JP3945492B2 - Heat exchange device and heat pump water heater using the same - Google Patents

Heat exchange device and heat pump water heater using the same Download PDF

Info

Publication number
JP3945492B2
JP3945492B2 JP2004111792A JP2004111792A JP3945492B2 JP 3945492 B2 JP3945492 B2 JP 3945492B2 JP 2004111792 A JP2004111792 A JP 2004111792A JP 2004111792 A JP2004111792 A JP 2004111792A JP 3945492 B2 JP3945492 B2 JP 3945492B2
Authority
JP
Japan
Prior art keywords
tube
heat transfer
heat
plane
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004111792A
Other languages
Japanese (ja)
Other versions
JP2005291683A (en
Inventor
立群 毛
昌宏 尾浜
竹司 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004111792A priority Critical patent/JP3945492B2/en
Publication of JP2005291683A publication Critical patent/JP2005291683A/en
Application granted granted Critical
Publication of JP3945492B2 publication Critical patent/JP3945492B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、第一流体と第二流体とを熱交換させる熱交換装置及びそれを用いたヒートポンプ給湯装置に関するものである。   The present invention relates to a heat exchange device for exchanging heat between a first fluid and a second fluid, and a heat pump hot water supply device using the heat exchange device.

従来の第一流体と第二流体とを熱交換させる熱交換装置として、例として、図13に示すように、水通路Wを構成する芯管1と、芯管1の外周に螺旋状に巻き付けられて冷媒通路Rを構成する巻管2とからなり、水通路Wを流れる水は冷媒通路を流れる冷媒により加熱する熱交換装置において、芯管1は渦巻き形状に巻かれ、上下二段に(即ち、二本)重ね合わせて接続するようになっている。このように、上段の芯管1と下段の芯管1とは渦巻きの中心側において接続部3を介して接続され、上段の芯管1の外周に巻き付けられている巻管2と下段の芯管1の外周に巻き付けられている巻管2とは渦巻きの中心側において接続部4を介して接続される構成のものが知られている(例えば特許文献1参照)。
特開2003−97898号公報(第1−9頁、第11、13図)
As a conventional heat exchange device for exchanging heat between the first fluid and the second fluid, for example, as shown in FIG. 13, the core tube 1 constituting the water passage W and the outer periphery of the core tube 1 are spirally wound. In the heat exchange device in which the water flowing through the water passage W is heated by the refrigerant flowing through the refrigerant passage, the core tube 1 is wound in a spiral shape, and the upper and lower two stages ( In other words, the two are overlapped and connected. In this way, the upper core tube 1 and the lower core tube 1 are connected via the connecting portion 3 at the center of the spiral, and the wound tube 2 wound around the outer periphery of the upper core tube 1 and the lower core The thing of the structure connected with the winding tube 2 currently wound around the outer periphery of the pipe | tube 1 via the connection part 4 in the center side of a spiral is known (for example, refer patent document 1).
Japanese Patent Laid-Open No. 2003-97898 (pages 1-9, FIGS. 11 and 13)

しかしながら上記従来の熱交換装置では、渦巻き形状の芯管を二段重ねるという手法で、コンパクトで熱交換器の性能を大幅に向上させることができるが、芯管を流れる水と巻管を流れる冷媒との熱交換を効率的に行わせるには、巻管と芯管とを熱的に接触させる手段例えばロウ付け加工の必要がある。ロウ付け加工すれば、巻管と芯管とが一体となるため、芯管を渦巻く時、芯管の伸び縮みなどが制限され加工性が低下し、芯管の渦巻き形状、曲げ半径などが制限される問題がある。また、芯管の外周に巻管が巻き付けられていることによって、芯管の外周は連続平滑曲面でないため、専用の曲げ冶具が必要となり、加工コストが上昇するという問題があった。また、ロウ付けなどをせずに巻管を芯管に巻きつくのみとすると、芯管を渦巻き状にするには、巻管は動かないように規制する専用の冶具などが必要となる、製造工程は複雑となり、コストが高くなるという課題もあった。   However, in the above-described conventional heat exchange device, the method of stacking spiral core tubes in two stages is compact and can greatly improve the performance of the heat exchanger, but water flowing through the core tube and refrigerant flowing through the coil tube In order to efficiently perform heat exchange with the tube, it is necessary to perform means for bringing the winding tube and the core tube into thermal contact, for example, brazing. If the brazing process is performed, the winding tube and the core tube are integrated, so when the core tube is swirled, the expansion and contraction of the core tube is restricted and workability is reduced, and the spiral shape and bending radius of the core tube are restricted. There is a problem. In addition, since the winding tube is wound around the outer periphery of the core tube, the outer periphery of the core tube is not a continuous smooth curved surface, so that there is a problem that a dedicated bending jig is required and the processing cost increases. In addition, if only the winding tube is wound around the core tube without brazing or the like, to make the core tube spiral, special tools are required to regulate the winding tube so that it does not move. There was also a problem that the process became complicated and the cost increased.

そこで本発明は、上記従来の課題を解決するもので、複数本の伝熱管を螺旋状にねじって構成した第二伝熱管を内包する第一伝熱管は複数の平面にて平面渦巻き状に積層する熱交換性能のよい低コストコンパクトな熱交換装置を提供することを目的とする。 Accordingly, the present invention solves the above-described conventional problems, and the first heat transfer tube including the second heat transfer tube configured by spirally twisting a plurality of heat transfer tubes is laminated in a plane spiral shape on a plurality of planes. An object of the present invention is to provide a low-cost and compact heat exchange device with good heat exchange performance.

上記課題を解決するために本発明の熱交換装置は、第一流体が流れる第一伝熱管と、第一伝熱管内に配置され、第二流体が流れる複数本の伝熱管を螺旋状にねじって構成した第二伝熱管とからなり、第一伝熱管は第一平面にて平面渦巻き状に収納された後、第二平面にて平面渦巻き状に収納するように複数の平面にて積層するとともに、前記第一伝熱管は同一管径の曲げ半径が一定であることを特徴とする。 In order to solve the above problems, a heat exchange device according to the present invention includes a first heat transfer tube through which a first fluid flows and a plurality of heat transfer tubes that are arranged in the first heat transfer tube and through which a second fluid flows. The first heat transfer tube is housed in a plane spiral on the first plane and then laminated in a plurality of planes so as to be housed in a plane spiral on the second plane. In addition, the first heat transfer tube has a constant bending radius with the same tube diameter .

これによれば、数本の伝熱管を螺旋状にねじって構成した第二伝熱管を内包する第一伝熱管は複数の平面にて平面渦巻き状に積層する熱交換性能のよいコンパクトな低コスト熱交換装置を提供することができるとともに、同一管径の第一伝熱管を同一曲げ半径とすることによって、曲げ冶具例えばパイプベンダーの冶具数を最小限に抑えることができるため、連続作業性を向上させ、加工コストの低減を実現することができる。 According to this, the 1st heat exchanger tube which encloses the 2nd heat exchanger tube constituted by twisting several heat exchanger tubes spirally is compact, low cost with good heat exchange performance laminated in a plane spiral shape in a plurality of planes A heat exchanging device can be provided , and the number of bending jigs such as pipe benders can be minimized by setting the first heat transfer tubes having the same diameter to the same bending radius. It is possible to improve the processing cost.

また、圧縮機、放熱器、減圧器、吸熱器等から構成され冷媒の圧力が臨界圧力以上となるヒートポンプ給湯装置を備え、放熱器として上記熱交換装置を用いて、第二流体の冷媒が第一流体を加熱するヒートポンプ給湯装置とする。 In addition, a heat pump hot water supply device that includes a compressor, a radiator, a decompressor, a heat absorber, etc., and has a refrigerant pressure equal to or higher than a critical pressure, and the second fluid refrigerant is a first radiator using the heat exchange device as a radiator . A heat pump water heater that heats one fluid is used.

これによれば第二伝熱管を流れる第二流体を臨界圧力以上のヒートポンプサイクルの冷媒とし、その冷媒の放熱を用いて第一流体を加熱することによって、高いサイクル成績効率を実現することができる。   According to this, high cycle performance efficiency can be realized by using the second fluid flowing through the second heat transfer tube as a refrigerant in a heat pump cycle at a critical pressure or higher and heating the first fluid using the heat radiation of the refrigerant. .

本発明によれば、数本の伝熱管を螺旋状にねじって構成した第二伝熱管を内包する第一伝熱管は複数の平面にて平面渦巻き状に積層する熱交換性能のよいコンパクトな低コスト熱交換装置を提供することができる。   According to the present invention, the first heat transfer tube including the second heat transfer tube formed by spirally twisting several heat transfer tubes is stacked in a plane spiral shape on a plurality of planes and has a compact and low heat exchange performance. A cost heat exchange device can be provided.

