料或いは未燃物と排気系内における酸素との反応を飛躍的に促進させるようにでき、広範囲に亘る種類のエキゾーストマニホールドシステム(クラムシェル型、デュアル型、シングル型等)においても、また内燃機関の広範囲に亘る運転条件下(始動時、暖機運転時等)においても、燃料供給手段による有害物質の排出量の低減効果を増強させることができる。これにより、排気中の有害物質の排出を抑制しつつ排気温度を確実に上昇させることができ、排気系下流側に触媒を有する場合には、触媒を急速に昇温させることができ、有害物質の排出量を低減しながら触媒を早期に活性化することができる。排気系下流側に触媒を有さない場合でも、低減効果増強手段により追加燃料や未燃物をほぼ完全に酸素と反応させるようにでき、有害物質の大気放出を確実に抑制することができる。
さらに、一時的に低減効果増強量を低下させると同時に燃料供給手段による燃料供給度合を低下させることを繰り返すことで、燃料の大気放出を抑制しつつ、高温ガスを早期に触媒に供給させるようにして、触媒をより早期に活性化することができる。
【0087】
また、請求項2の内燃機関の排気浄化促進装置によれば、排気圧の上昇、排気密度の増大、排気流速の低下のうち少なくとも一つ以上を生起させることで、容易にして排気中の酸素を追加燃料や未燃物と反応し易い状態にできる。これにより、排気系(燃焼室、排気弁部、エキゾーストマニホールドを含む)内の排気反応を改善し、有害物質の排出量の低減効果を増強させることができる。
【0088】
また、請求項3の内燃機関の排気浄化促進装置によれば、排気管の断面積を減少させることで、排気圧の上昇、排気密度の増大、排気流速の低下のうち少なくとも一つ以上を生起させることができ、排気管の断面積を変更するという簡単な構成且つ低コストにして有害物質の排出量の低減効果を確実に増強させることができる。
【0089】
また、請求項4の内燃機関の排気浄化促進装置によれば、排気圧の変化による内燃機関のトルク変動の低減を図り、内燃機関の運転フィーリングの悪化を抑制しながら、有害物質の排出量の低減効果を確実に増強させることができる。
また、請求項5の内燃機関の排気浄化促進装置によれば、主燃焼の火炎消滅時期以降且つ排気弁の開弁開始時期以前に燃焼室に燃料を再供給することで、燃料供給手段により供給した燃料を自ら反応しやすい状態に改質させるようにでき、また冷却による一時的な反応低下を抑制できる。これにより、追加燃料の燃焼室内での反応を促進することができ、低減効果増強手段の作用と相まって有害物質の排出量を確実に低減することができる。
【0090】
また、請求項6の内燃機関の排気浄化促進装置によれば、燃焼室内に追加燃料を再供給しなくても、例えば低減効果増強手段による制御の影響を受ける排気管内に燃料を供給することで、低減効果増強手段の作用により排気系内での反応を促進することができ、有害物質の排出量を確実に低減することができる。
【図面の簡単な説明】
【図1】本発明に係る内燃機関の排気浄化促進装置の概略構成図である。
【図2】各種エキゾーストマニホールドシステムを示す図である。
【図3】2重管路を示す図である。
【図4】デュアル型エキゾーストマニホールドシステムのデュアル部分の断面形状を示す図である。
【図5】低減効果増強装置の密閉型開閉弁としてのバタフライ弁を示す図である。
