JP3950964B2 - 強磁場内作動型放射線位置検出器 - Google Patents

強磁場内作動型放射線位置検出器 Download PDF

Info

Publication number
JP3950964B2
JP3950964B2 JP2003014880A JP2003014880A JP3950964B2 JP 3950964 B2 JP3950964 B2 JP 3950964B2 JP 2003014880 A JP2003014880 A JP 2003014880A JP 2003014880 A JP2003014880 A JP 2003014880A JP 3950964 B2 JP3950964 B2 JP 3950964B2
Authority
JP
Japan
Prior art keywords
scintillator
layer
position detector
cells
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003014880A
Other languages
English (en)
Other versions
JP2004226256A (ja
Inventor
誠一 山本
秀雄 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Radiological Sciences
Original Assignee
National Institute of Radiological Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Radiological Sciences filed Critical National Institute of Radiological Sciences
Priority to JP2003014880A priority Critical patent/JP3950964B2/ja
Publication of JP2004226256A publication Critical patent/JP2004226256A/ja
Application granted granted Critical
Publication of JP3950964B2 publication Critical patent/JP3950964B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Nuclear Medicine (AREA)
  • Light Receiving Elements (AREA)
  • Measurement Of Radiation (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、強磁場内に置かれた場合にも、放射線の位置を正確に検出し、かつ放射線吸収エネルギー量を正確に弁別する機能を持たせた強磁場内作動型放射線位置検出器に関する。
【0002】
【従来の技術】
従来、シンチレーション放射線検出器において放射線の深さ位置検出機能および放射線吸収エネルギー選別機能を持たせた放射線位置検出器に関するものとして、放射線の3次元位置検出器があった(例えば、特許文献1参照)。
しかしこの検出器は、受光素子が各シンチレータ・セルに直接光学結合されているため、強磁場内では正常な動作をしない。これは受光素子内で光子から変換した光電子が磁場の作用で軌道を変えられるためである。従って、検出器全体としての放射線の位置及びエネルギーの分解能特性が損なわれる。
図5は、従来型放射線位置検出器の例であり、図6は、従来型放射線位置検出器の4つの受光素子で受け取る光の分配率を示す二次元分布図で、各シンチレータ・セルに対応する区域を形成する。
【0003】
【特許文献1】
特開平1−229995号公報
【0004】
【発明が解決しようとする課題】
本発明の目的は、強磁場内に置かれた場合にも正常な動作をすることができる強磁場内作動型放射線位置検出器を提供することである。
本発明の他の目的は、強磁場内に置かれた場合にも正常な動作をすることができ、放射線の位置及びエネルギーの分解能特性に優れた強磁場内作動型放射線位置検出器を提供することである。
【0005】
【課題を解決するための手段】
本発明は、以下の強磁場内作動型放射線位置検出器を提供するものである。
1.2個以上のシンチレータ・セルを平面的に接合し、これを2段以上層状に重ねた多層シンチレータと、この多層シンチレータの各シンチレータ・セルの底面に接続された受光素子を含み、前記各シンチレータ・セルの底面と受光素子が光ファイバーを介して接続されていることを特徴とする強磁場内作動型放射線位置検出器。
2.多層シンチレータが、縦方向に2〜3個、横方向に2〜3個のシンチレータ・セルを平面的に接合し、それを2〜5段層状に重ねたものである上記1記載の強磁場内作動型放射線位置検出器。
3.多層シンチレータが、縦方向に2個、横方向に2個のシンチレータ・セルを平面的に接合し、それを2〜5段層状に重ねたものである上記1記載の強磁場内作動型放射線位置検出器。
4.シンチレータが、セリウムをドープしたLu2SiO5単結晶である上記1〜3のいずれか1項記載の強磁場内作動型放射線位置検出器。
【0006】
【発明の実施の形態】
本発明は、2個以上のシンチレータ・セルを平面的に接合し、これを2段以上層状に重ねた多層シンチレータと、この多層シンチレータの各シンチレータ・セルの底面に接続された受光素子を含み、前記各シンチレータ・セルの底面と受光素子が光ファイバーを介して接続されていることを特徴とする強磁場内作動型放射線位置検出器である。