また、第二伝熱管を流れる第二流体を臨界圧力以上のヒートポンプサイクルの冷媒とし、その冷媒の放熱を用いて第一流体を加熱することによって、高いサイクル成績効率を実現することができる。   Moreover, high cycle performance efficiency is realizable by making the 2nd fluid which flows through a 2nd heat exchanger tube into the refrigerant | coolant of the heat pump cycle more than critical pressure, and heating a 1st fluid using the thermal radiation of the refrigerant | coolant.

第1の発明は、第一流体が流れる第一伝熱管と、この第一伝熱管内に配置され、第二流体が流れる複数本の伝熱管を螺旋状に捻って構成した第二伝熱管とを備え、第一伝熱管は第一平面にて平面渦巻き状に収納された後、第二平面にて平面渦巻き状に収納されるように複数の平面にて積層するとともに、前記第一伝熱管は同一管径の曲げ半径が一定である熱交換装置を構成するものである。 The first invention includes a first heat transfer tube through which the first fluid flows, and a second heat transfer tube arranged in the first heat transfer tube and configured by twisting a plurality of heat transfer tubes through which the second fluid flows. The first heat transfer tube is housed in a plane spiral shape on the first plane and then stacked on a plurality of planes so as to be housed in a plane spiral shape on the second plane , and the first heat transfer tube Constitutes a heat exchange device in which the bending radius of the same tube diameter is constant .

本実施の形態によれば、螺旋状に捻れた複数本の第二伝熱管を第一伝熱管内に配置することによって、第一伝熱管と複数本の第二伝熱管の間に、自然に螺旋状の第一流体の流路が形成されるとともに、第二流体も螺旋状に旋回されるため、第一流体と第二流体ともに乱流化され、第一伝熱管を流れる第一流体と第二伝熱管を流れる第二流体とは効率よく熱交換でき、熱交換性能のよい熱交換装置を得られる。 According to this embodiment , by arranging a plurality of second heat transfer tubes twisted in a spiral in the first heat transfer tube, naturally between the first heat transfer tube and the plurality of second heat transfer tubes. Since the spiral first fluid flow path is formed and the second fluid is also swirled spirally, both the first fluid and the second fluid are turbulent and the first fluid flowing through the first heat transfer tube Heat exchange with the second fluid flowing through the second heat transfer tube can be efficiently performed, and a heat exchange device with good heat exchange performance can be obtained.

このように、第二伝熱管を螺旋状に捻ることによって、ロウ付けなどを施する必要がなく、第二伝熱管の全表面を伝熱面積として寄与させるとともに、第二流体と第一流体を旋回流とし、乱流撹乱の効果で熱伝達率の向上を図れ、低コストの熱交換装置を得られる。また、第二伝熱管は第一伝熱管内に配置されていることによって、第一伝熱管の表面は連続平滑曲面なので、曲げる時、特別な冶具と設備などを要らず、通常のパイプベンダーなどで作業できるので、加工コストと設備投資を抑えることができる。 Thus, by twisting the second heat transfer tube in a spiral shape, there is no need to braze, etc., and the entire surface of the second heat transfer tube contributes as the heat transfer area, and the second fluid and the first fluid With a swirl flow, the heat transfer coefficient can be improved by the effect of turbulent flow disturbance, and a low-cost heat exchange device can be obtained. In addition, because the second heat transfer tube is arranged in the first heat transfer tube, the surface of the first heat transfer tube is a continuous smooth curved surface, so there is no need for special jigs and equipment, etc. Can reduce the processing cost and capital investment.

また、第二伝熱管は管同士が密着しながら螺旋状に捻られて第一伝熱管内に配置されることによって、第一伝熱管を曲げる際に、より小さな曲げ半径で第一伝熱管を曲げることができるので、コンパクト性の高い熱交換器を提供することができる。 Further, the second heat transfer tube is twisted in a spiral shape while the tubes are in close contact with each other, and is disposed in the first heat transfer tube, so that when bending the first heat transfer tube, the first heat transfer tube is bent with a smaller bending radius. Since it can be bent, a highly compact heat exchanger can be provided.

このように、螺旋状に捻った第二伝熱管を内包した第一伝熱管を第一平面にて平面渦巻き状に収納した後、第二平面にて平面渦巻き状に収納するように複数の平面にて積層する
ことによって、高密度に第一伝熱管を収納することができ、熱交換性能のよいコンパクトな低コスト熱交換装置を提供することができる。
As described above, the first heat transfer tube containing the second heat transfer tube twisted in a spiral shape is stored in a plane spiral shape on the first plane, and then stored in a plane spiral shape on the second plane. The first heat transfer tubes can be accommodated at a high density by laminating at, so that a compact low-cost heat exchange device with good heat exchange performance can be provided.

さらに、同一管径の第一伝熱管を同一曲げ半径とすることによって、曲げ冶具例えばパイプベンダーの冶具数を最小限に抑えることができるため、連続作業性を向上させ、加工コストの低減を実現することができる。In addition, the number of bending jigs such as pipe benders can be minimized by setting the first heat transfer tubes of the same tube diameter to the same bending radius, improving continuous workability and reducing processing costs. can do.

第2の発明は、特に、第1の発明の熱交換装置において、第二伝熱管は全長に渡り、継目がなく、一本ものによって構成されたものである。本実施の形態によれば、第一伝熱管内に内包され、第一流体の旋回流路中に配置される第二伝熱管は、継目がないため、第一流体と触れるのは第二伝熱管の管表面だけで、第一流体に対する耐食性と熱交換装置全体の信頼性を向上させることができる。また、第二伝熱管は継目がなく、一本ものであるため、螺旋状に捻る作業などの効率がよくなり、繋ぎ作業などは要らなくなり、作業性をアップさせることができる。   According to a second aspect of the present invention, in particular, in the heat exchange device according to the first aspect, the second heat transfer tube extends over the entire length, is seamless, and is constituted by a single piece. According to the present embodiment, since the second heat transfer tube contained in the first heat transfer tube and disposed in the swirl flow path of the first fluid is seamless, the second heat transfer is in contact with the first fluid. The corrosion resistance to the first fluid and the reliability of the entire heat exchange device can be improved only by the surface of the heat pipe. In addition, since the second heat transfer tube is seamless and is a single tube, the efficiency of the operation of twisting in a spiral shape is improved, and the connection operation is not required, so that the workability can be improved.

第3の発明は、特に、第1または第2の発明の熱交換装置において、第一平面に位置する平面渦巻き状第一伝熱管と、第二平面に位置する平面渦巻き状第一伝熱管とは、管径が異なるものである。本実施の形態によれば、例えば、第二平面に位置する第一伝熱管の管径は、第一平面に位置する第一伝熱管の管径より大きくすることによって、第二平面に位置する第一伝熱管部分において、第一流体の流れる断面積を大きくすることができるため、第一流体のスケール析出による流路閉塞を考慮した安全性、耐久性のよい熱交換装置を提供することができる。また、管径の異なる第一伝熱管はそれぞれ第一平面と第二平面に位置させ、同一管径は同一平面となるように、同一管径の第一伝熱管は同一の平面に渦巻きするため、よりコンパクトな収納性を実現できるとともに、生産管理は簡素化でき、作業効率を向上させることができる。   In particular, according to a third aspect of the present invention, in the heat exchange device of the first or second aspect, a planar spiral first heat transfer tube located on the first plane, and a planar spiral first heat transfer tube located on the second plane, Have different tube diameters. According to the present embodiment, for example, the tube diameter of the first heat transfer tube located on the second plane is positioned on the second plane by making it larger than the tube diameter of the first heat transfer tube located on the first plane. In the first heat transfer tube portion, since the cross-sectional area through which the first fluid flows can be increased, it is possible to provide a heat exchange device with good safety and durability in consideration of blockage due to scale deposition of the first fluid. it can. In addition, the first heat transfer tubes with different tube diameters are positioned on the first plane and the second plane, respectively, and the first heat transfer tubes with the same tube diameter are swirled in the same plane so that the same tube diameter is the same plane. Therefore, it is possible to realize a more compact storage property, simplify production management, and improve work efficiency.

第4の発明は、特に、第1〜3のいずれか一つの発明の熱交換装置において、同一平面に位置する第一伝熱管は管径の異なる大管径管段と小管径管段とを有することである。本実施の形態によれば、同一平面内に大管径管段と小管径管段と混在することができるため、必要な用途に応じて、大管径管段と小管径管段の割合比率を調整することができ、より幅広く用途に応じた最適な熱交換装置を提供することができる。また、同一平面渦巻きにおいて、大管径管段を外周側に、小管径管段を内周側に配置することによって、大管径管段部分はより直管部を得ることができるため、スケールの析出沈殿に強い熱交換装置を提供することができる。   In a fourth aspect of the present invention, in particular, in the heat exchange device according to any one of the first to third aspects, the first heat transfer tube located on the same plane has a large-diameter tube stage and a small-diameter tube stage having different tube diameters. That is. According to the present embodiment, since the large pipe stage and the small pipe stage can be mixed in the same plane, the ratio ratio of the large pipe stage and the small pipe stage is adjusted according to the required application. Therefore, it is possible to provide an optimum heat exchanging device corresponding to a wider range of applications. Also, in the same plane spiral, the large pipe stage can be more straight piped by arranging the large pipe stage on the outer peripheral side and the small pipe stage on the inner peripheral side. It is possible to provide a heat exchange device that is resistant to precipitation.