【図6】低減効果増強装置の密閉型開閉弁としての通気口を有するバタフライ弁を示す図である。
【図7】低減効果増強装置の密閉型開閉弁としての通気口を有する一般的な開閉弁を示す図である。
【図8】低減効果増強装置の密閉型開閉弁としてのボール型弁を示す図である。
【図9】低減効果増強装置の密閉型開閉弁としてのポペット弁を示す図である。
【図10】密閉型開閉弁をバイパスするバイパス通路に排気流量を微調整可能な微調整弁を設けた場合の図である。
【図11】低減効果増強量の設定手順を示すフローチャートである。
【図12】低減効果増強制御の制御手順を示すフローチャートである。
【図13】要求出力、冷態度合いと補正係数Kとの関係を示すマップである。
【図14】触媒上流における、排気圧と始動5秒後の排気温度との関係(a)、排気圧と始動後5秒間の触媒流入HC量との関係(b)、排気圧と始動後触媒流入最大HC濃度との関係(c)を示す図である。
【図15】低減効果増強制御を実施した場合の実験結果(実線)を、燃料供給装置から燃料を排気系に供給しない(2段燃焼なし)場合の実験結果(破線)と比較して示したタイムチャートである。
【図16】排ガスがさらに三元触媒を通過した場合の触媒出口でのHC濃度を、低減効果増強制御を実施した場合(実線)と排気圧を高めただけの場合(破線)とで比較して示したタイムチャートである。
【図17】デュアル型エキゾーストマニホールドシステムのデュアル部分の冷却速度を説明する図である。
【図18】2段燃焼における、副噴射終了時期と始動50秒後のエキマニ入口のHC濃度との関係を示す図である。
【図19】副噴射終了時期とA/Fとの関係を示す図である。
【図20】副噴射終了時期を45°(一点鎖線)、53°、82°(実線)、105°(破線)、160°(二点鎖線)とした場合のエキマニ入口の排気温度、HC濃度をそれぞれ示すタイムチャートである。
【図21】低減効果増強装置が作動する場合の点火時期、吸入空気量、A/Fの設定手順を示すフローチャートである。
【図22】排気管断面積変更可否判断を行うルーチンを示すフローチャートである。
【図23】排気ポートから触媒までの容積(以下、触媒上流容積という)が大きい排気系における触媒の早期活性化手法の制御手順を示すフローチャートである。
【図24】排気流量増大によって低減効果増強量Zを確保する場合のルーチンを示すフローチャートである。
【図25】低減効果増強制御の変形例、即ち2段燃焼を実施した後、トータルA/Fをスライトリーン空燃比とする低減効果増強制御のルーチンを示すフローチャートである。
【図26】始動後に2段燃焼を実施し、その後A/Fをスライトリーン空燃比とした場合の触媒入口での排気温度、触媒温度、触媒下流のHC濃度の実験結果をA/Fが16(実線)、18(破線)、22(一点鎖線)である場合のそれぞれについて示したタイムチャートである。
【図27】低減効果増強装置をできるだけ排気管の下流に設け、低減効果増強装置の上流に冷却装置を配置した例を示す図である。
【符号の説明】
1 エンジン本体
6 燃料噴射弁(燃料供給手段)
12 排気マニホールド
20 排気管
28 冷却装置
30 三元触媒
40 低減効果増強装置(低減効果増強手段)
42 密閉型開閉弁
60 ECU(電子コントロールユニット)