本発明の強磁場内作動型放射線位置検出器は、各シンチレータ・セルの底面と受光素子が光ファイバーを介して接続されていることを特徴とするものであり、放射線位置検出器としては、2個以上のシンチレータ・セルを平面的に接合し、これを2段以上層状に重ねた多層シンチレータと、この多層シンチレータの各シンチレータ・セルの底面に接続された受光素子を含むものであれば、従来公知のものも含めすべて本発明において使用可能である。
【0007】
このような放射線位置検出器としては、2個以上、好ましくは4個以上のシンチレータ・セルを平面的に接合し、それを2段以上、好ましくは2〜5段層状に重ねて多層シンチレータを形成し、2個以上の受光素子または位置分解が可能な受光素子を光学結合し、各シンチレータ・セル間は、空気、光反射材、光透過材、前記シンチレータと同じ材料から選ばれた少なくとも1種類のもので満たし、シンチレータ・セルごとの光学表面条件(鏡面又は粗面)と光反射材および光学透過材の組み合わせを最適化することにより、受光素子から得る出力信号で、放射線を検出したシンチレータ・セルの同定および放射線エネルギーの選別を行うことができるものが望ましい。
【0008】
本発明の放射線位置検出器に使用する光ファイバーの種類は特に制限はなく、ガラス製、プラスチック製いずれのものも使用できる。光ファイバーのサイズも特に限定されないが、直径1〜10mm、好ましくは1〜3mm、長さは0.5〜20m、好ましくは5〜10m程度のものが適当である。シンチレータ・セルの底面の面積が大きい場合には、細い光ファイバーを複数本、例えば、2〜1000本程度束ねて使用してもよい。細い光ファイバーを多数本使用することにより、光ファイバー全体の可撓性が向上し、取扱が容易になる。また、光ファイバーの断面形状をシンチレータ・セルの底面の形状に合わせることが容易になり、受光率を向上させることができる。
光ファイバーとシンチレータ・セルの底面との光学結合、及び光ファイバーと受光素子との光学結合は、例えば、シリコンゴム等による光学結合により行えばよい。
【0009】
本発明の放射線位置検出器は、2個以上のシンチレータ・セルを平面的に接合し、これを2段以上層状に重ねた多層シンチレータとしたこと、及び光ファイバーを介してシンチレータ・セルの底面と受光素子を光学結合したことを特徴とするものである。シンチレータ・セルからの出力信号は光子であるため、光電子に変換せず光子のまま信号を光ファイバーを介して磁場外に導き、磁場外に設置した光学素子に送信することにより、磁場の影響を完全に排除することが可能となる。また、多層シンチレータとしたことにより、 1)一度に複数の断面画像が得られる、2)PET装置全体 としての感度を向上できる、という効果がある。 なお深さ方向に複数層を設けられる利点としては、視野周辺部の空間分解能劣化を防ぐことが出来る点、及び感度を向上出来る点が挙げられる。
【0010】
本発明の強磁場内作動型放射線位置検出器において、エネルギー分解能、位置分解能、時間分解能をさらに向上させるためには、放射線を吸収し光を発したシンチレータ・セルの位置を弁別する手段、及び各シンチレータ・セルが発した光の前記受光素子による受光量を均一化する手段を含むことが望ましい。
放射線を吸収し光を発したシンチレータ・セルの位置を弁別する手段としては、隣接するシンチレータ層の発光の波形を弁別する手段が挙げられる。隣接するシンチレータ層の発光の波形を弁別する手段の具体例としては、発光の減衰時定数の差を利用するものが挙げられる。減衰時定数の差は好ましくは5ns以上、さらに好ましくは10ns以上、最も好ましくは15ns以上である。
【0011】
各シンチレータ・セルが発した光の受光素子による受光量を均一化する手段としては、例えば、特願2002−300125に記載されているように、最上層のシンチレータ層に隣接するシンチレータ層のシンチレータ・セルの表面を粗面とすること、他のシンチレータ層のシンチレータ・セルの表面を鏡面とすること、最上層のシンチレータ層及びこれに隣接するシンチレータ層を除く他のシンチレータ層のシンチレータ・セル間に光反射材を設置すること、及びいずれのシンチレータ・セルの表面にも隣接していないシンチレータ・セル外表面に光反射材を設置すること等が挙げられる。
【0012】
本発明の放射線位置検出器に使用するシンチレータ材料としては、放射線を吸収して発光するものであれば特に制限されないが、セリウムをドープしたLSO(Ce: Lu2SiO5)、BGO(Bi4Ge3O12)等が挙げられる。しかし、本発明に用いるシンチレータ材料は、蛍光出力が高いほど位置弁別効果が大きく、Bi4Ge3O12より50%以上高い出力のシンチレータであることが望ましく、Ce: Lu2SiO5を用いることがさらに望ましい。Ce: Lu2SiO5のセリウムのドープ量は好ましくは0.1〜5.0モル%、さらに好ましくは0.5〜1.5モル%程度である。
シンチレータ・セルはシンチレータ材料(単結晶)を直方体に切断したものが好ましく、その大きさは、1.0〜10mm×1.0〜10mm×1.0〜10mm程度が適当である。
【0013】
単結晶の表面を鏡面とするには、機械研磨、化学研磨等の方法が使用できる。
単結晶の表面を粗面とするには、切断、粗研磨等の方法が使用できる。粗面の程度は、最大高さRmax=346nm(へき開面)〜376nm(へき開面)が適当である。
また、光反射材としては、金属箔(例えば、アルミニウム箔等)、ポリマー膜(例えば、ポリテトラフルオロエチレン等)、無機粉末等が挙げられる。これらの光反射材の厚さは通常10〜500μmであり、好ましくは30〜200μmである。
【0014】