第5の発明は、特に、第1〜4のいずれか一つの発明の熱交換装置において、管径の大きい第一伝熱管の部分の曲げ半径は、管径の小さい第一伝熱管の部分の曲げ半径より大きくしたことである。本実施の形態によれば、管径の大きい第一伝熱管部分においては、曲げ半径を大きくすることによって、曲げやすくするとともに、第一伝熱管内の第一流体の流れを滑らかにし、急な屈曲や淀みなどによるスケールの沈殿を少なくすることができる。 The fifth aspect of the invention is particularly the heat exchange device according to any one of the first to fourth aspects, wherein the bending radius of the portion of the first heat transfer tube having the large tube diameter is that of the portion of the first heat transfer tube having the small tube diameter. It is larger than the bending radius. According to the present embodiment, in the first heat transfer tube portion having a large tube diameter, it is easy to bend by increasing the bend radius, and the flow of the first fluid in the first heat transfer tube is made smooth and abrupt. It is possible to reduce sedimentation of scale due to bending or stagnation.

第6の発明は、特に、第1〜5のいずれか一つの発明の熱交換装置において、第一平面と第二平面の平面渦巻き第一伝熱管を、平面に垂直な方向に第一伝熱管の管径に略相当する高さとなるように固定手段を設けたものである。本実施の形態によれば、熱交換装置は第一伝熱管の管径に略相当する高さとなるように固定手段を設けることによって、第一伝熱管を平面渦巻きする時に生じた平面に垂直な方向のスプリングバックの力を抑え、フラットな渦巻き第一伝熱管が提供できるとともに、熱交換装置全体をよりコンパクトとすることができる。 In a sixth aspect of the present invention, in particular, in the heat exchange device according to any one of the first to fifth aspects, the first spiral heat transfer tube of the first plane and the second plane is arranged in a direction perpendicular to the plane. The fixing means is provided so as to have a height substantially corresponding to the tube diameter. According to the present embodiment, the heat exchanging device is provided with the fixing means so as to have a height substantially corresponding to the tube diameter of the first heat transfer tube, thereby being perpendicular to the plane generated when the first heat transfer tube is swirled in a plane. The spring back force in the direction can be suppressed, and a flat spiral first heat transfer tube can be provided, and the entire heat exchange device can be made more compact.

第7の発明は、特に、第1〜6のいずれか一つの発明の熱交換装置において、第一伝熱管を複数本に並設して設け、第一伝熱管の流路を多パス化とすることである。本実施の形態によれば、用途と必要などに応じて、第一伝熱管をモジュール化として、簡単に熱交換装置の能力をアップさせることができ、大能力、大容量の要求に対応できる。 In a seventh aspect of the present invention, in particular, in the heat exchange device according to any one of the first to sixth aspects, the first heat transfer tube is provided in parallel, and the flow path of the first heat transfer tube is multipathed. It is to be. According to the present embodiment, the capacity of the heat exchange device can be easily increased by modularizing the first heat transfer tube according to the use and necessity, and the demand for large capacity and large capacity can be met.

第8の発明は、特に、第1〜7のいずれか一つの発明の熱交換装置において、第二伝熱管を内管と外管とよって構成される二重管とすることである。本実施の形態によれば、第二伝熱管を二重管とすることによって、内管もしくは外管のどちらか一方が破損した場合でも、内管を流れる第二流体と第一伝熱管を流れる第一流体との間に、漏洩用溝を設けたため、第一流体と第二流体が混じりあうのを防止できるとともに、早期故障診断と迅速な修理を実現でき、信頼性の高い熱交換装置を提供することができる。また、この二重構成の第二伝熱管は捻られているので、内管と外管とより密着するようになり、内管と外管の間の熱抵抗が小さくなり、熱交換装置の熱交換性能を確保することができる。 In an eighth aspect of the invention, in particular, in the heat exchange device according to any one of the first to seventh aspects, the second heat transfer tube is a double tube constituted by an inner tube and an outer tube. According to the present embodiment, by making the second heat transfer tube a double tube, even if either the inner tube or the outer tube is damaged, the second fluid flows through the inner tube and the first heat transfer tube. Since a leakage groove is provided between the first fluid and the first fluid, the second fluid can be prevented from mixing together, early failure diagnosis and quick repair can be realized, and a highly reliable heat exchange device can be realized. Can be provided. In addition, since the second heat transfer tube having the double structure is twisted, the inner tube and the outer tube are brought into close contact with each other, the thermal resistance between the inner tube and the outer tube is reduced, and the heat of the heat exchange device is reduced. Exchange performance can be secured.

第9の発明は、特に、圧縮機と放熱器と減圧器と吸熱器などから構成する冷媒圧力が臨界圧力以上となるヒートポンプ給湯装置を備え、放熱器として第1〜8のいずれか一つの発明の熱交換装置を用い、第二流体の冷媒が第一流体を加熱するものである。本実施の形態によれば、第二伝熱管を流れる第二流体を臨界圧力以上のヒートポンプサイクルの冷媒とし、その冷媒の放熱を用いて第一流体を加熱することによって、高いサイクル成績効率を実現することができる。また、臨界圧力以上とすることによって、必要な高温度レベルまで第一流体を効率的に加熱できる。このように、コンパクトな高効率の熱交換装置をヒートポンプサイクルの放熱器として使用することによって、高効率なサイクル装置を実現することができる。 In particular, the ninth invention includes a heat pump hot water supply device in which the refrigerant pressure, which is composed of a compressor, a radiator, a decompressor, a heat absorber, and the like, is equal to or higher than a critical pressure, and any one of the first to eighth inventions as a radiator. The second fluid refrigerant heats the first fluid using the heat exchange device. According to this embodiment, the second fluid flowing through the second heat transfer tube is used as a refrigerant in a heat pump cycle that is above the critical pressure, and the first fluid is heated using the heat release of the refrigerant, thereby realizing high cycle performance efficiency. can do. Moreover, the first fluid can be efficiently heated to a required high temperature level by setting the pressure to a critical pressure or higher. Thus, a highly efficient cycle apparatus is realizable by using a compact highly efficient heat exchange apparatus as a heat pump cycle radiator.

第10の発明は、特に、第9の発明のヒートポンプ給湯装置おいて、第二伝熱管を流れる第二流体は二酸化炭素冷媒としたものである。本実施の形態によれば、管径の小さい第二伝熱管内に超臨界圧力の二酸化炭素冷媒を流すことによって、第一伝熱管の管壁は比較的薄い肉厚で設計できるとともに、二酸化炭素冷媒の管内熱伝達特性を損なうことなく、低重量、コンパクト、高性能な熱交換装置を提供することができる。また、例えば第一流体を水とすることによって、第二伝熱管外周の全周が有効伝熱面積として寄与し二酸化炭素冷媒の熱をもって、水を加熱することができ、高効率な給湯装置を提供することができる。 In a tenth aspect of the invention, in particular, in the heat pump water heater of the ninth aspect of the invention, the second fluid flowing through the second heat transfer tube is a carbon dioxide refrigerant. According to the present embodiment, by flowing a carbon dioxide refrigerant having a supercritical pressure in the second heat transfer tube having a small diameter, the tube wall of the first heat transfer tube can be designed with a relatively thin wall thickness, and carbon dioxide. A low-weight, compact, and high-performance heat exchange device can be provided without impairing the heat transfer characteristics of the refrigerant in the tube. In addition, for example, by using water as the first fluid, the entire circumference of the outer periphery of the second heat transfer tube contributes as an effective heat transfer area, and the water can be heated with the heat of the carbon dioxide refrigerant. Can be provided.

(実施の形態1)
図1は、本発明の第1の実施形態における熱交換装置の収納状態を示す熱交換装置構成図である。図1の(a)は同熱交換装置の平面図で、図1の(b)は同熱交換装置の側面図である。図2は図1に示すA−A平面における同熱交換装置部分の構成図、図3は図1に示すB−B平面における同熱交換装置部分の構成図で、図4は同熱交換装置の要部拡大図、図5は第二伝熱管の断面図、図6は同熱交換装置を用いたヒートポンプ給湯装置構成図である。
(Embodiment 1)
FIG. 1 is a configuration diagram of a heat exchange device showing a storage state of the heat exchange device according to the first embodiment of the present invention. FIG. 1A is a plan view of the heat exchange device, and FIG. 1B is a side view of the heat exchange device. 2 is a configuration diagram of the heat exchange device portion in the AA plane shown in FIG. 1, FIG. 3 is a configuration diagram of the heat exchange device portion in the BB plane shown in FIG. 1, and FIG. 4 is the heat exchange device. FIG. 5 is a cross-sectional view of the second heat transfer tube, and FIG. 6 is a configuration diagram of a heat pump hot water supply device using the heat exchange device.

図1〜図3において、20a、20bは例えば第一流体の水が流れる管径の異なる第一伝熱管、21はこの第一伝熱管20aと20bとを連通させる異径連通部で、この異径連通部21によって、管径の小さい第一伝熱管20aと管径の大きい第一伝熱管20bとは連通されている。22a、22bはこの第一伝熱管20a、20b内に内包され例えば第二流体の二酸化炭素冷媒が流れる第二伝熱管(詳細後述)、A−Aは第一伝熱管20aの部分が平面渦巻き状に巻かれ収納する第一平面、B−Bは第一伝熱管20bの部分が平面渦巻き状に巻かれ収納する第二平面。23は第二伝熱管22a、22bと連通し第二流体が流入する入口ヘッダー、24は第二伝熱管22a、22bと連通し第二流体が流出する出口ヘッダーで、第二伝熱管22aと22bはそれぞれ、入口ヘッダー23と出口ヘッダ
ー24の間にある部分においては、継目がなく一本構成となっている。25は入口ヘッダー23に対応する第一流体が流出する出湯部、26は出口ヘッダー24に対応する第一流体が流入する入水部である。R1は第一伝熱管20aの曲げ半径、R2は第一伝熱管20bの曲げ半径を示す。このように、管径の小さい第一伝熱管20aは曲げ半径R1で、平面渦巻き状に巻かれ、第一平面A−Aに収納された後、管径の大きい第一伝熱管20bは曲げ半径R2で、平面渦巻き状に巻かれ、第二平面B−Bに収納される構成となり、異径連通部21は第一平面に位置する第一伝熱管20aの部分と第二平面に位置する第一伝熱管20bの部分を連通している。
1 to 3, reference numerals 20a and 20b denote, for example, first heat transfer pipes having different pipe diameters through which water of the first fluid flows, and 21 denotes a different-diameter communication portion that connects the first heat transfer pipes 20a and 20b. The first heat transfer tube 20a having a small tube diameter and the first heat transfer tube 20b having a large tube diameter communicate with each other through the diameter communication portion 21. 22a and 22b are included in the first heat transfer tubes 20a and 20b, for example, a second heat transfer tube (details will be described later) through which a second fluid carbon dioxide refrigerant flows, and AA is a flat spiral shape of the first heat transfer tube 20a. BB is a first plane that is wound and accommodated, and BB is a second plane that the first heat transfer tube 20b is wound and accommodated in a plane spiral shape . 23 is an inlet header that communicates with the second heat transfer tubes 22a and 22b and into which the second fluid flows, and 24 is an outlet header that communicates with the second heat transfer tubes 22a and 22b and through which the second fluid flows out, and the second heat transfer tubes 22a and 22b. In each of the portions between the inlet header 23 and the outlet header 24, there is no seam and the structure is one. Reference numeral 25 denotes a hot water outlet portion from which the first fluid corresponding to the inlet header 23 flows out, and reference numeral 26 denotes a water inlet portion into which the first fluid corresponding to the outlet header 24 flows. R1 indicates the bending radius of the first heat transfer tube 20a, and R2 indicates the bending radius of the first heat transfer tube 20b. As described above, the first heat transfer tube 20a having a small tube diameter has a bending radius R1 and is wound in a plane spiral shape. After being stored in the first plane AA, the first heat transfer tube 20b having a large tube diameter has a bending radius. In R2, it is wound in a plane spiral shape and accommodated in the second plane BB, and the different diameter communication portion 21 is located in the first heat transfer tube 20a located in the first plane and the second plane located in the second plane. The portion of the heat transfer tube 20b is communicated.

図4において、二本の第二伝熱管22aと22bはお互いに密接しながら、所定のピッチで螺旋状に捻られている。そして、この捻った第二伝熱管は第一伝熱管20a内に配置され、第二伝熱管22a、22bの外壁と第一伝熱管20aまたは20bの内壁の間に、自然に螺旋状の第一流体例えば水の流路27が形成されるとともに、第二流体例えば二酸化炭素冷媒も第二伝熱管のねじりによって螺旋状に旋回されるため、第一流体と第二流体ともに乱流化され、第二伝熱管22a、22bを流れる第二流体と第一伝熱管20a、20bを流れる第一流体とは効率よく熱交換でき、熱交換性能のよい熱交換装置を得られる。   In FIG. 4, two second heat transfer tubes 22a and 22b are twisted in a spiral shape at a predetermined pitch while being in close contact with each other. The twisted second heat transfer tube is arranged in the first heat transfer tube 20a, and is naturally spiraled between the outer wall of the second heat transfer tubes 22a and 22b and the inner wall of the first heat transfer tube 20a or 20b. A flow path 27 of the fluid such as water is formed, and the second fluid such as carbon dioxide refrigerant is also spirally swirled by the torsion of the second heat transfer tube, so that both the first fluid and the second fluid are turbulent, The second fluid flowing through the two heat transfer tubes 22a and 22b and the first fluid flowing through the first heat transfer tubes 20a and 20b can efficiently exchange heat, and a heat exchange device with good heat exchange performance can be obtained.

図5において、28は第二伝熱管22a、または22bを構成する外管、29は第二伝熱管22a、または22bを構成する内管で、この外管28の内壁と内管29の外壁とを密着させることによって、第二伝熱管22a、22bは二重管構造となっている。30は外管28の内壁側にある漏洩用溝で、外管28の内壁と内管29の外壁の間に漏洩した流体を第二伝熱管の端部へ導く構成となっている。   In FIG. 5, 28 is an outer tube constituting the second heat transfer tube 22a or 22b, 29 is an inner tube constituting the second heat transfer tube 22a or 22b, and the inner wall of the outer tube 28 and the outer wall of the inner tube 29 are The second heat transfer tubes 22a and 22b have a double tube structure. Reference numeral 30 denotes a leakage groove on the inner wall side of the outer tube 28, which is configured to guide the fluid leaked between the inner wall of the outer tube 28 and the outer wall of the inner tube 29 to the end of the second heat transfer tube.

図6において、圧縮機31、放熱器32、減圧手段33、吸熱器34が冷媒循環回路により閉回路に接続されている。冷媒循環回路は、例えば炭酸ガス(CO2)を冷媒として使用し、高圧側の冷媒圧力が冷媒の臨界圧以上となる超臨界ヒートポンプサイクルを使用している。そして圧縮機31は、内蔵する電動モータ(図示せず)によって駆動され、吸引した冷媒を臨界圧力まで圧縮して吐出する。減圧手段33はステッピングモータ(図示せず)により駆動する絞り弁で、冷媒流路抵抗を制御している。   In FIG. 6, the compressor 31, the heat radiator 32, the pressure reduction means 33, and the heat absorber 34 are connected to the closed circuit by the refrigerant circuit. The refrigerant circulation circuit uses, for example, carbon dioxide (CO2) as a refrigerant, and uses a supercritical heat pump cycle in which the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant. The compressor 31 is driven by a built-in electric motor (not shown), and compresses and sucks the sucked refrigerant to a critical pressure. The decompression means 33 is a throttle valve driven by a stepping motor (not shown) and controls the refrigerant flow path resistance.

放熱器32は冷媒流路と、その冷媒流路と熱交換を行う水流路を備える。そして、この放熱器32は前述の熱交換装置を用い、冷媒流路は第二伝熱管22a、22b、水流路は第一伝熱管20a、20bの内壁と第二伝熱管22a、22bの外壁との間の流路27としている。このように、前述の熱交換装置の第二伝熱管の入口ヘッダー23は圧縮機31からの冷媒循環回路部分と連通し、出口ヘッダー24は減圧器33への冷媒循環回路部分と連通するように接続されている。そして、この第二伝熱管の冷媒流路の流れ方向は水流路の流れ方向対向としている。 The radiator 32 includes a refrigerant channel and a water channel that performs heat exchange with the refrigerant channel. And this radiator 32 uses the above-mentioned heat exchange device, the refrigerant channel is the second heat transfer tubes 22a, 22b, the water channel is the inner wall of the first heat transfer tubes 20a, 20b and the outer wall of the second heat transfer tubes 22a, 22b. It is set as the flow path 27 between. As described above, the inlet header 23 of the second heat transfer tube of the heat exchange device described above communicates with the refrigerant circulation circuit portion from the compressor 31, and the outlet header 24 communicates with the refrigerant circulation circuit portion to the decompressor 33. It is connected. Then, the flow direction of the coolant channel of the second heat exchanger tube is in the flow direction and facing the water flow path.

この水流路27に水または予温水を供給する給水管35と、水流路27から出湯される湯を貯湯タンク36へ通水させるための給湯回路37が接続されている。そして、給水管35は前述の熱交換装置の入水部26と接続し、前述の熱交換装置の出湯部25は給湯回路37と連通している。38は給水管35に設けた水または予温水を輸送する積層ポンプである。このように、貯湯タンク36から水または予温水が積層ポンプ38に輸送され、水流路27で所定温度まで加熱された後、貯湯タンク36へ輸送され貯留されるようになっている。そして、39は貯湯タンク36と連通する出湯管である。   A water supply pipe 35 for supplying water or pre-warm water to the water flow path 27 and a hot water supply circuit 37 for passing hot water discharged from the water flow path 27 to the hot water storage tank 36 are connected. The water supply pipe 35 is connected to the water inlet 26 of the heat exchanger described above, and the hot water outlet 25 of the heat exchanger is connected to the hot water supply circuit 37. A laminated pump 38 transports water or pre-warm water provided in the water supply pipe 35. In this way, water or pre-warm water is transported from the hot water storage tank 36 to the stacking pump 38, heated to a predetermined temperature in the water flow path 27, and then transported and stored in the hot water storage tank 36. Reference numeral 39 denotes a hot water discharge pipe communicating with the hot water storage tank 36.

次に動作、作用を説明すると、給水管35を通じて水または予温水が貯湯タンク36から供給されると、圧縮機31が起動し、冷媒を高温高圧の臨界状態まで圧縮し、ヒートポンプサイクルが作動する。   Next, the operation and action will be described. When water or pre-warm water is supplied from the hot water storage tank 36 through the water supply pipe 35, the compressor 31 is started, the refrigerant is compressed to a high temperature / high pressure critical state, and the heat pump cycle is activated. .

そして、圧縮機31から吐出される高温高圧の冷媒ガスは放熱器32へ流入し、水流路27を流れる水を加熱する。そして、加熱された水は給湯回路37を経て貯湯タンク36へ流れ貯留される、いわゆる積層沸き上げを行う。一方、放熱器32で冷却された冷媒は減圧手段33で減圧されて吸熱器34に流入し、ここで大気熱、太陽熱、地中熱など自然エネルギーを吸熱して蒸発ガス化し、圧縮機31に戻る。   The high-temperature and high-pressure refrigerant gas discharged from the compressor 31 flows into the radiator 32 and heats the water flowing through the water flow path 27. Then, the heated water flows through the hot water supply circuit 37 and flows into the hot water storage tank 36, where it is stored and heated. On the other hand, the refrigerant cooled by the radiator 32 is depressurized by the decompression means 33 and flows into the heat absorber 34, where it absorbs natural energy such as atmospheric heat, solar heat, and underground heat to evaporate and is converted into the compressor 31. Return.

そして、給湯需要のある時、給湯管39を通じて貯湯タンク36内に貯湯される湯がユーザーの使用する給湯蛇口(図示せず)などへ供給される。給湯需要の温度レベルに応じて、途中で水道水などとミキシングして所定の温度となり供給することもできる。   When there is a demand for hot water supply, hot water stored in the hot water storage tank 36 is supplied to the hot water supply faucet (not shown) used by the user through the hot water supply pipe 39. Depending on the temperature level of hot water supply demand, it can be mixed with tap water or the like and supplied at a predetermined temperature.

放熱器32において、放熱器32の冷媒流路第二伝熱管22a、22bを流れる冷媒は、圧縮機31で臨界圧力以上に加圧されているので、放熱器32の水流路27を流れる水により熱を奪われて温度低下しても凝縮することがない。したがって放熱器32全域で冷媒と水とに温度差を形成しやすくなり、高温の湯が得られ、かつ熱交換効率を高めることができ、高効率なヒートポンプサイクル式給湯装置を提供することができる。   In the radiator 32, the refrigerant flowing through the refrigerant flow path second heat transfer tubes 22 a and 22 b of the radiator 32 is pressurized to a critical pressure or higher by the compressor 31, so that the water flowing through the water flow path 27 of the radiator 32 Condensation does not occur even if the temperature drops due to heat deprivation. Therefore, it becomes easy to form a temperature difference between the refrigerant and the water in the entire radiator 32, high-temperature hot water can be obtained, and the heat exchange efficiency can be increased, so that a highly efficient heat pump cycle type hot water supply device can be provided. .

また、螺旋状に捻れた二本の第二伝熱管22a、22bを第一伝熱管20aと20b内に配置することによって、第一伝熱管の内壁と第二伝熱管の外壁の間に、自然に螺旋状の第一流体水の流路27が形成されるとともに、第二流体の冷媒も螺旋状に旋回されるため、第一流体の水と第二流体の冷媒ともに乱流化され、効率よく熱交換でき、熱交換性能のよい熱交換装置を得られる。   In addition, by arranging the two second heat transfer tubes 22a and 22b twisted in a spiral manner in the first heat transfer tubes 20a and 20b, a natural space is formed between the inner wall of the first heat transfer tube and the outer wall of the second heat transfer tube. In addition, the first fluid water flow path 27 is formed at the same time, and the second fluid coolant is also swirled in a spiral shape, so that both the first fluid water and the second fluid coolant are turbulent and efficient. A heat exchanging device with good heat exchanging performance can be obtained.

また、第二伝熱管22a、22bを螺旋状に捻ることによって、ロウ付けなどを施する必要がなく、簡単な工法で、第二伝熱管22a、22bの全表面を伝熱面積として寄与させるとともに、第二流体の冷媒と第一流体の水を旋回流とし、乱流撹乱の効果で熱伝達率の向上を図れ、低コストの熱交換装置を得られる。   Further, by twisting the second heat transfer tubes 22a and 22b in a spiral manner, it is not necessary to braze or the like, and the entire surface of the second heat transfer tubes 22a and 22b is contributed as a heat transfer area by a simple construction method. Since the second fluid refrigerant and the first fluid water are swirled, the heat transfer rate can be improved by the effect of turbulent flow disturbance, and a low-cost heat exchange device can be obtained.

また、第二伝熱管22a、22bは第一伝熱管20aと20b内に配置されていることによって、第一伝熱管20aと20bの表面は連続平滑曲面なので、曲げる時、特別な冶具と設備などを要らず、通常のパイプベンダーなどで作業できるので、加工コストと設備投資を抑えることができる。   Further, since the second heat transfer tubes 22a and 22b are arranged in the first heat transfer tubes 20a and 20b, the surfaces of the first heat transfer tubes 20a and 20b are continuous smooth curved surfaces. It is possible to work with ordinary pipe benders, etc., so processing costs and capital investment can be reduced.

また、第二伝熱管22a、22bは管同士が密着しながら螺旋状に捻られて第一伝熱管20aと20b内に配置されることによって、第一伝熱管20aまたは20bを曲げる際に、捻った第二伝熱管22aと22bは管内芯がねの作用を働き、より小さな曲げ半径で第一伝熱管20aまたは20bを曲げることができるので、コンパクト性の高い熱交換装置を提供することができる。   Further, the second heat transfer tubes 22a and 22b are twisted in a spiral shape while being in close contact with each other, and are disposed in the first heat transfer tubes 20a and 20b, so that the second heat transfer tubes 22a and 22b are twisted when the first heat transfer tubes 20a or 20b are bent. Further, the second heat transfer tubes 22a and 22b act as an inner core, and the first heat transfer tube 20a or 20b can be bent with a smaller bending radius, so that a highly compact heat exchange device can be provided. .

また、第二伝熱管22aと22bは、全長に渡り、継目がなく、一本ものによって構成されたため、第一流体の水と触れるのは第二伝熱管22a、22bの管表面だけで、第一流体の水に対する耐食性と熱交換装置全体の信頼性を向上させることができる。また、第二伝熱管を螺旋状に捻る作業などの効率がよくなり、繋ぎロウ付け作業などは要らなくなり、作業性をアップさせることができる。   In addition, since the second heat transfer tubes 22a and 22b are seamless and formed of a single piece over the entire length, only the surface of the second heat transfer tubes 22a and 22b is in contact with the water of the first fluid. It is possible to improve the corrosion resistance of one fluid to water and the reliability of the entire heat exchange device. Moreover, the efficiency of the operation | work which twists a 2nd heat exchanger tube etc. improves, a connection brazing operation | work etc. become unnecessary and workability | operativity can be improved.

また、第二平面B−Bに位置する第一伝熱管20bの管径は、第一平面A−Aに位置する第一伝熱管20aの管径より大きくすることによって、第二平面B−Bに位置する第一伝熱管20bにおいて、第一流体水の流れる断面積を大きくすることができるため、第一流体水のスケール析出による流路閉塞を考慮した安全性、耐久性のよい熱交換装置を提供することができる。   Moreover, the pipe diameter of the 1st heat exchanger tube 20b located in 2nd plane BB is made larger than the pipe diameter of the 1st heat exchanger tube 20a located in 1st plane AA, 2nd plane BB. In the first heat transfer tube 20b located in the first heat transfer tube 20b, the cross-sectional area through which the first fluid water flows can be increased. Can be provided.

また、管径の異なる第一伝熱管20aと20bはそれぞれ第一平面A−Aと第二平面B−Bに位置させ、同一管径は同一平面となるように、同一管径の第一伝熱管は同一の平面に渦巻きするため、よりコンパクトな収納性を実現できるとともに、生産管理は簡素化でき、作業効率を向上させることができる。   The first heat transfer tubes 20a and 20b having different tube diameters are positioned on the first plane AA and the second plane BB, respectively, and the same pipe diameter is the same plane so that the first pipes having the same pipe diameter are the same. Since the heat pipes are swirled in the same plane, it is possible to realize a more compact storage property, simplify production management, and improve work efficiency.

また、同一管径の第一伝熱管例えば20aは同一曲げ半径R1とすることによって、曲げ冶具例えばパイプベンダーの冶具数を最小限に抑えることができるため、連続作業性を向上させ、加工コストの低減を実現することができる。   Moreover, since the number of jigs of a bending jig, for example, a pipe bender, can be minimized by setting the first heat transfer pipe having the same pipe diameter, for example, 20a, to the same bending radius R1, the continuous workability is improved and the processing cost is reduced. Reduction can be realized.

また、管径の大きい第一伝熱管20bの曲げ半径R2は、管径の小さい第一伝熱管20aの曲げ半径R1より大きくすることによって、管径の大きい第一伝熱管20b部分においては、曲げ半径を大きくしたため、曲げやすくするとともに、第一伝熱管20b内の第一流体の流れを滑らかにし、急な屈曲や淀みなどによるスケールの沈殿を少なくすることができる。   In addition, by setting the bending radius R2 of the first heat transfer tube 20b having a large tube diameter to be larger than the bending radius R1 of the first heat transfer tube 20a having a small tube diameter, the first heat transfer tube 20b having a large tube diameter is bent. Since the radius is increased, it is easy to bend, the flow of the first fluid in the first heat transfer tube 20b can be made smooth, and sedimentation of scale due to sudden bending or stagnation can be reduced.

また、管径の小さい第二伝熱管内に超臨界圧力の二酸化炭素冷媒を流すことによって、第一伝熱管の管壁は比較的薄い肉厚で設計できるとともに、二酸化炭素冷媒の管内熱伝達特性を損なうことなく、ヒートポンプ式給湯装置に軽量、コンパクト、高性能な熱交換装置を提供することができる。   In addition, by flowing a supercritical pressure carbon dioxide refrigerant in the second heat transfer tube with a small diameter, the tube wall of the first heat transfer tube can be designed with a relatively thin wall thickness, and the heat transfer characteristics of the carbon dioxide refrigerant in the tube The heat pump type hot water supply apparatus can be provided with a light, compact, and high performance heat exchange device without impairing the heat.

また、第二伝熱管を二重管とすることによって、内管29もしくは外管28のどちらか一方が破損した場合でも、内管29を流れる第二流体の冷媒と第一伝熱管を流れる第一流体の水との間に、漏洩用溝30を設けたため、第一流体と第二流体が混じりあうのを防止できるとともに、早期故障診断と迅速な修理を実現でき、信頼性の高い熱交換装置を提供することができる。また、この二重構成の第二伝熱管は捻られているので、内管29と外管28とより密着するようになり、内管と外管の間の熱抵抗が小さくなり、熱交換装置の熱交換性能を確保することができる。   Further, by making the second heat transfer tube a double tube, even when either the inner tube 29 or the outer tube 28 is damaged, the second fluid refrigerant flowing through the inner tube 29 and the first heat transfer tube flowing through the first heat transfer tube are used. Since the leakage groove 30 is provided between the water of one fluid, it is possible to prevent the first fluid and the second fluid from mixing with each other, realize early failure diagnosis and quick repair, and reliable heat exchange. An apparatus can be provided. In addition, since the second heat transfer tube having the double structure is twisted, the inner tube 29 and the outer tube 28 are brought into close contact with each other, and the thermal resistance between the inner tube and the outer tube is reduced. The heat exchange performance can be ensured.

このように、螺旋状に捻った第二伝熱管22aと22bを内包した第一伝熱管20aと20bを第一平面にて平面渦巻き状に収納した後、第二平面にて平面渦巻き状に収納するように複数の平面にて積層することによって、高密度に第一伝熱管を収納することができ、熱交換性能のよいコンパクトな低コスト熱交換装置を提供することができる。   As described above, the first heat transfer tubes 20a and 20b including the second heat transfer tubes 22a and 22b twisted in a spiral shape are stored in a plane spiral shape on the first plane, and then stored in a plane spiral shape on the second plane. Thus, by laminating in a plurality of planes, the first heat transfer tubes can be accommodated with high density, and a compact low-cost heat exchange device with good heat exchange performance can be provided.

(実施の形態2)
図7は、本発明の第2の実施の形態における熱交換装置の収納状態を示す熱交換装置構成図で、図7の(a)は同熱交換装置の平面図で、図7の(b)は同熱交換装置の側面図である。図8は図7に示すA−A平面における同熱交換装置部分の構成図、図9は図7に示すB−B平面における同熱交換装置部分の構成図である。
(Embodiment 2)
FIG. 7: is a heat exchange apparatus block diagram which shows the accommodation state of the heat exchange apparatus in the 2nd Embodiment of this invention, (a) of FIG. 7 is a top view of the same heat exchange apparatus, (b) of FIG. ) Is a side view of the heat exchange device. FIG. 8 is a configuration diagram of the heat exchange device portion in the AA plane shown in FIG. 7, and FIG. 9 is a configuration diagram of the heat exchange device portion in the BB plane shown in FIG.

本実施の形態において、実施の形態1と異なるところは、第二平面において、管径の異なる第一伝熱管20aと20bとが混在していること、第一平面と第二平面の平面渦巻き第一伝熱管は、平面に垂直な方向に第一伝熱管の管径に略相当する高さとなるように、第一平面と第二平面の第一伝熱管を固定する固定具40を新設したことである。なお、実施の形態1の熱交換装置とヒートポンプ給湯装置と同一構造のものは同一符号を付与し、説明を省略する。   In the present embodiment, the difference from the first embodiment is that the first heat transfer tubes 20a and 20b having different tube diameters are mixed on the second plane, and the first spiral and the second plane are spirally wound. One heat transfer tube is newly provided with a fixture 40 for fixing the first heat transfer tube of the first plane and the second plane so that the height substantially corresponds to the tube diameter of the first heat transfer tube in a direction perpendicular to the plane. It is. In addition, the thing of the same structure as the heat exchange apparatus and heat pump hot-water supply apparatus of Embodiment 1 gives the same code | symbol, and abbreviate | omits description.

以上のように構成された熱交換装置について、以下その作用、動作を説明する。図7〜9に示すように、第一伝熱管20aは第一平面A−Aにて、平面渦巻きされた後、第二平面B−Bへ平面渦巻きされる、そして、この第一伝熱管20aは第二平面B−Bにて、異
径連通部21を通じて、管径の大きい第一伝熱管20bと連通される。
About the heat exchange apparatus comprised as mentioned above, the effect | action and operation | movement are demonstrated below. As shown in FIGS. 7 to 9, the first heat transfer tube 20 a is spirally swirled on the first plane AA and then spirally swirled to the second plane BB, and then the first heat transfer tube 20 a. Is communicated with the first heat transfer tube 20b having a large tube diameter through the different diameter communication portion 21 on the second plane BB.

このように、第二平面B−Bに位置する第一伝熱管は管径の異なる大管径管段部分の20bと小管径管段部分の20aとを有することによって、必要な用途例えば貯湯タンクへの貯湯温度や使用する地域水道水の硬度などに応じて、大管径管段部分の20bと小管径管段部分の20aの割合比率を調整することができ、より幅広く用途に応じた最適な熱交換装置を提供することができる。   Thus, the 1st heat exchanger tube located in 2nd plane BB has 20b of the large pipe diameter pipe | tube stage part and 20a of a small pipe diameter pipe | tube stage part from which a pipe diameter differs, and is used for required applications, for example, a hot water storage tank. Depending on the hot water storage temperature and the hardness of the local tap water to be used, the ratio ratio of 20b of the large pipe diameter step portion and 20a of the small pipe diameter step portion can be adjusted. An exchange device can be provided.

また、同一平面渦巻きにおいて、大管径管段部分の20bを外周側に、小管径管段部分の20aを内周側に配置することによって、大管径管段部分はより直管部を得ることができるため、スケールの析出や沈殿に強い熱交換装置を提供することができる。   Further, in the same plane spiral, by arranging the large pipe diameter step portion 20b on the outer peripheral side and the small pipe diameter step portion 20a on the inner peripheral side, the large pipe diameter step portion can obtain a more straight pipe portion. Therefore, it is possible to provide a heat exchange device that is resistant to scale precipitation and precipitation.

また、熱交換装置は第一伝熱管20aと20bの管径に略相当する高さとなるように固定具40を設けることによって、第一伝熱管20aと20bを平面渦巻きする時に生じた平面に垂直な方向のスプリングバックの力を抑え、フラットな渦巻き第一伝熱管が提供できるとともに、熱交換装置全体をよりコンパクトとすることができる。   Further, the heat exchanging device is provided with a fixture 40 so as to have a height substantially corresponding to the tube diameter of the first heat transfer tubes 20a and 20b, thereby perpendicular to the plane generated when the first heat transfer tubes 20a and 20b are spirally swirled. In addition to suppressing the springback force in any direction, a flat spiral first heat transfer tube can be provided, and the entire heat exchange device can be made more compact.

(実施の形態3)
図10は、本発明の第3の実施の形態における熱交換装置の側面図である。図11と図12は同熱交換装置の出入口の要部拡大図である。
(Embodiment 3)
FIG. 10 is a side view of a heat exchange device according to the third embodiment of the present invention. 11 and 12 are enlarged views of the main part of the entrance / exit of the heat exchanger.

本実施の形態において、実施の形態1と異なるところは、実施の形態1に記述した、第二伝熱管を内包した第一伝熱管は第一平面にて平面渦巻きされた後、第二平面にて渦巻きされて構成した熱交換装置を二個積重ねて併設して設けたことである。   In the present embodiment, the difference from the first embodiment is that the first heat transfer tube including the second heat transfer tube described in the first embodiment is spirally swirled in the first plane and then in the second plane. In other words, two heat exchanging devices that are spirally arranged are stacked and provided side by side.

図10〜12に示すように、異径連通部21によって連通される第一伝熱管20aと20bと、第一伝熱管20bに対応する出湯部25と第一伝熱管20aに対応する入水部26とを備える実施の形態1に記述した熱交換装置は二つ上下重ねて併設されている。   As shown in FIGS. 10-12, the 1st heat exchanger tubes 20a and 20b connected by the different diameter communication part 21, the hot water supply part 25 corresponding to the 1st heat exchanger tube 20b, and the water intake part 26 corresponding to the 1st heat exchanger tube 20a. Two heat exchanging devices described in the first embodiment including the above are provided one above the other.

41はそれぞれの入水部26と連通する入水分岐部で、この入水分岐部41は第一流体の水が均等に分岐され、それぞれの入水部26を経て、第一伝熱管へ流れるような構成になっている。42はそれぞれの出口ヘッダー24と連通する出口合流部で、この出口合流部42は第二流体の冷媒が均等にそれぞれの第二伝熱管22aと22bから流出するような構成になっている。   41 is a water inlet branch portion that communicates with each water inlet portion 26. The water inlet branch portion 41 is configured so that the water of the first fluid is evenly branched and flows to the first heat transfer pipe via each water inlet portion 26. It has become. Reference numeral 42 denotes an outlet merging portion that communicates with each outlet header 24. The outlet merging portion 42 is configured so that the refrigerant of the second fluid flows out from the second heat transfer tubes 22a and 22b evenly.

43は出湯部25付近に設けられ、第二伝熱管22aと22bを第一伝熱管20bから分離させる分離管である。この分離管43の先には、第一流体の流れる通路がなく、第二伝熱管22aと22bが露出するようになっている。そして、それぞれ第二伝熱管22aと22bは入口分岐部44と連通し、この入口分岐部44は第二流体の冷媒が均等にそれぞれの第二伝熱管22aと22bへ流れるような構成となっている。なお、実施の形態1の熱交換装置と同一構造のものは同一符号を付与し、説明を省略する。   43 is a separation pipe provided in the vicinity of the hot water outlet 25 to separate the second heat transfer tubes 22a and 22b from the first heat transfer tube 20b. There is no passage through which the first fluid flows at the tip of the separation tube 43, and the second heat transfer tubes 22a and 22b are exposed. The second heat transfer tubes 22a and 22b communicate with the inlet branch portion 44. The inlet branch portion 44 is configured such that the refrigerant of the second fluid flows evenly to the second heat transfer tubes 22a and 22b. Yes. In addition, the thing of the same structure as the heat exchange apparatus of Embodiment 1 gives the same code | symbol, and abbreviate | omits description.

以上のように構成された熱交換装置の製造装置について、以下その作用、動作を説明する。   About the manufacturing apparatus of the heat exchange apparatus comprised as mentioned above, the effect | action and operation | movement are demonstrated below.

このように、実施の形態1記載の熱交換装置を複数個に並設して設け、第一伝熱管と第二伝熱管の流路を多パス化とすることによって、用途と必要などに応じて、実施の形態1記載の熱交換装置をモジュール化として、簡単に熱交換装置の能力をアップさせることができ、様々な大能力、大容量の要求に対応できる。   In this way, by providing a plurality of heat exchange devices described in Embodiment 1 in parallel, and by making the flow paths of the first heat transfer tube and the second heat transfer tube multipath, depending on the application and necessity, etc. Thus, the heat exchange apparatus described in the first embodiment is modularized, so that the capacity of the heat exchange apparatus can be easily increased, and various demands for large capacity and large capacity can be met.

なお、上記各実施において、管径の異なる第一伝熱管20a、20bを用いたが、同一管径の第一伝熱管例えば20aのみを用いても、同様な効果が得られる。   In each of the above embodiments, the first heat transfer tubes 20a and 20b having different tube diameters are used. However, the same effect can be obtained by using only the first heat transfer tubes having the same tube diameter, for example, 20a.

なお、上記各実施において、第一伝熱管を二つの平面に積層するようにとしたが、それに限らなく、二つ以上の平面に積層しても、同様な効果が得られる。   In each of the above embodiments, the first heat transfer tubes are stacked on two planes. However, the present invention is not limited to this, and the same effect can be obtained by stacking on two or more planes.

なお、上記各実施において、第二伝熱管を2本としたが、2本以上例えば3本を捻った場合でも同様な効果が得られる。   In each of the above embodiments, the number of the second heat transfer tubes is two, but the same effect can be obtained even when two or more, for example, three are twisted.

なお、上記各実施例において、第二流体は自然冷媒炭酸ガスとしましたが、その他の冷媒例えばR410などを用いても同様な効果が得られる。   In each of the above embodiments, the second fluid is natural refrigerant carbon dioxide, but the same effect can be obtained by using other refrigerants such as R410.

なお、上記各実施例において、ヒートポンプサイクル式給湯装置で用いた熱交換装置としたが、その他の用途で熱交換装置として用いても、同様な効果が得られる。   In addition, in each said Example, it was set as the heat exchange apparatus used with the heat pump cycle type hot-water supply apparatus, However, The same effect is acquired even if it uses as a heat exchange apparatus in another use.

なお、上記各実施例において、水流路で加熱された湯は貯湯タンクに貯留するとしたが、直接ユーザーが使用する給湯端末例えばシャワー蛇口などへ流れても同様な効果が得られる。   In each of the above embodiments, the hot water heated in the water flow path is stored in the hot water storage tank, but the same effect can be obtained even if it flows directly to a hot water supply terminal used by the user, such as a shower faucet.

以上のように、本発明にかかる熱交換装置及びそれを用いたヒートポンプ給湯装置は、熱交換性能のよい低コストなおかつコンパクトな熱交換装置を提供することができ、それをヒートポンプサイクル給湯装置で用いると、高効率なヒートポンプ給湯装置が得られる。その他、幅広く熱交換、熱搬送などの用途にも適用できる。   As described above, the heat exchanger according to the present invention and the heat pump water heater using the heat exchanger can provide a low-cost and compact heat exchanger with good heat exchange performance, and use it in the heat pump cycle water heater. And a highly efficient heat pump hot-water supply apparatus is obtained. In addition, it can be widely applied to applications such as heat exchange and heat transfer.

(a)は本発明の実施の形態1における熱交換装置の収納状態を示す熱交換装置の平面図(b)は同熱交換装置の側面図(A) is a top view of the heat exchange device showing the storage state of the heat exchange device in Embodiment 1 of the present invention (b) is a side view of the heat exchange device (a)は図1におけるA−A面の平面図(b)は図1におけるA−A面の側面図(A) is a plan view of the AA plane in FIG. 1 (b) is a side view of the AA plane in FIG. (a)は図1におけるB−B平面の平面図(b)は図1におけるB−B平面の側面図(A) is a plan view of the BB plane in FIG. 1 (b) is a side view of the BB plane in FIG. 本発明の実施の形態1における熱交換装置の要部拡大断面図The principal part expanded sectional view of the heat exchange apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における熱交換装置の第二伝熱管の縦断面図The longitudinal cross-sectional view of the 2nd heat exchanger tube of the heat exchange apparatus in Embodiment 1 of this invention 本発明の実施の形態1における熱交換装置を用いたヒートポンプ給湯装置の構成図The block diagram of the heat pump hot-water supply apparatus using the heat exchange apparatus in Embodiment 1 of this invention (a)は本発明の実施の形態2における熱交換装置の収納状態を示す熱交換装置の平面図(b)は同熱交換装置の側面図(A) is a top view of the heat exchange apparatus which shows the accommodation state of the heat exchange apparatus in Embodiment 2 of this invention (b) is a side view of the heat exchange apparatus (a)は図7におけるA−A面の平面図(b)は図7におけるA−A面の側面図(A) is a plan view of the AA plane in FIG. 7 (b) is a side view of the AA plane in FIG. (a)は図7におけるB−B平面の平面図(b)は図7におけるB−B平面の側面図(A) is a plan view of the BB plane in FIG. 7 (b) is a side view of the BB plane in FIG. 本発明の実施の形態3における熱交換装置の側面図Side view of heat exchange apparatus according to Embodiment 3 of the present invention 本発明の実施の形態3における熱交換装置の出入口の要部拡大図The principal part enlarged view of the entrance / exit of the heat exchange apparatus in Embodiment 3 of this invention 本発明の実施の形態3における熱交換装置の出入口の要部拡大斜視図The principal part expansion perspective view of the entrance and exit of the heat exchange apparatus in Embodiment 3 of this invention (a)は従来の熱交換装置の平面図(b)は同熱交換装置の側面図(A) is a plan view of a conventional heat exchange device (b) is a side view of the heat exchange device