Claims (6)

  1. 内燃機関の排気管に介装された触媒と、
    上記内燃機関の排気中の有害物質の排出量を低減することを目的として、上記内燃機関の冷態時に主燃焼用の燃料とは別に排気系に燃料を供給する燃料供給手段と、
    該燃料供給手段よりも排気下流側に設けられ、該燃料供給手段による前記有害物質の排出量の低減効果を高めるよう排気の流動状態を制御する低減効果増強手段とを備え
    一時的に上記低減効果増強手段による低減効果増強量を低下させると同時に上記燃料供給手段による燃料供給度合を低下させることを繰り返すことを特徴とする内燃機関の排気浄化促進装置。
  2. 前記低減効果増強手段は、排気圧、排気密度及び排気流速の少なくともいずれか一つを変更することを特徴とする、請求項1記載の内燃機関の排気浄化促進装置。
  3. 前記低減効果増強手段は、排気管の断面積を変更することを特徴とする、請求項1または2記載の内燃機関の排気浄化促進装置。
  4. 前記低減効果増強手段は、排気圧が所定値以下のときに排気管の断面積を変更することを特徴とする、請求項3記載の内燃機関の排気浄化促進装置。
  5. 前記燃料供給手段は、燃焼室内に主燃焼用の燃料を供給した後、該主燃焼の火炎消滅時期以降且つ排気弁の開弁開始時期以前に再度燃焼室内に燃料を供給することを特徴とする、請求項1乃至4のいずれか記載の内燃機関の排気浄化促進装置。
  6. 前記燃料供給手段は、排気系のうち燃焼室よりも下流且つ低減効果増強手段による制御の影響を受ける領域内に燃料を供給することを特徴とする、請求項1乃至4のいずれか記載の内燃機関の排気浄化促進装置。
JP2000400304A 2000-12-28 2000-12-28 内燃機関の排気浄化促進装置 Expired - Fee Related JP3951093B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000400304A JP3951093B2 (ja) 2000-12-28 2000-12-28 内燃機関の排気浄化促進装置
DE60117468T DE60117468T2 (de) 2000-12-28 2001-12-28 Abgasreinigungsvorrichtung für einen fremdgezündeten Verbrennungsmotor mit Zylindereinspritzung
US10/204,980 US6729123B2 (en) 2000-12-28 2001-12-28 Exhaust purification device for intracylindrical injection-type spark-ignition internal combustion engine
PCT/JP2001/011654 WO2002053889A1 (fr) 2000-12-28 2001-12-28 Dispositif de purification de gaz d'echappement pour moteur a combustion interne a allumage par etincelle du type a injection intra-cylindre
EP01272921A EP1347156B1 (en) 2000-12-28 2001-12-28 Exhaust purification device for intracylindrical injection-type spark-ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000400304A JP3951093B2 (ja) 2000-12-28 2000-12-28 内燃機関の排気浄化促進装置

Publications (2)

Publication Number Publication Date
JP2002201931A JP2002201931A (ja) 2002-07-19
JP3951093B2 true JP3951093B2 (ja) 2007-08-01

Family

ID=18864924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000400304A Expired - Fee Related JP3951093B2 (ja) 2000-12-28 2000-12-28 内燃機関の排気浄化促進装置

Country Status (1)

Country Link
JP (1) JP3951093B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5429378B2 (ja) * 2010-07-21 2014-02-26 トヨタ自動車株式会社 内燃機関の排気浄化装置

Also Published As

Publication number Publication date
JP2002201931A (ja) 2002-07-19

Similar Documents

Publication Publication Date Title
US8056337B2 (en) Internal combustion engine and control method thereof
JP4952847B2 (ja) 内燃機関の制御装置
JP4172497B2 (ja) 排気微粒子の測定装置
WO2008012992A1 (fr) Procédé de commande de synchronisation de soupapes de moteur diesel
AU2011368598B2 (en) Air-fuel ratio control device for internal combustion engine
WO2005111388A1 (ja) 内燃機関の排気浄化装置
JP3951095B2 (ja) 内燃機関の排気浄化促進装置
US6729123B2 (en) Exhaust purification device for intracylindrical injection-type spark-ignition internal combustion engine
JP2006169997A (ja) 触媒の劣化判定装置
JP4385531B2 (ja) 触媒を備えた4サイクルエンジン
JP3951093B2 (ja) 内燃機関の排気浄化促進装置
JP2004124807A (ja) 内燃機関の排気ガス浄化装置
JP2004060551A (ja) 内燃機関の制御装置
JP3446812B2 (ja) 内燃機関
JP2003120283A (ja) 排気圧力制御弁
JP2009264341A (ja) 内燃機関
JP2000087736A (ja) 内燃機関
JP4778879B2 (ja) 内燃機関の過給圧制御装置
JP3800324B2 (ja) 筒内噴射型火花点火式内燃機関の排気浄化装置
JP2005023822A (ja) 内燃機関の制御装置
JP2007002795A (ja) 筒内直接噴射式火花点火内燃機関の制御装置
JP2013221427A (ja) 内燃機関の制御装置
JP4255224B2 (ja) 内燃機関
JP4022716B2 (ja) 排気浄化装置
JP4506042B2 (ja) エンジンの排気浄化装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070410

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees