JP3947296B2 - Sheet-like sealing material and method of manufacturing semiconductor device using the same - Google Patents

Sheet-like sealing material and method of manufacturing semiconductor device using the same Download PDF

Info

Publication number
JP3947296B2
JP3947296B2 JP5861898A JP5861898A JP3947296B2 JP 3947296 B2 JP3947296 B2 JP 3947296B2 JP 5861898 A JP5861898 A JP 5861898A JP 5861898 A JP5861898 A JP 5861898A JP 3947296 B2 JP3947296 B2 JP 3947296B2
Authority
JP
Japan
Prior art keywords
sheet
sealing material
circuit board
semiconductor element
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5861898A
Other languages
Japanese (ja)
Other versions
JPH10335389A (en
Inventor
昌紀 水谷
達志 伊藤
誠 桑村
弘司 野呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP5861898A priority Critical patent/JP3947296B2/en
Publication of JPH10335389A publication Critical patent/JPH10335389A/en
Application granted granted Critical
Publication of JP3947296B2 publication Critical patent/JP3947296B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16245Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]

Landscapes

  • Wire Bonding (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子をフェースダウン構造でマザーボード、あるいはドーターボード等の配線回路基板上に実装する方式による半導体装置の製造に用いるシート状封止材料およびそれを用いた半導体装置の製法に関するものである。
【0002】
【従来の技術】
最近の半導体デバイスの性能向上に伴う要求として、半導体素子をフェースダウン構造で、配線回路が形成されたマザーボード、あるいはドーターボード等の配線回路基板に実装される方法(フリップチップ方式、ダイレクトチップアタッチ方式等)が注目されている。これは、従来から用いられている方式、例えば、半導体素子から金ワイヤーでリードフレーム上にコンタクトをとりパッケージングされた形態でマザーボード、あるいはドーターボード等の配線回路基板に実装する方法では、配線による情報伝達の遅れ、クロストークによる情報伝達エラー等が生ずるという問題が発生していることに起因する。
【0003】
【発明が解決しようとする課題】
一方、上記フリップチップ方式、ダイレクトチップアタッチ方式においては、互いの線膨脹係数が異なる半導体素子と上記配線回路基板をダイレクトに電気接続を行うことから、接続部分の信頼性が問題となっている。この対策としては、半導体素子と上記配線回路基板との空隙に液状樹脂材料を注入し硬化させて樹脂硬化体を形成し、電気接続部に集中する応力を上記樹脂硬化体にも分散させることにより接続信頼性を向上させる方法が採られている。しかしながら、上記液状樹脂材料による半導体素子と配線回路基板の間の空隙への充填は、液状樹脂材料の毛細管効果を利用することによって行われるものであるため、液状樹脂材料の粘度を低い値に設定する必要がある。したがって、低粘度の材料を得るために、材料選定の幅が狭まり、低応力効果の高いゴム成分や、信頼性の高いフェノール樹脂等の使用が困難な状況であった。その結果、応力緩和効果の高い樹脂封止を行うことが難しく高信頼性の高いものが得られ難かった。さらに、上記液状樹脂材料は、超低温(−40℃)での保管が必要であることに加えて、上記半導体素子と配線回路基板との空隙への注入においては注射器で行う必要があり、注入ポジション、注入量コントロールが困難である等の問題を抱えている。
【0004】
本発明は、このような事情に鑑みなされたもので、上記半導体素子と配線回路基板および接続用電極に生ずる応力の緩和効果に優れ高信頼性を有する半導体装置の製法と、上記半導体素子と配線回路基板との空隙に容易に封止樹脂層を形成することができるシート状封止材料の提供をその目的とする。
【0005】
【課題を解決するための手段】
上記の目的を達成するため、本発明は、配線回路基板上に、複数の接続用電極部を介して半導体素子が搭載され、上記配線回路基板と半導体素子との間の空隙が封止樹脂層によって封止されてなる半導体装置の封止樹脂層を形成する際に用いられるシート状封止材料であって、上記シート状封止材料が、下記の(A)および(B)成分を含有するエポキシ樹脂組成物を用いてシート状に形成されたものであり、かつ下記の硬化物特性(X)を備えているシート状封止材料を第1の要旨とする。
(A)下記の一般式(1)で表されるビフェニル型エポキシ樹脂。
【化3】

Figure 0003947296
(B)アクリロニトリル結合量が15〜40%であるアクリロニトリル−ブタジエン系共重合体。
(X)25℃における引張弾性率が300〜15000MPaである。
【0006】
また、配線回路基板上に、複数の接続用電極部を介して半導体素子が搭載され、上記配線回路基板と半導体素子との間の空隙が封止樹脂層によって封止されてなる半導体装置の製法であって、上記封止樹脂層が、上記シート状封止材料を用いて形成する半導体装置の製法を第2の要旨とする。
【0007】
すなわち、本発明では、複数の接続用電極部を介在して接続された、配線回路基板と半導体素子との間の空隙に封止樹脂層が形成された半導体装置の製造において、上記封止樹脂層自身の有する硬化物特性(X)として上記特定範囲の引張弾性率を備えるようなシート状封止材料を用いると、信頼性が高まり、特に半導体素子と配線回路基板との電気的接続が冷熱サイクル下において安定した半導体装置となる。
【0008】
さらに、本発明者らは、本発明の見出す過程において、上記特定の硬化物特性(X)を有する封止樹脂層を形成するシート状封止材料として、ビフェニル型エポキシ樹脂と特定のアクリロニトリル−ブタジエン系共重合体とを含有し、場合によりさらに特定のフェノール樹脂を用いたエポキシ樹脂組成物を用いると、低吸湿性や高接着性においてより優れた封止樹脂層が形成され、結果、吸湿後のベーパーフェーズソルダリング(VPS)等のストレス試験に対してさらに安定した電気的接続の付与がなされることを突き止めた。
【0009】
そして、上記封止樹脂層の形成材料として、上記硬化物特性(X)を有するシート状封止材料、特に、上記エポキシ樹脂組成物からなるシート状封止材料が好適に用いられる。
【0010】
【発明の実施の形態】
つぎに、本発明の実施の形態を詳しく説明する。
【0011】
本発明により製造される半導体装置は、図1に示すように、配線回路基板1の片面に、複数の接続用電極部2および接続用電極部3を介して半導体素子4が搭載されたフェイスダウン構造をとる。そして、上記配線回路基板1と半導体素子4との間に封止樹脂層5が形成されている。
【0012】
本発明において、接続用電極部とは、周知の電極のみでもよいが、電極とジョイントボール,ジョイントバンプ等の電極に配備される導電体を含む概念である。したがって、一般的に配線回路基板の接続用電極部と半導体素子の接続用電極部とは、両者とも電極のみで連絡されていてもよいが、通常、少なくとも一方が電極とジョイントボール(あるいはジョイントバンプ)からなる電極部であるようにして両者の電極部が連絡される。
【0013】
したがって、通常の形態では上記配線回路基板1と半導体素子4とを電気的に接続する上記複数の接続用電極部2,3は、予め配線回路基板1面にジョイントボール等が配設されていてもよいし、半導体素子4面にジョイントボール等が配設されていてもよい。さらには、予め配線回路基板1面および半導体素子4面の双方にそれぞれジョイントボール等が配設されていてもよく、また、両者の電極部は電極のみであってもよい。
【0014】
上記複数の接続用電極部2,3の材質としては、特に限定するものではないが、例えば、金、銀、銅、アルミニウム、ニッケル、クロム、錫、鉛、インジウム、半田およびこれらの合金が使用できる。また、上記接続用電極部の形状としては特に限定されるものではないが、配線回路基板1、半導体素子4の双方の電極部2,3間の封止樹脂を押し出す効果の高いものが望ましく、電極部表面に凹部の少ないものが好ましい。
【0015】
また、上記配線回路基板1の材質としては、特に限定するものではないが、大別してセラミック基板、プラスチック基板があり、上記プラスチック基板としては、例えば、エポキシガラス基板、ビスマレイミドトリアジン基板、ポリフェニレンエーテル基板等があげられる。
【0016】
つぎに、本発明により製造される半導体装置の配線回路基板1と半導体素子4との空隙に形成される上記封止樹脂層5について説明する。
【0017】
本発明において、上記封止樹脂層5形成材料としては、特定の物性を有するシート状封止材料が用いられ、例えば、その成形材料にはエポキシ樹脂組成物が用いられる。
【0018】
上記エポキシ樹脂組成物は、特定のエポキシ樹脂(A成分)と、特定のアクリロニトリル−ブタジエン系共重合体(B成分)を用いて得られるものである。
【0019】
上記特定のエポキシ樹脂(A成分)は、下記の一般式(1)で表されるビフェニル型エポキシ樹脂であって、このビフェニル型エポキシ樹脂は、グリシジル基を有するフェニル環に、下記のR1 〜R4 で表される炭素数1〜4のアルキル基が付加されたものである。そのため、このビフェニル型エポキシ樹脂を含有するエポキシ樹脂組成物によって得られるシート状封止材料は、半導体素子の封止用途において、撥水性および低吸湿性を発揮することができる。
【0020】
【化4】
Figure 0003947296
【0021】
上記一般式(1)中のR1 〜R4 で表される炭素数1〜4のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基等の直鎖状または分岐状の低級アルキル基があげられ、特にメチル基が好ましく、上記R1 〜R4 は互いに同一であっても異なっていてもよい。なかでも、上記R1 〜R4 が全てメチル基である下記の式(3)で表されるビフェニル型エポキシ樹脂を用いることが特に好適である。
【0022】
【化5】
Figure 0003947296
【0023】
上記一般式(1)で表されるビフェニル型エポキシ樹脂としては、エポキシ当量が177〜240g/eqで、軟化点が80〜130℃のものを用いることが好ましく、なかでも、エポキシ当量が177〜220g/eqで、軟化点が80〜120℃のものを用いること特に好ましい。
【0024】
本発明のシート状封止材料の形成材料であるエポキシ樹脂組成物の全有機成分中における上記ビフェニル型エポキシ樹脂(A成分)の配合割合は、特に10〜96重量%(以下「%」と略す)の範囲が好ましく、なかでも20〜94%の範囲が好適である。すなわち、上記ビフェニル型エポキシ樹脂(A成分)の配合割合が10%未満であれば、半導体素子の封止用途において、撥水性および低吸湿性が発揮され難く、逆に、96%を超えると得られるシート状封止材料自身が脆くなり、取り扱いが容易でなくなるからである。
【0025】
本発明のシート状封止材料の形成材料においては、上記ビフェニル型エポキシ樹脂(A成分)に、これ以外の他のエポキシ樹脂、例えば、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂等のエポキシ樹脂を、単独でもしくは2種以上併せて用いることもできる。なお、このように他のエポキシ樹脂を併用する場合には、上記ビフェニル型エポキシ樹脂(A成分)の配合量を、エポキシ樹脂成分全体の20%以上となるように設定することが好ましく、なかでも、50%以上となるように設定することがより好ましい。
【0026】
また、上記エポキシ樹脂組成物には、必要によりエポキシ樹脂の硬化剤を配合することができる。このような硬化剤としては、特に限定するものではなく通常用いられている各種硬化剤、例えば、フェノール樹脂、メチルヘキサヒドロ無水フタル酸等の酸無水物、アミン化合物等があげられ、信頼性の点から、特にフェノール樹脂が好適に用いられる。なかでも、接着性等の点から、ノボラック型フェノール樹脂を用いることがより好ましい。そして、より一層良好な接着力、吸湿性等の点から、特に下記の一般式(2)で表されるフェノール樹脂を用いることが好適である。
【0027】
【化6】
Figure 0003947296
【0028】
上記一般式(2)中の繰り返し数mは、0または正の整数を示すが、特にmは0〜10の整数であることが好ましく、なかでもmは0〜8の整数であることがより好適である。
【0029】
上記一般式(2)で表されるフェノール樹脂は、例えば、アラルキルエーテルとフェノールとを、フリーデルクラフツ触媒で反応させることにより得られる。
【0030】
上記フェノール樹脂としては、特に、水酸基当量が147〜250g/eq、軟化点が60〜120℃のものが好ましく、なかでも、水酸基当量が147〜220g/eq、軟化点が60〜110℃のものが好適である。
【0031】
上記フェノール樹脂(C成分)のビフェニル型エポキシ樹脂(A成分)に対する配合割合は、ビフェニル型エポキシ樹脂(A成分)中のエポキシ基1当量当たり、上記フェノール樹脂(C成分)中の水酸基が0.7〜1.3当量となるように配合することが好適であり、なかでも0.9〜1.1当量となるように配合することがより好適である。
【0032】
本発明のシート状封止材料の形成材料であるエポキシ樹脂組成物には、上記エポキシ樹脂の硬化剤の他に、さらに硬化促進剤を配合することもできる。このような硬化促進剤としては、従来からエポキシ樹脂の硬化促進剤として知られている種々の硬化促進剤が使用可能であり、例えば、アミン系、リン系、ホウ素系、リン−ホウ素系等の硬化促進剤があげられる。なかでも、トリフェニルホスフィン、ジアザビシクロウンデセン等が好適である。これらは単独でもしくは2種以上併せて用いられる。
【0033】
上記ビフェニル型エポキシ樹脂(A成分)とともに用いられるアクリロニトリル−ブタジエン系共重合体(B成分)としては、アクリロニトリル共重合体(NBR)の含有量が100%である場合のみならず、このNBRに他の共重合成分が含まれている場合をも含む広い意味での共重合体をいう。他の共重合成分としては、例えば、水添アクリロニトリル−ブタジエンゴム、アクリル酸、アクリル酸エステル、スチレン、メタクリル酸等があげられ、なかでも、金属、プラスチックとの接着力に優れる等の点で、アクリル酸、メタクリル酸が好適である。すなわち、アクリロニトリル−ブタジエン−メタクリル酸共重合体、アクリロニトリル−ブタジエン−アクリル酸共重合体が好適に用いられる。また、上記NBRにおけるアクリロニトリルの結合量は、15〜40%のものを用いる必要がある。
【0034】
本発明のシート状封止材料の形成材料であるエポキシ樹脂組成物の全有機成分中における上記アクリロニトリル−ブタジエン系共重合体(B成分)の配合割合は、特に2〜60%の範囲が好ましく、なかでも3〜50%の範囲が好適である。すなわち、上記アクリロニトリル−ブタジエン系共重合体(B成分)の配合割合が2%未満であれば、半導体素子の封止用途において、冷熱サイクル下、高温高湿下の各ストレス試験において、優れた耐久性を発揮することが困難であり、逆に、60%を超えると高温下での固着力が低下する傾向がみられるからである。
【0035】
本発明のシート状封止材料の形成材料であるエポキシ樹脂組成物には、上記A成分、硬化剤、B成分とともに、必要に応じて他の材料(有機材料、無機材料)を適宜配合することもできる。上記有機材料としては、シランカップリング剤、チタンカップリング剤、表面調整剤、酸化防止剤等があげられ、無機材料としては、アルミナ、シリカ、窒化珪素等の各種無機質充填剤、銅、銀、アルミニウム、ニッケル、半田等の金属粒子、その他、顔料、染料等があげられる。上記無機材料の配合割合は、特に限定されるものではないが、全配合物(エポキシ樹脂組成物全体)中の85%以下に設定することが好ましく、より好ましくは80%以下である。すなわち、上記配合割合を超えて多量に配合すると、半導体素子の電極と配線回路基板の電極との電気的接合が良好に行われなくなり不都合が生じ易くなるからである。
【0036】
本発明のシート状封止材料は、例えば、つぎのようにして製造することができる。まず、上記ビフェニル型エポキシ樹脂(A成分)、アクリロニトリル−ブタジエン系共重合体(B成分)の各成分を所定量配合し、これに必要に応じて各種成分、例えば、硬化剤、硬化促進剤、各種充填剤等を所定量配合したエポキシ樹脂組成物を調製する。そして、このエポキシ樹脂組成物を、トルエン、メチルエチルケトン、酢酸エチル等の溶剤に混合溶解し、この混合溶液を離型処理したポリエステルフィルム等の基材フィルム上に塗布する。つぎに、この塗布した基材フィルムを50〜160℃で乾燥させ、トルエン等の溶剤を除去することにより、上記基材フィルム上に目的とするシート状封止材料を製造することができる。また、他の方法として、トルエン等の溶剤を用いることなく加熱溶融押し出しすることによっても、目的とするシート状封止材料を製造することができる。このような封止材料は、通常、ゴム成分等のチクソトロピー付与剤を封止材料中に混合しておき、加熱硬化時の熱時流動性を抑制しておくよう工夫されるのが一般的である。
【0037】
このようにして得られたシート状封止材料としては、つぎのような特性、すなわち、ゲルタイムが175℃で10〜120秒である特性を有することが好ましい。なお、上記ゲルタイムは175℃の熱板上にて測定した値である。
【0038】
このようにして得られる本発明のシート状封止材料を硬化してなる硬化物は、例えば、つぎのようにして製造することができる。すなわち、上記方法により得られたシート状封止材料を100〜225℃、好ましくは120〜200℃で、3〜300分間、好ましくは5〜180分間加熱硬化することにより、目的とする硬化物を製造することができる。なお、上記硬化条件は、後述の半導体装置の製法における封止樹脂層の形成時の加熱硬化条件と同様である。
【0039】
そして、得られた硬化物は、つぎのような硬化物特性(X)を備えていなければならない。
(X)25℃における引張弾性率が300〜15000MPaである。
【0040】
より好ましくは25℃における引張弾性率が500〜12000MPa、特に好ましくは1000〜10000MPaである。このような範囲に設定することにより、冷熱サイクル下において、半導体素子、配線回路基板、接続用電極部にかかる応力をバランスよく緩和することができる。すなわち、25℃における引張弾性率が300MPa未満では、接続用電極部にクラックが発生し易くなり、25℃における引張弾性率が15000MPaを超えると、半導体素子にクラックが発生し易くなるからである。
【0041】
なお、上記25℃における引張弾性率は、JIS K 6900に準じて測定される値であって、具体的には、万能引張試験機(オートグラフ、島津製作所社製)によって測定される。
【0042】
本発明により製造される半導体装置は、先に述べたように、配線回路基板上に、複数の接続用電極部を介して半導体素子が搭載され、上記配線回路基板と半導体素子との間の空隙が封止樹脂層によって封止されたフェイスダウン構造を有するものであって、このような半導体装置の製法の一例を以下に説明するが、これに限定するものではない。
【0043】
まず、図2に示すように、複数の球状の接続用電極部2が設けられた配線回路基板1上に、上記接続用電極部2を介して固形のシート状封止材料10を載置する。ついで、図3に示すように、上記シート状封止材料10上の所定位置に、接続用電極部3が設けられた半導体素子4を配置し、加熱および加圧することによって、上記両接続用電極部2,3間の電気接続およびシート状封止材料10の硬化を行い、配線回路基板1と半導体素子4の電気的接続および固着を完了する。
【0044】
上記シート状封止材料10の大きさとしては、上記搭載される半導体素子4の大きさ(面積)により適宜に設定され、通常、半導体素子4の大きさ(面積)とほぼ同じに設定することが好ましい。
【0045】
また、上記シート状封止材料10の厚みは、特に限定されるものではないが、半導体素子4と配線回路基板1との空隙を充填し、かつ、接続用電極部2,3間の電気的接続を妨げないように適宜に設定することができ、通常、5〜200μm、好ましくは10〜120μmに設定される。
【0046】
また、上記半導体装置の製造方法において、上記シート状封止材料10を加熱溶融して溶融状態とする際の加熱温度としては、半導体素子4および配線回路基板1の耐熱性および接続用電極部2,3の融点、さらに、シート状封止材料10の軟化点、耐熱性等を考慮して適宜に設定されるものである。そして、加熱方法としては、赤外線リフロー炉、乾燥機、温風機、熱板等があげられる。
【0047】
さらに、上記溶融状態とした封止材料を上記半導体素子4と上記配線回路基板1との間の空隙内に充填する際には、上記のように加圧することが好ましく、その加圧条件としては、接続用電極部2,3の材質および個数等や、温度によって適宜に設定されるが、具体的には0.01〜0.5kgf/個の範囲に設定され、好ましくは0.02〜0.3kgf/個の範囲に設定される。
【0048】
そして、上記のようにして製造された半導体装置において、半導体素子4の大きさは、通常、幅2〜20mm×長さ2〜30mm×厚み0.1〜2mmに設定される。また、半導体素子4を搭載する配線回路が形成された配線回路基板1の大きさは、通常、幅10〜70mm×長さ10〜70mm×厚み0.05〜3.0mmに設定される。そして、溶融した封止用樹脂が充填される、半導体素子4と配線回路基板1の空隙の両者間の距離は、通常、5〜200μmである。
【0049】
上記シート状封止材料を用いて封止することにより形成された封止樹脂層5は、先に述べたように、下記の硬化物特性(X)を備えていなければならない。より好ましくは25℃における引張弾性率が500〜12000MPa、特に好ましくは1000〜10000MPaである。
(X)25℃における引張弾性率が300〜15000MPaである。
【0050】
さらに、上記硬化物特性に加えて、上記封止樹脂層5としては、吸水率が1.5%以下であることが好ましい。より好ましくは吸水率が1.2%以下である。また、上記封止樹脂層5に含まれるイオン性不純分(例えば、Na+ ,K+ ,NH3 + ,Cl- ,SO4 2-)が各50ppm以下であることが好ましい。上記吸水率の測定は、その硬化物を85℃×85%RHで168時間放置した後、微量水分測定器(平沼水分測定装置AQ−5、平沼産業社製)にて行った。また、上記イオン性不純分の測定は、硬化物を粉砕し、121℃の純水にて24時間抽出し、イオンクロマトグラフィーによって測定した。
【0051】
本発明により製造される半導体装置において、シート状封止材料を介して、半導体素子と配線回路基板の両電極部を当接させ、上記シートを加熱して、好ましくは加熱とともに加圧して硬化させることは前述のとおりである。
【0052】
上記加圧は、好ましくは半田等の接続用電極部を偏平化しつつ、または偏平化した後、封止用樹脂を硬化させる。
【0053】
このとき、一般的には、上記接続用電極部を構成する材料としては、熱時流動可能な材料、例えば、半田により形成される。そして、封止用樹脂であるシート状封止材料硬化後は、好ましくは接続用電極部を構成する半田を溶融させるために、上記半導体素子と配線回路基板の接着体は215℃程度に加温され、本発明の半導体装置とするのが一般的である。上記シート状封止材料硬化後に、接続用電極部を構成する半田等の材料をこのように溶融させる工程は、先に述べた製法において述べていないが、本願においては通常行われるものである。
【0054】
本発明によるシート状封止材料を用いた封止では、たいていの場合、つぎに示すことが言える。
【0055】
すなわち、接続用電極部として半田を用いた場合には、フラックスが無くても、前記の半導体素子電極部と配線回路基板電極部(ランド部)の両者の溶融・結合が好適に行われるのが一般的である。
【0056】
上記理由は明らかではないが、前記半導体素子と配線回路基板の接合体が得られた段階では、接続用電極部である半田の周りは、たいていの場合、硬化樹脂で覆われて酸素と遮断された状態となっていること、および電極部の圧力による前記の偏平化時に半田表面にクラックが生じて半田の地肌表面(酸化されていない面)が露出しているためではないかと考えられる。また、極微量の塩素成分および有機酸成分の少なくとも一方を含有するシート状封止材料、例えば、エポキシ樹脂組成物よりなるシートを用いた場合には、これら塩素成分および有機酸成分の少なくとも一方が半田製の接続用電極部表面に形成する酸化膜除去に効果があり、この酸化膜が除去されるためではないかと考えられる。ついで、このような環境下で、215℃程度に加温することにより、上述の半導体素子電極部および配線回路基板電極部の両電極部が溶融する。
【0057】
つぎに、実施例について比較例と併せて説明する。
【0058】
まず、実施例に先立って、下記に示す各成分を準備した。
【0059】
〔エポキシ樹脂a1〕
下記の構造式で表されるビフェニル型エポキシ樹脂
【0060】
【化7】
Figure 0003947296
【0061】
〔エポキシ樹脂a2〕
クレゾールノボラック型エポキシ樹脂(エポキシ当量:195g/eq、融点:80℃)
【0062】
〔アクリロニトリル−ブタジエン系共重合体b1〕
アクリロニトリル−ブタジエン−メタクリル酸共重合体〔ムーニー粘度:50、結合アクリロニトリル含量:30%、結合カルボキシル基量:0.05ephr(ゴム100g当たりのモル数)〕
【0063】
〔アクリロニトリル−ブタジエン系共重合体b2〕
アクリロニトリル−ブタジエン−アクリル酸共重合体(ムーニー粘度:80、結合アクリロニトリル含量:20%、結合カルボキシル基量:0.02ephr)
【0064】
〔硬化剤c1〕
下記の構造式で表されるフェノール樹脂(水酸基当量:175g/eq、軟化点75℃)
【0065】
【化8】
Figure 0003947296
【0066】
〔硬化剤c2〕
フェノールノボラック樹脂(水酸基当量:105g/eq、軟化点60℃)
【0067】
〔硬化促進剤〕
トリフェニルホスフィン
【0068】
〔無機質充填剤〕
球状シリカ(平均粒径:3μm、最大粒径:30μm)
【0069】
【実施例1〜10、比較例1〜7】
下記の表1〜表3に示す各成分を、同表に示す割合で配合しエポキシ樹脂組成物を調製した。このエポキシ樹脂組成物をトルエンに混合溶解し、この混合溶液を離型処理したポリエステルフィルム上に塗布した。つぎに、上記混合溶液を塗布したポリエステルフィルムを120℃で乾燥させ、トルエンを除去することにより、上記ポリエステルフィルム上に目的とする厚み100μmのシート状封止材料を作製した。
【0070】
【表1】
Figure 0003947296
【0071】
【表2】
Figure 0003947296
【0072】
【表3】
Figure 0003947296
【0073】
このようにして得られた各実施例および比較例のシート状封止材料を用い、前述の半導体装置の製法に従って半導体装置を製造した。すなわち、図2に示すように、接続用電極部2(材質:半田、融点:183℃、形状:直径150μm×高さ30μmの円柱形)が設けられた配線回路基板1(厚み1mmのガラスエポキシ基板)上に、上記シート状封止材料10を載置した後、図3に示すように、上記シート状封止材料10上の所定の位置に、接続用電極部3(材質:半田、融点:299℃、形状:直径120μm×高さ90μmの球形)が設けられた半導体素子4(厚み:350μm、大きさ:13mm×9mm)を載置した。その後、加熱温度150℃×荷重0.1kgf×電極個数×1分の条件でシート状封止材料を加熱溶融して、配線回路基板1と半導体素子4との空隙内に溶融状態の樹脂を充填して仮固着するとともに、双方の接続用電極部2,3を電気接続した。その後、上記樹脂を熱硬化(条件:150℃×60分)および接続用電極部2を溶融(条件:250℃×30秒)させることにより、図1に示すように、上記空隙が封止樹脂層5で樹脂封止された半導体装置を各例8個ずつ作製した。
【0074】
得られた半導体装置について、初期の通電試験を行い、さらに、その半導体装置を各例4個ずつ用いて、サーマルショックテスト〔TST試験(条件:−55℃×5分⇔125℃×5分)500サイクルを行った(各例4個ずつ)後に、通電試験および半導体素子のクラックの有無検査を行い、その結果を下記の表4〜表6に示した。
【0075】
また、上記TST試験を行わなかった各例4個のサンプルについて、30℃×60%RHの環境下で168時間吸湿させた後、VPS(vapor phase soldering)(215℃×90秒)を行った後、通電試験を行った。その結果を下記の表4〜表6に併せて示した。
【0076】
一方、上記各実施例および比較例で得られたシート状封止材料のみを150℃×60分の条件で加熱し、シート状硬化物を得た。この各シート状硬化物の25℃における引張弾性率を、万能引張試験機(オートグラフ、島津製作所社製)を用いて測定した。これらの結果を下記の表4〜表6に併せて示した。
【0077】
【表4】
Figure 0003947296
【0078】
【表5】
Figure 0003947296
【0079】
【表6】
Figure 0003947296
【0080】
上記表4〜表6の結果、実施例品に関しては、初期の通電チェックおよび、TST試験後の通電試験、TST試験後の半導体チップクラック状態、吸湿VPS後の通電試験の各試験の全てにおいて不良が全く発生しなかったことが確認された。これに対して、比較例品は、上記いずれかの試験において、不良が発生していることが確認された。このことから、実施例品は比較例品に対して、初期通電や、TST試験および吸湿VPS等のストレス試験に対して安定した通電を確保していることが明らかである。
【0081】
【発明の効果】
以上のように、本発明は、複数の接続用電極部を介在して接続された、配線回路基板と半導体素子との間の空隙に封止樹脂層が形成された半導体装置の製造に際して、前記特定範囲の引張弾性率を有する硬化物特性(X)を備えた封止樹脂層を形成するシート状封止材料が用いられる。このため、上記配線回路基板と半導体素子および上記接続用電極部に生じる応力が緩和され接続信頼性の高いものが得られ、特に半導体素子と配線回路基板との電気的接続が冷熱サイクル下において安定化する。
【0082】
そして、上記特定の硬化物特性(X)を有する封止樹脂層を形成するシート状封止材料として、ビフェニル型エポキシ樹脂と特定のアクリロニトリル−ブタジエン系共重合体とを含有し、場合によりさらに特定のフェノール樹脂を用いたエポキシ樹脂組成物を用いると、低吸湿性や高接着性においてより優れた封止樹脂層が形成され、結果、吸湿後のベーパーフェーズソルダリング(VPS)等のストレス試験に対してさらに安定した電気的接続の付与がなされる。
【0083】
上記封止樹脂層の形成材料である、上記硬化物特性(X)を有するシート状封止材料として、特に、上記エポキシ樹脂組成物からなるシート状封止材料を用いることが、上記空隙部分の樹脂封止を容易にして、半導体装置の製造効率が著しく向上するため、好適に用いられる。
【図面の簡単な説明】
【図1】 本発明の半導体装置の一例を示す断面図である。
【図2】 半導体装置の製造工程を示す説明断面図である。
【図3】 半導体装置の製造工程を示す説明断面図である。
【符号の説明】
1 配線回路基板
2 接続用電極部
3 接続用電極部
4 半導体素子
5 封止樹脂層
10 シート状封止材料[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sheet-shaped sealing material used for manufacturing a semiconductor device by a method in which a semiconductor element is mounted on a printed circuit board such as a mother board or a daughter board in a face-down structure, and a method of manufacturing a semiconductor device using the same. is there.
[0002]
[Prior art]
As a recent requirement for improving the performance of semiconductor devices, semiconductor devices are mounted face down on a printed circuit board such as a mother board or daughter board with a face-down structure (flip chip method, direct chip attach method). Etc.) are attracting attention. This is due to the wiring used in a conventional method, for example, a method in which a semiconductor element is contacted on a lead frame with a gold wire and packaged in a packaged circuit board such as a mother board or a daughter board. This is due to the occurrence of problems such as delays in information transmission and information transmission errors due to crosstalk.
[0003]
[Problems to be solved by the invention]
On the other hand, in the flip chip method and the direct chip attach method, since the semiconductor elements having different linear expansion coefficients and the wired circuit board are directly electrically connected, the reliability of the connection portion is a problem. As a countermeasure, a liquid resin material is injected into the gap between the semiconductor element and the printed circuit board and cured to form a cured resin body, and the stress concentrated on the electrical connection portion is also dispersed in the cured resin body. A method of improving connection reliability is employed. However, since the filling of the gap between the semiconductor element and the printed circuit board with the liquid resin material is performed by utilizing the capillary effect of the liquid resin material, the viscosity of the liquid resin material is set to a low value. There is a need to. Therefore, in order to obtain a low-viscosity material, the range of material selection has been narrowed, and it has been difficult to use a rubber component having a high low-stress effect, a highly reliable phenol resin, or the like. As a result, it is difficult to perform resin sealing with a high stress relaxation effect and it is difficult to obtain a highly reliable one. Further, the liquid resin material needs to be stored at an ultra-low temperature (−40 ° C.), and in addition, the injection into the gap between the semiconductor element and the printed circuit board must be performed with a syringe. Have problems such as difficulty in controlling the injection volume.
[0004]
The present invention has been made in view of such circumstances, and a method for manufacturing a semiconductor device having an excellent effect of mitigating stress generated in the semiconductor element, the wiring circuit board, and the connection electrode and having high reliability, and the semiconductor element and the wiring. It is an object of the present invention to provide a sheet-like sealing material that can easily form a sealing resin layer in a gap with a circuit board.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a semiconductor element is mounted on a printed circuit board via a plurality of connection electrode portions, and a gap between the printed circuit board and the semiconductor element is a sealing resin layer. A sheet-like sealing material used when forming a sealing resin layer of a semiconductor device sealed by the above-mentioned sheet-like sealing material, which contains the following components (A) and (B) A sheet-like sealing material which is formed into a sheet shape using an epoxy resin composition and has the following cured product characteristic (X) is defined as a first gist.
(A) A biphenyl type epoxy resin represented by the following general formula (1).
[Chemical 3]
Figure 0003947296
(B) An acrylonitrile-butadiene copolymer having an acrylonitrile bond amount of 15 to 40%.
(X) Tensile modulus at 25 ° C. is 300 to 15000 MPa.
[0006]
Also, a method of manufacturing a semiconductor device in which a semiconductor element is mounted on a wiring circuit board via a plurality of connection electrode portions, and a gap between the wiring circuit board and the semiconductor element is sealed with a sealing resin layer. And the manufacturing method of the semiconductor device which the said sealing resin layer forms using the said sheet-like sealing material makes it 2nd summary.
[0007]
That is, according to the present invention, in the manufacture of a semiconductor device in which a sealing resin layer is formed in a gap between a printed circuit board and a semiconductor element connected via a plurality of connection electrode portions, the sealing resin When a sheet-shaped sealing material having a tensile elastic modulus in the specific range is used as the cured product characteristic (X) of the layer itself, the reliability increases, and in particular, the electrical connection between the semiconductor element and the printed circuit board is cold. The semiconductor device is stable under the cycle.
[0008]
Furthermore, the present inventors, in the process of finding the present invention, as a sheet-like sealing material for forming a sealing resin layer having the specific cured product characteristic (X), biphenyl type epoxy resin and specific acrylonitrile-butadiene When an epoxy resin composition containing a specific copolymer and further using a specific phenol resin is used, a better sealing resin layer is formed in terms of low hygroscopicity and high adhesiveness. It has been found that a more stable electrical connection can be provided for stress tests such as vapor phase soldering (VPS).
[0009]
And as a forming material of the said sealing resin layer, the sheet-like sealing material which has the said hardened | cured material characteristic (X), especially the sheet-like sealing material which consists of the said epoxy resin composition is used suitably.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail.
[0011]
As shown in FIG. 1, a semiconductor device manufactured according to the present invention has a face-down structure in which a semiconductor element 4 is mounted on one side of a printed circuit board 1 via a plurality of connection electrode portions 2 and connection electrode portions 3. Take the structure. A sealing resin layer 5 is formed between the printed circuit board 1 and the semiconductor element 4.
[0012]
In the present invention, the connection electrode portion may be only a well-known electrode, but is a concept including an electrode and a conductor provided on an electrode such as a joint ball or a joint bump. Therefore, in general, the connection electrode portion of the printed circuit board and the connection electrode portion of the semiconductor element may both be connected only by the electrode, but usually at least one of the electrode and the joint ball (or joint bump) The electrode parts are connected to each other as if they were electrode parts.
[0013]
Therefore, in a normal form, the plurality of connecting electrode portions 2 and 3 for electrically connecting the wiring circuit board 1 and the semiconductor element 4 are previously provided with joint balls or the like on the surface of the wiring circuit board 1. Alternatively, a joint ball or the like may be provided on the surface of the semiconductor element 4. Furthermore, joint balls or the like may be provided in advance on both the printed circuit board 1 surface and the semiconductor element 4 surface, and the electrode portions of both may be electrodes only.
[0014]
The material of the plurality of connection electrode portions 2 and 3 is not particularly limited. For example, gold, silver, copper, aluminum, nickel, chromium, tin, lead, indium, solder, and alloys thereof are used. it can. Further, the shape of the connecting electrode part is not particularly limited, but it is desirable to have a high effect of extruding the sealing resin between the electrode parts 2 and 3 of both the printed circuit board 1 and the semiconductor element 4, A thing with few recessed parts on the electrode part surface is preferable.
[0015]
Further, the material of the wired circuit board 1 is not particularly limited, but is roughly classified into a ceramic substrate and a plastic substrate. Examples of the plastic substrate include an epoxy glass substrate, a bismaleimide triazine substrate, and a polyphenylene ether substrate. Etc.
[0016]
Next, the sealing resin layer 5 formed in the gap between the printed circuit board 1 and the semiconductor element 4 of the semiconductor device manufactured according to the present invention will be described.
[0017]
In the present invention, as the sealing resin layer 5 forming material, a sheet-shaped sealing material having specific physical properties is used. For example, an epoxy resin composition is used as the molding material.
[0018]
The said epoxy resin composition is obtained using a specific epoxy resin (A component) and a specific acrylonitrile-butadiene-type copolymer (B component).
[0019]
The specific epoxy resin (component A) is a biphenyl type epoxy resin represented by the following general formula (1), and this biphenyl type epoxy resin has the following R 1 to R phenyl group having a glycidyl group. An alkyl group having 1 to 4 carbon atoms represented by R 4 is added. Therefore, the sheet-like sealing material obtained by the epoxy resin composition containing this biphenyl type epoxy resin can exhibit water repellency and low moisture absorption in the sealing use of semiconductor elements.
[0020]
[Formula 4]
Figure 0003947296
[0021]
Examples of the alkyl group having 1 to 4 carbon atoms represented by R 1 to R 4 in the general formula (1) include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and a sec-butyl group. And a straight or branched lower alkyl group such as a tert-butyl group, and a methyl group is particularly preferable, and R 1 to R 4 may be the same as or different from each other. Among these, it is particularly preferable to use a biphenyl type epoxy resin represented by the following formula (3) in which all of R 1 to R 4 are methyl groups.
[0022]
[Chemical formula 5]
Figure 0003947296
[0023]
As the biphenyl type epoxy resin represented by the general formula (1), one having an epoxy equivalent of 177 to 240 g / eq and a softening point of 80 to 130 ° C. is preferably used. It is particularly preferable to use a material having a softening point of 80 to 120 ° C. at 220 g / eq.
[0024]
The blending ratio of the biphenyl type epoxy resin (component A) in the total organic components of the epoxy resin composition, which is a material for forming the sheet-shaped sealing material of the present invention, is particularly 10 to 96 wt% (hereinafter abbreviated as “%”). ) Is preferable, and a range of 20 to 94% is particularly preferable. That is, if the blending ratio of the above-mentioned biphenyl type epoxy resin (component A) is less than 10%, it is difficult to exhibit water repellency and low hygroscopicity in semiconductor device sealing applications. This is because the sheet-like sealing material itself becomes brittle and handling becomes difficult.
[0025]
In the material for forming the sheet-shaped sealing material of the present invention, the above biphenyl type epoxy resin (component A) and other epoxy resins such as cresol novolac type epoxy resin, phenol novolac type epoxy resin, bisphenol A type Epoxy resins such as epoxy resins can be used alone or in combination of two or more. When other epoxy resins are used in combination, the amount of the biphenyl type epoxy resin (component A) is preferably set to be 20% or more of the entire epoxy resin component, More preferably, it is set to be 50% or more.
[0026]
Moreover, the epoxy resin composition can be blended with an epoxy resin curing agent, if necessary. Examples of such curing agents include, but are not limited to, various commonly used curing agents such as phenol resins, acid anhydrides such as methylhexahydrophthalic anhydride, amine compounds, and the like. In particular, phenol resin is preferably used. Especially, it is more preferable to use a novolak type phenol resin from the point of adhesiveness. And it is suitable to use especially the phenol resin represented by following General formula (2) from points, such as much more favorable adhesive force and hygroscopicity.
[0027]
[Chemical 6]
Figure 0003947296
[0028]
The number of repetitions m in the general formula (2) is 0 or a positive integer. Particularly, m is preferably an integer of 0 to 10, more preferably m is an integer of 0 to 8. Is preferred.
[0029]
The phenol resin represented by the general formula (2) is obtained, for example, by reacting aralkyl ether and phenol with a Friedel-Crafts catalyst.
[0030]
As the phenol resin, those having a hydroxyl group equivalent of 147 to 250 g / eq and a softening point of 60 to 120 ° C. are particularly preferable. Is preferred.
[0031]
The blending ratio of the phenol resin (component C) to the biphenyl type epoxy resin (component A) is such that the hydroxyl group in the phenol resin (component C) is 0.1 per equivalent of epoxy group in the biphenyl type epoxy resin (component A). It is suitable to mix | blend so that it may become 7-1.3 equivalent, and it is more preferable to mix | blend so that it may become 0.9-1.1 equivalent especially.
[0032]
In addition to the epoxy resin curing agent, a curing accelerator can be further blended in the epoxy resin composition which is a forming material of the sheet-shaped sealing material of the present invention. As such a curing accelerator, various curing accelerators conventionally known as epoxy resin curing accelerators can be used, for example, amine-based, phosphorus-based, boron-based, phosphorus-boron-based, etc. Examples thereof include a curing accelerator. Of these, triphenylphosphine, diazabicycloundecene and the like are preferable. These may be used alone or in combination of two or more.
[0033]
The acrylonitrile-butadiene copolymer (component B) used together with the biphenyl type epoxy resin (component A) is not limited to the case where the content of the acrylonitrile copolymer (NBR) is 100%. This means a copolymer in a broad sense including the case where the copolymer component is included. Other copolymer components include, for example, hydrogenated acrylonitrile-butadiene rubber, acrylic acid, acrylic ester, styrene, methacrylic acid, etc., among others, in terms of excellent adhesion to metals and plastics, etc. Acrylic acid and methacrylic acid are preferred. That is, an acrylonitrile-butadiene-methacrylic acid copolymer and an acrylonitrile-butadiene-acrylic acid copolymer are preferably used. Further, the amount of acrylonitrile bound in the NBR must be 15 to 40%.
[0034]
The blending ratio of the acrylonitrile-butadiene copolymer (component B) in the total organic components of the epoxy resin composition that is the material for forming the sheet-shaped sealing material of the present invention is particularly preferably in the range of 2 to 60%. In particular, the range of 3 to 50% is preferable. That is, if the blending ratio of the acrylonitrile-butadiene-based copolymer (component B) is less than 2%, excellent durability can be obtained in each stress test under a cooling / heating cycle and under a high temperature / humidity in a semiconductor device sealing application. This is because it is difficult to exert the properties, and conversely, if it exceeds 60%, the fixing force at high temperature tends to decrease.
[0035]
In the epoxy resin composition which is a forming material of the sheet-shaped sealing material of the present invention, other materials (an organic material and an inorganic material) are appropriately blended with the A component, the curing agent, and the B component as necessary. You can also. Examples of the organic materials include silane coupling agents, titanium coupling agents, surface conditioners, antioxidants, and the like, and inorganic materials include various inorganic fillers such as alumina, silica, silicon nitride, copper, silver, Examples thereof include metal particles such as aluminum, nickel and solder, as well as pigments and dyes. The blending ratio of the inorganic material is not particularly limited, but is preferably set to 85% or less, more preferably 80% or less in the entire blend (the entire epoxy resin composition). That is, if a large amount is blended exceeding the above blending ratio, the electrical connection between the electrode of the semiconductor element and the electrode of the printed circuit board is not performed well, and inconvenience is likely to occur.
[0036]
The sheet-shaped sealing material of this invention can be manufactured as follows, for example. First, a predetermined amount of each component of the biphenyl type epoxy resin (component A) and acrylonitrile-butadiene copolymer (component B) is blended, and various components such as a curing agent, a curing accelerator, An epoxy resin composition containing a predetermined amount of various fillers is prepared. Then, this epoxy resin composition is mixed and dissolved in a solvent such as toluene, methyl ethyl ketone, and ethyl acetate, and this mixed solution is applied onto a base film such as a polyester film subjected to a release treatment. Next, the applied base film is dried at 50 to 160 ° C., and a solvent such as toluene is removed to produce a target sheet-like sealing material on the base film. As another method, the target sheet-shaped sealing material can also be produced by heating and melting and extruding without using a solvent such as toluene. Such a sealing material is generally devised so that a thixotropy imparting agent such as a rubber component is mixed in the sealing material to suppress the fluidity during heat curing. is there.
[0037]
The sheet-like sealing material thus obtained preferably has the following characteristics, that is, a gel time of 10 to 120 seconds at 175 ° C. The gel time is a value measured on a hot plate at 175 ° C.
[0038]
A cured product obtained by curing the sheet-like sealing material of the present invention thus obtained can be produced, for example, as follows. That is, the target cured product is obtained by heat curing the sheet-like sealing material obtained by the above method at 100 to 225 ° C., preferably 120 to 200 ° C. for 3 to 300 minutes, preferably 5 to 180 minutes. Can be manufactured. In addition, the said hardening conditions are the same as the heat-hardening conditions at the time of formation of the sealing resin layer in the manufacturing method of the semiconductor device mentioned later.
[0039]
And the obtained hardened | cured material must be equipped with the following hardened | cured material characteristics (X).
(X) Tensile modulus at 25 ° C. is 300 to 15000 MPa.
[0040]
More preferably, the tensile elastic modulus at 25 ° C. is 500 to 12000 MPa, and particularly preferably 1000 to 10,000 MPa. By setting to such a range, the stress applied to the semiconductor element, the printed circuit board, and the connection electrode portion can be relaxed in a well-balanced manner under a thermal cycle. That is, if the tensile elastic modulus at 25 ° C. is less than 300 MPa, cracks are likely to occur in the connecting electrode part, and if the tensile elastic modulus at 25 ° C. exceeds 15000 MPa, cracks are likely to occur in the semiconductor element.
[0041]
The tensile modulus at 25 ° C. is a value measured according to JIS K 6900, and is specifically measured by a universal tensile tester (Autograph, manufactured by Shimadzu Corporation).
[0042]
As described above, in the semiconductor device manufactured by the present invention, a semiconductor element is mounted on a wiring circuit board via a plurality of connection electrode portions, and a gap between the wiring circuit board and the semiconductor element is provided. Has a face-down structure sealed with a sealing resin layer, and an example of a method for manufacturing such a semiconductor device will be described below, but the present invention is not limited to this.
[0043]
First, as shown in FIG. 2, a solid sheet-like sealing material 10 is placed on the printed circuit board 1 provided with a plurality of spherical connection electrode portions 2 via the connection electrode portions 2. . Next, as shown in FIG. 3, the semiconductor element 4 provided with the connection electrode portion 3 is disposed at a predetermined position on the sheet-shaped sealing material 10, and heated and pressurized to thereby form both the connection electrodes. The electrical connection between the parts 2 and 3 and the curing of the sheet-like sealing material 10 are performed, and the electrical connection and fixation between the printed circuit board 1 and the semiconductor element 4 are completed.
[0044]
The size of the sheet-shaped sealing material 10 is appropriately set according to the size (area) of the semiconductor element 4 to be mounted, and is usually set to be approximately the same as the size (area) of the semiconductor element 4. Is preferred.
[0045]
The thickness of the sheet-shaped sealing material 10 is not particularly limited, but fills the gap between the semiconductor element 4 and the printed circuit board 1 and is electrically connected between the connecting electrode portions 2 and 3. It can set suitably so that a connection may not be prevented, Usually, 5-200 micrometers, Preferably it sets to 10-120 micrometers.
[0046]
In the method for manufacturing a semiconductor device, the heating temperature when the sheet-shaped sealing material 10 is heated and melted to be in a molten state is the heat resistance of the semiconductor element 4 and the printed circuit board 1 and the connection electrode portion 2. , 3 and the softening point of the sheet-like sealing material 10, heat resistance, etc. are set appropriately. And as a heating method, an infrared reflow oven, a dryer, a warm air machine, a hot plate, etc. are mention | raise | lifted.
[0047]
Furthermore, when the sealing material in the molten state is filled in the gap between the semiconductor element 4 and the wired circuit board 1, it is preferable to pressurize as described above. The number and the like of the connecting electrode portions 2 and 3 are set as appropriate according to the temperature and the temperature is specifically set in the range of 0.01 to 0.5 kgf / piece, preferably 0.02 to 0. It is set in the range of 3 kgf / piece.
[0048]
And in the semiconductor device manufactured as mentioned above, the magnitude | size of the semiconductor element 4 is normally set to 2-20 mm in width x 2-30 mm in length x 0.1-2 mm in thickness. In addition, the size of the printed circuit board 1 on which the wiring circuit on which the semiconductor element 4 is mounted is normally set to a width of 10 to 70 mm, a length of 10 to 70 mm, and a thickness of 0.05 to 3.0 mm. And the distance between both of the semiconductor element 4 and the space | gap of the wiring circuit board 1 with which the fuse | melting sealing resin is filled is 5 to 200 micrometers normally.
[0049]
As described above, the sealing resin layer 5 formed by sealing using the sheet-shaped sealing material must have the following cured product characteristics (X). More preferably, the tensile elastic modulus at 25 ° C. is 500 to 12000 MPa, and particularly preferably 1000 to 10,000 MPa.
(X) Tensile modulus at 25 ° C. is 300 to 15000 MPa.
[0050]
Furthermore, in addition to the cured product characteristics, the sealing resin layer 5 preferably has a water absorption of 1.5% or less. More preferably, the water absorption is 1.2% or less. Moreover, it is preferable that the ionic impurities (for example, Na + , K + , NH 3 + , Cl , SO 4 2− ) contained in the sealing resin layer 5 are 50 ppm or less. The water absorption was measured by leaving the cured product at 85 ° C. and 85% RH for 168 hours, and then using a trace moisture measuring device (Hiranuma moisture measuring device AQ-5, manufactured by Hiranuma Sangyo Co., Ltd.). The ionic impurities were measured by pulverizing the cured product, extracting with pure water at 121 ° C. for 24 hours, and measuring by ion chromatography.
[0051]
In the semiconductor device manufactured according to the present invention, both the electrode portions of the semiconductor element and the printed circuit board are brought into contact with each other through the sheet-like sealing material, and the sheet is heated, and preferably is heated and pressurized to be cured. This is as described above.
[0052]
The pressurization preferably cures the sealing resin while flattening or flattening the connecting electrode portion such as solder.
[0053]
In this case, generally, the material constituting the connection electrode portion is formed of a material that can flow when heated, for example, solder. After the sheet-like sealing material, which is a sealing resin, is cured, preferably, the adhesive body between the semiconductor element and the printed circuit board is heated to about 215 ° C. in order to melt the solder constituting the connecting electrode portion. In general, the semiconductor device of the present invention is used. The step of melting the material such as solder constituting the connecting electrode portion after the sheet-like sealing material is cured is not described in the manufacturing method described above, but is usually performed in the present application.
[0054]
In the sealing using the sheet-like sealing material according to the present invention, the following can be said in most cases.
[0055]
That is, when solder is used as the connection electrode part, the melting and bonding of both the semiconductor element electrode part and the printed circuit board electrode part (land part) are preferably performed even without flux. It is common.
[0056]
Although the reason for this is not clear, at the stage when the joined body of the semiconductor element and the printed circuit board is obtained, the periphery of the solder, which is the connecting electrode portion, is usually covered with a cured resin and shielded from oxygen. It is thought that this is because the surface of the solder is cracked at the time of the flattening due to the pressure of the electrode portion and the surface of the solder surface (the surface not oxidized) is exposed. Further, when a sheet-like sealing material containing at least one of a trace amount of chlorine component and organic acid component, for example, a sheet made of an epoxy resin composition, at least one of these chlorine component and organic acid component is This is effective for removing the oxide film formed on the surface of the connecting electrode portion made of solder, and it is considered that this oxide film is removed. Next, by heating to about 215 ° C. in such an environment, both the electrode portions of the semiconductor element electrode portion and the printed circuit board electrode portion are melted.
[0057]
Next, examples will be described together with comparative examples.
[0058]
First, prior to the examples, the following components were prepared.
[0059]
[Epoxy resin a1]
Biphenyl type epoxy resin represented by the following structural formula:
[Chemical 7]
Figure 0003947296
[0061]
[Epoxy resin a2]
Cresol novolac type epoxy resin (epoxy equivalent: 195 g / eq, melting point: 80 ° C.)
[0062]
[Acrylonitrile-butadiene copolymer b1]
Acrylonitrile-butadiene-methacrylic acid copolymer [Mooney viscosity: 50, bound acrylonitrile content: 30%, bound carboxyl group content: 0.05 ephr (number of moles per 100 g of rubber)]
[0063]
[Acrylonitrile-butadiene copolymer b2]
Acrylonitrile-butadiene-acrylic acid copolymer (Mooney viscosity: 80, bound acrylonitrile content: 20%, bound carboxyl group content: 0.02 ephr)
[0064]
[Curing agent c1]
Phenol resin represented by the following structural formula (hydroxyl equivalent: 175 g / eq, softening point: 75 ° C.)
[0065]
[Chemical 8]
Figure 0003947296
[0066]
[Curing agent c2]
Phenol novolac resin (hydroxyl equivalent: 105 g / eq, softening point 60 ° C.)
[0067]
[Curing accelerator]
Triphenylphosphine [0068]
[Inorganic filler]
Spherical silica (average particle size: 3 μm, maximum particle size: 30 μm)
[0069]
Examples 1 to 10 and Comparative Examples 1 to 7
The components shown in Tables 1 to 3 below were blended in the proportions shown in the same table to prepare epoxy resin compositions. The epoxy resin composition was mixed and dissolved in toluene, and the mixed solution was applied onto a release-treated polyester film. Next, the polyester film coated with the mixed solution was dried at 120 ° C., and toluene was removed, thereby producing a target sheet-shaped sealing material having a thickness of 100 μm on the polyester film.
[0070]
[Table 1]
Figure 0003947296
[0071]
[Table 2]
Figure 0003947296
[0072]
[Table 3]
Figure 0003947296
[0073]
Using the thus obtained sheet-like sealing materials of Examples and Comparative Examples, a semiconductor device was manufactured according to the method for manufacturing a semiconductor device described above. That is, as shown in FIG. 2, a printed circuit board 1 (glass epoxy having a thickness of 1 mm) provided with a connecting electrode portion 2 (material: solder, melting point: 183 ° C., shape: cylindrical shape having a diameter of 150 μm × height of 30 μm). After the sheet-like sealing material 10 is placed on the substrate, as shown in FIG. 3, the connecting electrode portion 3 (material: solder, melting point) is placed at a predetermined position on the sheet-like sealing material 10. A semiconductor element 4 (thickness: 350 μm, size: 13 mm × 9 mm) provided with: 299 ° C., shape: spherical shape with a diameter of 120 μm and a height of 90 μm was placed. Thereafter, the sheet-like sealing material is heated and melted under the conditions of a heating temperature of 150 ° C., a load of 0.1 kgf, the number of electrodes, and a minute, and a molten resin is filled in the gap between the printed circuit board 1 and the semiconductor element 4. As a result, the connection electrode portions 2 and 3 were both electrically connected. Thereafter, the resin is thermally cured (conditions: 150 ° C. × 60 minutes) and the connecting electrode part 2 is melted (conditions: 250 ° C. × 30 seconds), whereby the voids are sealed resin as shown in FIG. Eight semiconductor devices each of which was resin-sealed with the layer 5 were manufactured.
[0074]
The obtained semiconductor device was subjected to an initial energization test, and further, each of the four semiconductor devices was used for a thermal shock test [TST test (condition: −55 ° C. × 5 minutes⇔125 ° C. × 5 minutes) After 500 cycles (4 for each example), an energization test and an inspection for cracks in the semiconductor element were performed, and the results are shown in Tables 4 to 6 below.
[0075]
Further, each of the four samples not subjected to the TST test was absorbed in a 30 ° C. × 60% RH environment for 168 hours, and then VPS (vapor phase soldering) (215 ° C. × 90 seconds) was performed. Thereafter, an energization test was performed. The results are shown in Tables 4 to 6 below.
[0076]
On the other hand, only the sheet-like sealing materials obtained in the above Examples and Comparative Examples were heated under the conditions of 150 ° C. × 60 minutes to obtain a sheet-like cured product. The tensile elastic modulus at 25 ° C. of each sheet-like cured product was measured using a universal tensile tester (Autograph, manufactured by Shimadzu Corporation). These results are also shown in Tables 4 to 6 below.
[0077]
[Table 4]
Figure 0003947296
[0078]
[Table 5]
Figure 0003947296
[0079]
[Table 6]
Figure 0003947296
[0080]
As a result of the above-mentioned Tables 4 to 6, regarding the example products, in all of the initial energization check, the energization test after the TST test, the semiconductor chip crack state after the TST test, and the energization test after the moisture absorption VPS It was confirmed that no occurred. On the other hand, it was confirmed that the comparative product was defective in any of the above tests. From this, it is clear that the example product secures stable energization with respect to the initial energization and the stress test such as the TST test and the moisture absorption VPS with respect to the comparative example product.
[0081]
【The invention's effect】
As described above, the present invention provides a method for manufacturing a semiconductor device in which a sealing resin layer is formed in a gap between a printed circuit board and a semiconductor element connected via a plurality of connection electrode portions. A sheet-like sealing material that forms a sealing resin layer having a cured product characteristic (X) having a tensile elastic modulus in a specific range is used. For this reason, the stress generated in the wiring circuit board, the semiconductor element, and the connecting electrode portion is alleviated, and a connection with high connection reliability is obtained. Turn into.
[0082]
And as a sheet-like sealing material which forms the sealing resin layer which has the said specific hardened | cured material characteristic (X), a biphenyl type epoxy resin and a specific acrylonitrile-butadiene-type copolymer are contained, and it further specifies by the case. When the epoxy resin composition using the phenol resin is used, a sealing resin layer that is superior in terms of low moisture absorption and high adhesiveness is formed. As a result, it is suitable for stress tests such as vapor phase soldering (VPS) after moisture absorption. On the other hand, a more stable electrical connection is provided.
[0083]
As the sheet-shaped sealing material having the cured product characteristic (X), which is a material for forming the sealing resin layer, it is particularly preferable to use a sheet-shaped sealing material made of the epoxy resin composition. Since the resin sealing is facilitated and the manufacturing efficiency of the semiconductor device is remarkably improved, it is preferably used.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating an example of a semiconductor device of the present invention.
FIG. 2 is an explanatory cross-sectional view showing the manufacturing process of the semiconductor device.
FIG. 3 is an explanatory cross-sectional view showing the manufacturing process of the semiconductor device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Wiring circuit board 2 Electrode part for connection 3 Electrode part for connection 4 Semiconductor element 5 Sealing resin layer 10 Sheet-like sealing material

Claims (5)

配線回路基板上に、複数の接続用電極部を介して半導体素子が搭載され、上記配線回路基板と半導体素子との間の空隙が封止樹脂層によって封止されてなる半導体装置の封止樹脂層を形成する際に用いられるシート状封止材料であって、上記シート状封止材料が、下記の(A)および(B)成分を含有するエポキシ樹脂組成物を用いてシート状に形成されたものであり、かつ下記の硬化物特性(X)を備えていることを特徴とするシート状封止材料。
(A)下記の一般式(1)で表されるビフェニル型エポキシ樹脂。
Figure 0003947296
(B)アクリロニトリル結合量が15〜40%であるアクリロニトリル−ブタジエン系共重合体。
(X)25℃における引張弾性率が300〜15000MPaである。
A sealing resin for a semiconductor device, in which a semiconductor element is mounted on a printed circuit board via a plurality of connection electrode portions, and a gap between the wired circuit board and the semiconductor element is sealed with a sealing resin layer A sheet-shaped sealing material used when forming a layer, wherein the sheet-shaped sealing material is formed into a sheet shape using an epoxy resin composition containing the following components (A) and (B): It is as hereinbefore, and a sheet-like sealing material characterized by comprising a cured product following properties (X).
(A) A biphenyl type epoxy resin represented by the following general formula (1).
Figure 0003947296
(B) An acrylonitrile-butadiene copolymer having an acrylonitrile bond amount of 15 to 40%.
(X) Tensile modulus at 25 ° C. is 300 to 15000 MPa.
上記(B)成分であるアクリロニトリル−ブタジエン系共重合体が、アクリロニトリル−ブタジエン−メタクリル酸共重合体である請求項1記載のシート状封止材料。The sheet-shaped sealing material according to claim 1 , wherein the acrylonitrile-butadiene copolymer as the component (B) is an acrylonitrile-butadiene-methacrylic acid copolymer . 上記(B)成分であるアクリロニトリル−ブタジエン系共重合体が、アクリロニトリル−ブタジエン−クリル酸共重合体である請求項記載のシート状封止材料。The (B) acrylonitrile component - butadiene copolymer, acrylonitrile - butadiene - sheet sealing material of claim 1 wherein the A acrylic acid copolymer. 上記エポキシ樹脂組成物が(A)成分および(B)成分とともに、下記の(C)成分を含有するエポキシ樹脂組成物である請求項1〜3のいずれか一項に記載のシート状封止材料。
(C)下記の一般式(2)で表されるフェノール樹脂。
Figure 0003947296
The said epoxy resin composition is an epoxy resin composition containing the following (C) component with (A) component and (B) component, The sheet-like sealing material as described in any one of Claims 1-3 .
(C) A phenol resin represented by the following general formula (2).
Figure 0003947296
配線回路基板上に、複数の接続用電極部を介して半導体素子が搭載され、上記配線回路基板と半導体素子との間の空隙が封止樹脂層によって封止されてなる半導体装置の製法であって、上記封止樹脂層が、請求項1〜4のいずれか一項に記載のシート状封止材料を用いて形成することを特徴とする半導体装置の製法。A method of manufacturing a semiconductor device in which a semiconductor element is mounted on a printed circuit board via a plurality of connection electrode portions, and a gap between the wired circuit board and the semiconductor element is sealed with a sealing resin layer. And the said sealing resin layer is formed using the sheet-like sealing material as described in any one of Claims 1-4, The manufacturing method of the semiconductor device characterized by the above-mentioned.
JP5861898A 1997-04-02 1998-03-10 Sheet-like sealing material and method of manufacturing semiconductor device using the same Expired - Lifetime JP3947296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5861898A JP3947296B2 (en) 1997-04-02 1998-03-10 Sheet-like sealing material and method of manufacturing semiconductor device using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-83496 1997-04-02
JP8349697 1997-04-02
JP5861898A JP3947296B2 (en) 1997-04-02 1998-03-10 Sheet-like sealing material and method of manufacturing semiconductor device using the same

Publications (2)

Publication Number Publication Date
JPH10335389A JPH10335389A (en) 1998-12-18
JP3947296B2 true JP3947296B2 (en) 2007-07-18

Family

ID=26399647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5861898A Expired - Lifetime JP3947296B2 (en) 1997-04-02 1998-03-10 Sheet-like sealing material and method of manufacturing semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP3947296B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3911088B2 (en) * 1997-04-28 2007-05-09 日東電工株式会社 Semiconductor device
KR100563509B1 (en) 1998-09-25 2006-03-23 신에쓰 가가꾸 고교 가부시끼가이샤 Epoxy Resin Compositions, and Laminated Films and Semiconductor Devices Using the Epoxy Resin Compositions
JP4459258B2 (en) * 1999-01-29 2010-04-28 パナソニック株式会社 Electronic component mounting method
KR100502222B1 (en) 1999-01-29 2005-07-18 마츠시타 덴끼 산교 가부시키가이샤 Electronic parts mounting method and device therefor
JP4097379B2 (en) * 1999-01-29 2008-06-11 松下電器産業株式会社 Electronic component mounting method and apparatus
JP4097378B2 (en) * 1999-01-29 2008-06-11 松下電器産業株式会社 Electronic component mounting method and apparatus
JP3672009B2 (en) 1999-04-14 2005-07-13 信越化学工業株式会社 Epoxy resin composition and laminated film and semiconductor device using this epoxy resin composition
US6512031B1 (en) 1999-04-15 2003-01-28 Shin-Etsu Chemical Co., Ltd. Epoxy resin composition, laminate film using the same, and semiconductor device
JP3632558B2 (en) * 1999-09-17 2005-03-23 日立化成工業株式会社 Epoxy resin composition for sealing and electronic component device
US6645632B2 (en) 2000-03-15 2003-11-11 Shin-Etsu Chemical Co., Ltd. Film-type adhesive for electronic components, and electronic components bonded therewith
JP4844776B2 (en) * 2000-04-07 2011-12-28 ナガセケムテックス株式会社 Electrically connectable semiconductor adhesive
DE10321875A1 (en) * 2003-05-15 2004-12-02 Bayer Ag HXNBR rubber as crosslinking agent
JP4946115B2 (en) * 2005-04-07 2012-06-06 住友ベークライト株式会社 Epoxy resin composition and semiconductor device
JP4488103B2 (en) 2006-04-20 2010-06-23 住友ベークライト株式会社 Semiconductor device
JP2007317943A (en) * 2006-05-26 2007-12-06 Sumitomo Bakelite Co Ltd Substrate, and semiconductor device
JP5357697B2 (en) * 2009-10-26 2013-12-04 ナミックス株式会社 Resin composition for protective film of chip resistor or piezoelectric sounding body
JP2015166403A (en) * 2012-06-29 2015-09-24 太陽ホールディングス株式会社 Thermosetting type resin composition, and thermosetting type resin film

Also Published As

Publication number Publication date
JPH10335389A (en) 1998-12-18

Similar Documents

Publication Publication Date Title
JP3947296B2 (en) Sheet-like sealing material and method of manufacturing semiconductor device using the same
KR100467897B1 (en) A semiconductor device and a process for the production thereof
JP3853979B2 (en) Manufacturing method of semiconductor devices
JP2009096886A (en) Liquid sealing resin composition and manufacturing method of semiconductor device using it
JP3999840B2 (en) Resin sheet for sealing
JP4206631B2 (en) Thermosetting liquid sealing resin composition, method for assembling semiconductor element, and semiconductor device
JP4753329B2 (en) Thermosetting resin composition and semiconductor device
JP3911088B2 (en) Semiconductor device
JP2001223227A (en) Resin composition for sealing semiconductor material and semiconductor device
JP4721309B2 (en) Thermosetting resin composition and semiconductor device
JP2001311005A (en) Thermosetting resin sheet, and method for molding bump and semiconductor device using the same
JP3976395B2 (en) Semiconductor device
JP2006128567A (en) Method of connecting semiconductor package to printed wiring board
JP3779091B2 (en) Resin composition for sealing
JP2001207031A (en) Resin composition for semiconductor sealing and semiconductor device
JP3957244B2 (en) Manufacturing method of semiconductor devices
JPH0841168A (en) Liquid epoxy resin composition and semiconductor device
JP2005206664A (en) Semiconductor sealing resin composition
JP3877945B2 (en) Epoxy resin composition and semiconductor sealing device
JP2922672B2 (en) Semiconductor device manufacturing method
JP3649554B2 (en) Epoxy resin composition and semiconductor device
JP3939849B2 (en) Manufacturing method of semiconductor devices
JP2004303874A (en) Semiconductor device and manufacturing method therefor
JP2002003704A (en) Resin composition for sealing and semiconductor-sealed device
JPH0859795A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160420

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term