本発明の放射線位置検出器においては、受光素子で受ける光の総量を均一化するために、各シンチレータ層間及び受光素子とこれに隣接するシンチレータ層との間に、シンチレータ・セルが発した光に対して透明な光透過材を満たしておくことが望ましい。透明な光透過材としてはシリコーンオイル、空気、透明接着剤等が挙げられるが、透明接着剤であるシリコーンゴムが好ましい。
【0015】
以上のとおり、本発明の放射線位置検出器においては、シンチレータ・ユニット内の各シンチレータ・セルは、不純物の含量の違いもしくは組成の違いによる蛍光減衰時定数の選択、および結晶表面処理に関して粗面もしくは鏡面にするかの選択が可能であり、さらにセル間の境界層は光学的不連続層を形成し、層間に光反射材を挿入するかもしくは光に対して透明な透過材(光学接合材)を挿入するかの選択が可能である。特開平11−142523号公報に詳細に説明されているように、あるシンチレータ・セル内で発生した光は、この境界層を介して隣接するシンチレータ・セルにある割合で分配される。この分配された光を受け取ったシンチレータ・セルでも同様にこれと隣接するシンチレータ・セルにある割合で分配され、以下、この過程がシンチレータ・ユニット内の各シンチレータ・セル間で行われ、最終的に、シンチレータ・ユニットの一端面に光ファイバーを介して光学結合されたそれぞれの受光素子に到達する。
【0016】
それぞれの受光素子で受け取る光量は、上記で示したシンチレータ・ユニット内の各シンチレータ・セル間の光の分配率に依存し、これを工夫することによって、それぞれの受光素子で受け取る光量の組み合わせにより、シンチレータ・ユニット内のどのシンチレータ・セルが光を発生したかを知ることが可能となり、シンチレータ・ユニットの深さ方向における放射線の検出位置を計測することができる。これと同時に、シンチレータ・セルの光学表面と光反射材および透過材の組み合わせを最適化することにより、位置弁別を可能にしつつ、どのセルで発光しても受光素子全体で受け取る光の総量を同一にする強磁場内作動型放射線位置検出器を形成できる。
【0017】
実施例
以下、図面により本発明の実施例を詳しく説明する。
図1は、MRI(磁気共鳴映像法)中で測定可能なPET(陽電子放射断層撮影)装置の検出器の概念図を示す。
このシンチレータブロックは、4個のシンチレータ・セルを平面的に接合し、これを2段層状に重ねたものであり、従来深さ方向の放射線位置検出に用いられた放射線位置検出器(Murayama et al. IEEE Trans Nucl Sci, 1998)に光ファイバーを光学結合したものである。使用した光ファイバーはクラレ製ダブルクラッドオプティカルファイバー(直径2mm、長さ2.5m)であり、シンチレータ・セルはセリウムをドープしたLSO(Ce: Lu2SiO5)(2mm×2mm×2mmの立方体)であり、表面は鏡面処理し、隣接するシンチレータ・セル間はシリコンゴムで光学結合し、シンチレータ・セルの上面部に光反射膜フィルムを設けたものである。
このシンチレータブロックに511keVのガンマ線を照射すると発光し、この光信号は、4本の光ファイバーを通ってMRIの磁場外に設置された4つの受光素子(光電子増倍管(PMT))に送信される。
【0018】
図2は、シンチレータブロックからの4つの光信号(A、B、C、D)より、シンチレータブロック内の8個のシンチレータ・セルのうち、発光したシンチレータ・セルの位置を弁別する方法を説明するための概念図である。4つの光信号を、特開平11−142523号公報に詳細に説明されているような位置演算回路により位置演算することにより、8個のシンチレータ・セルの位置を2次元分布において8個の分布として得ることができる。
上記の構成を有する本発明の放射線位置検出器を使用して実際に得られた2次元分布を図3に示す。8個のLSOシンチレータ・セル位置に対応する分布が得られている。
【0019】
図4は、本発明の放射線位置検出器を用いて構成するPET装置の概念図である。本発明の放射線位置検出器のシンチレータブロックをリング状に配列し、放射線により発光した光信号を、光ファイバーを介してMRIの高磁場の外に配置した光電子増倍管(PMT)に導く。PMTの信号は位置演算された後、同時計数回路で同時に起こった事象かどうかを判定し、同時の場合はメモリにシンチレータ位置のアドレスを書き込む。一定時間積算したデータをコンピュータにより再構成し、断層画像を得る。MRIも同時あるいは前後に撮像され、画像の重ねあわせが可能となる。
【0020】
【発明の効果】
撮像できるスライス数はシンチレータブロックの構成が2×2×2であるので検出器リング数は2リングとなり、対向する検出器間の同時計数の2スライスと隣接するリング間の1スライスの合計3スライスが同時に撮像可能となる。
また深さ方向にも2層構造であり、ガンマ線の深さ方向に対する入射位置を検出することで視野周辺部における空間分解能の劣化を少なくすることができる。
さらに検出器がブロックの構造であるので、PMTや光ファイバーの数を従来の装置に比べ大幅に減少させることができる。
【0021】
さらにまた、本発明の放射線位置検出器を使用すると、3スライスを同時に撮像可能で深さ方向に2層を有する、MRIと同時に使用できるPET装置を実現することができる。
【図面の簡単な説明】
【図1】本発明の強磁場内作動型放射線位置検出器を用いた、MRI中で測定可能なPET装置の概念図である。
【図2】MRI中で測定可能なPET装置の検出器の位置演算方法を説明するための概念図である。
【図3】本発明の実施例の強磁場内作動型放射線位置検出器により得られた、4つの受光素子で受け取る光の分配率を表す2次元分布図である。
【図4】本発明の強磁場内作動型放射線位置検出器を用いた、MRI中で測定可能なPET装置全体を示す概念図である。
【図5】従来型放射線位置検出器の構成例を示す図である。
【図6】従来型放射線位置検出器の4つの受光素子で受け取る光の分配率を示す2次元分布図である。