符号の説明Explanation of symbols

20a 第一伝熱管(小管径管段)
20b 第一伝熱管(大管径管段)
22a、22b 第二伝熱管
28 外管
29 内管
30 漏洩用溝
31 圧縮機
32 放熱器
33 減圧器
34 吸熱器
40 固定具(固定手段)
20a First heat transfer tube (small tube diameter tube stage)
20b 1st heat transfer tube (large diameter tube stage)
22a, 22b Second heat transfer tube 28 Outer tube 29 Inner tube 30 Leakage groove 31 Compressor 32 Radiator 33 Decompressor 34 Heat absorber 40 Fixing tool (fixing means)

Claims (10)

第一流体が流れる第一伝熱管と、前記第一伝熱管内に配置され、第二流体が流れる複数本の伝熱管を螺旋状にねじって構成した第二伝熱管とからなり、前記第一伝熱管は第一平面にて平面渦巻き状に収納された後、第二平面にて平面渦巻き状に収納するように複数の平面にて積層するとともに、前記第一伝熱管は同一管径の曲げ半径が一定であることを特徴とする熱交換装置。 A first heat transfer tube through which the first fluid flows, and a second heat transfer tube that is arranged in the first heat transfer tube and is configured by spirally twisting a plurality of heat transfer tubes through which the second fluid flows. The heat transfer tubes are housed in a plane spiral on the first plane and then stacked in a plurality of planes so as to be housed in a plane spiral on the second plane , and the first heat transfer tube is bent with the same tube diameter. A heat exchange device having a constant radius . 第二伝熱管は全長に渡り、継目がないことを特徴とする請求項1記載の熱交換装置。 The heat exchanger according to claim 1, wherein the second heat transfer tube is seamless over the entire length. 第一平面に位置する平面渦巻き状第一伝熱管と、第二平面に位置する平面渦巻き状第一伝熱管とは、管径が異なることを特徴とする請求項1または2記載の熱交換装置。 3. The heat exchange device according to claim 1, wherein the flat spiral first heat transfer tube located in the first plane and the flat spiral first heat transfer tube located in the second plane have different tube diameters. . 第一平面または第二平面に位置する平面渦巻き状第一伝熱管は、管径の異なる大管径管段と小管径管段を備える請求項1〜3のいずれか1項記載の熱交換装置。 The flat spiral first heat transfer tube located on the first plane or the second plane is a heat exchange device according to any one of claims 1 to 3, comprising a large tube diameter tube stage and a small tube diameter tube stage having different tube diameters. 管径の大きい第一伝熱管部分の曲げ半径は、管径の小さい第一伝熱管部分の曲げ半径より大きくしたことを特徴とする請求項1〜4のいずれか1項記載の熱交換装置。 The heat exchanging apparatus according to any one of claims 1 to 4 , wherein a bending radius of the first heat transfer tube portion having a large tube diameter is made larger than a bending radius of the first heat transfer tube portion having a small tube diameter. 第一平面と第二平面の平面渦巻き第一伝熱管を、平面に垂直な方向に第一伝熱管の管径に略相当する高さとなるように固定手段を設けたことを特徴とする請求項1〜5のいずれか1項記載の熱交換装置。 Claims, characterized in that the first plane and the planar spiral first heat exchanger tube of the second plane, provided with fixing means so as to be substantially equivalent to the height to the tube diameter of the first heat exchanger tube in a direction perpendicular to the plane The heat exchange apparatus of any one of 1-5 . 第一伝熱管を複数本に並設して設け、第一伝熱管の流路を多パス化とすることを特徴とする請求項1〜6のいずれか1項記載の熱交換装置。 The heat exchange device according to any one of claims 1 to 6, wherein a plurality of first heat transfer tubes are provided side by side, and the flow path of the first heat transfer tubes is multipathed. 前記第二伝熱管は内管と外管によって構成される二重管で、内管と外管の間に、漏洩用溝を設けたことを特徴とする請求項1〜7のいずれか1項記載の熱交換装置。 A double pipe constituted the second heat exchanger tube is by the inner and outer tubes, between the inner tube and the outer tube, any one of the preceding claims, characterized in that a leakage groove The heat exchange apparatus as described. 圧縮機、放熱器、減圧器、吸熱器等から構成され冷媒の圧力が臨界圧力以上となるヒートポンプサイクル装置を備え、前記放熱器は請求項1〜8のいずれか1項に記載の熱交換装
置を用いて、第二流体の冷媒が第一流体を加熱するヒートポンプ給湯装置。
A heat exchange device according to any one of claims 1 to 8 , further comprising a heat pump cycle device including a compressor, a radiator, a decompressor, a heat absorber, and the like, wherein the pressure of the refrigerant is equal to or higher than a critical pressure. A heat pump water heater in which the second fluid refrigerant heats the first fluid.
第二流体の冷媒は二酸化炭素を用いたことを特徴とする請求項9記載のヒートポンプ給湯装置。 The heat pump hot water supply apparatus according to claim 9, wherein carbon dioxide is used as a refrigerant of the second fluid.
JP2004111792A 2004-04-06 2004-04-06 Heat exchange device and heat pump water heater using the same Expired - Lifetime JP3945492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004111792A JP3945492B2 (en) 2004-04-06 2004-04-06 Heat exchange device and heat pump water heater using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004111792A JP3945492B2 (en) 2004-04-06 2004-04-06 Heat exchange device and heat pump water heater using the same

Publications (2)

Publication Number Publication Date
JP2005291683A JP2005291683A (en) 2005-10-20
JP3945492B2 true JP3945492B2 (en) 2007-07-18

Family

ID=35324800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004111792A Expired - Lifetime JP3945492B2 (en) 2004-04-06 2004-04-06 Heat exchange device and heat pump water heater using the same

Country Status (1)

Country Link
JP (1) JP3945492B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105066523A (en) * 2015-08-07 2015-11-18 江苏启江实业有限公司 Spirally-structured micro-channel heat exchanger for refrigerator

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4935537B2 (en) * 2007-06-29 2012-05-23 三菱電機株式会社 Heat pump water heater
JP5200684B2 (en) * 2008-06-18 2013-06-05 パナソニック株式会社 Heat exchanger
EP2325569B1 (en) * 2009-10-14 2020-02-12 Panasonic Corporation Hot water supply apparatus
JP2011085287A (en) * 2009-10-14 2011-04-28 Panasonic Corp Water heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105066523A (en) * 2015-08-07 2015-11-18 江苏启江实业有限公司 Spirally-structured micro-channel heat exchanger for refrigerator

Also Published As

Publication number Publication date
JP2005291683A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
JP3953074B2 (en) Heat exchanger
JP4200329B2 (en) Heat exchange device and heat pump water heater using the same
JP4211041B2 (en) Heat pump water heater
EP1895257A1 (en) Heat exchanger
JP2006234254A (en) Heat exchanger and heat pump type hot water supply device using the same
JP2006317096A (en) Heat exchanger for electric water heater
JP2002228370A (en) Heat exchanger
JP6548729B2 (en) Heat exchanger and air conditioner
JP2008069993A (en) Heat exchanger and heat pump water heater using the same
JP3945492B2 (en) Heat exchange device and heat pump water heater using the same
JP2005133999A (en) Heat pump type hot-water supplier
JP4063237B2 (en) Heat exchange device and heat pump water heater using the same
JP2008057859A (en) Heat exchanger and heat pump hot water supply device using the same
JP4224793B2 (en) Heat exchanger and manufacturing method thereof
JP2005257189A (en) Heat exchange device, and heat pump hot-water supply device using the same
JP2006003028A (en) Heat exchanger and heat pump water heater using the same
JP4922708B2 (en) Heat exchanger for heat pump water heater
JP3922190B2 (en) Heat exchange device and heat pump water heater using the same
JP2008057860A (en) Heat exchanger
JP5139177B2 (en) Heat pump type heating device
JP2006162204A (en) Heat exchanger for water heater
JP2005003209A (en) Heat exchanger and heat pump water heater using the heat exchanger
JP4200323B2 (en) Heat exchange device and heat pump water heater using the same
JP2007139284A (en) Heat exchanger and heat pump hot water supply device using the same
JP3812507B2 (en) Heat exchange device and heat pump water heater using the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070402

R151 Written notification of patent or utility model registration

Ref document number: 3945492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

EXPY Cancellation because of completion of term