Claims (5)

  1. 2個以上のシンチレータ・セルを平面的に接合し、これを2段以上層状に重ねた多層シンチレータブロックと、この多層シンチレータブロックの最下層の各シンチレータ・セルの底面に光ファイバーを介して接続された受光素子を含強磁場内作動型放射線位置検出器を用いて構成されたPET装置において、該多層シンチレータブロックを、その側面を隣接させてリング状に配列し、かつ各シンチレータ・セルの底面が該リングの軸と直交するように配列してなるPET装置。
  2. 多層シンチレータブロックが、縦方向に2〜3個、横方向に2〜3個のシンチレータ・セルを平面的に接合し、それを2〜5段層状に重ねたものである請求項1記載のPET装置。
  3. 多層シンチレータブロックが、縦方向に2個、横方向に2個のシンチレータ・セルを平面的に接合し、それを2〜5段層状に重ねたものである請求項1記載のPET装置。
  4. 多層シンチレータブロックが、縦方向に2個、横方向に2個のシンチレータ・セルを平面的に接合し、それを2段層状に重ねたものである請求項1記載のPET装置。
  5. シンチレータが、セリウムをドープしたLu2SiO5単結晶である請求項1〜4のいずれか1項記載のPET装置。
JP2003014880A 2003-01-23 2003-01-23 強磁場内作動型放射線位置検出器 Expired - Lifetime JP3950964B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003014880A JP3950964B2 (ja) 2003-01-23 2003-01-23 強磁場内作動型放射線位置検出器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003014880A JP3950964B2 (ja) 2003-01-23 2003-01-23 強磁場内作動型放射線位置検出器

Publications (2)

Publication Number Publication Date
JP2004226256A JP2004226256A (ja) 2004-08-12
JP3950964B2 true JP3950964B2 (ja) 2007-08-01

Family

ID=32902793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003014880A Expired - Lifetime JP3950964B2 (ja) 2003-01-23 2003-01-23 強磁場内作動型放射線位置検出器

Country Status (1)

Country Link
JP (1) JP3950964B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006084309A (ja) * 2004-09-15 2006-03-30 Shimadzu Corp 放射線検出器
EP1853161A4 (en) 2004-12-29 2011-03-23 Siemens Medical Solutions COMBINED PET / MR SYSTEM AND APD-BASED PET DETECTOR FOR USE IN SIMULTANEOUS PET / MR PRESENTATION
KR100715803B1 (ko) 2005-04-15 2007-05-10 재단법인서울대학교산학협력재단 3개 이상의 결정층이 형성된 섬광검출기 및 이를 이용한양전자 방출 단층촬영장치
KR100917930B1 (ko) 2007-12-03 2009-09-21 미끼꼬 이또우 다층 구조의 섬광 검출기 및 이를 이용한 양전자방출단층촬영장치
JP5224275B2 (ja) * 2008-03-28 2013-07-03 日立金属株式会社 Pet/mri一体型装置
KR101031483B1 (ko) * 2009-02-24 2011-04-26 성균관대학교산학협력단 Pet-mri 융합시스템
CN102262238B (zh) 2011-04-19 2014-07-23 苏州瑞派宁科技有限公司 一种提取闪烁脉冲信息的方法及装置

Also Published As

Publication number Publication date
JP2004226256A (ja) 2004-08-12

Similar Documents

Publication Publication Date Title
JP4332613B2 (ja) パルス波高整列放射線位置検出器
US8399843B2 (en) Scintillation array method and apparatus
US9442199B2 (en) Depth-of-interaction scintillation detectors
EP3132286B1 (en) Radiation detector with photosensitive elements that can have high aspect ratios
US7718972B2 (en) Radiation detector
US8481948B2 (en) Method to optimize the light extraction from scintillator crystals in a solid-state detector
US9513387B2 (en) System and method for providing depth of interaction detection using positron emission tomography
US7750306B2 (en) Reduced edge effect detector
JP5011590B2 (ja) 放射線位置検出器
JPH11218577A (ja) シンチレーションの検出
WO2009125480A1 (ja) 放射線検出方法、装置、及び、陽電子放射断層撮像装置
JP4803565B2 (ja) Doi型放射線検出器
WO2009101730A1 (ja) 放射線検出器、およびそれを備えた断層撮影装置
JP2013246156A (ja) 3次元放射線位置検出器
US7919757B2 (en) Radiation detector
JP3950964B2 (ja) 強磁場内作動型放射線位置検出器
CN113040800B (zh) Pet探测器、pet成像系统及伽马射线定位方法
JP3697340B2 (ja) 放射線入射位置3次元検出器の発光位置特定方法
JP2007101191A (ja) 放射線検出器
JP2003021682A (ja) 放射線3次元位置検出器
JPH07311270A (ja) 放射線検出器
CN219126405U (zh) 晶体阵列探测器和发射成像设备
US11686864B2 (en) Scintillator array with high detective quantum efficiency
JP2004354343A (ja) 放射線検出器
CN115778418A (zh) 晶体阵列探测器和发射成像设备

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070326

R150 Certificate of patent or registration of utility model

Ref document number: 3950964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term