JP4200323B2 - Heat exchange device and heat pump water heater using the same - Google Patents

Heat exchange device and heat pump water heater using the same Download PDF

Info

Publication number
JP4200323B2
JP4200323B2 JP2004215230A JP2004215230A JP4200323B2 JP 4200323 B2 JP4200323 B2 JP 4200323B2 JP 2004215230 A JP2004215230 A JP 2004215230A JP 2004215230 A JP2004215230 A JP 2004215230A JP 4200323 B2 JP4200323 B2 JP 4200323B2
Authority
JP
Japan
Prior art keywords
tube
spiral
heat
heat transfer
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004215230A
Other languages
Japanese (ja)
Other versions
JP2006038271A (en
Inventor
立群 毛
昌宏 尾浜
竹司 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004215230A priority Critical patent/JP4200323B2/en
Publication of JP2006038271A publication Critical patent/JP2006038271A/en
Application granted granted Critical
Publication of JP4200323B2 publication Critical patent/JP4200323B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0016Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being bent

Description

本発明は、第一流体と第二流体とを熱交換させる熱交換装置(たとえばヒートポンプ式給湯機の水/冷媒熱交換器及びそれを用いたヒートポンプ給湯装置)に関するものである
The present invention relates to a heat exchange device that exchanges heat between a first fluid and a second fluid (for example, a water / refrigerant heat exchanger of a heat pump type hot water heater and a heat pump hot water supply device using the same).

従来の第一流体と第二流体とを熱交換させる熱交換装置として、例として、図5に示すように、外管1内に、螺旋状に撚り合わされた複数の内管2が装着されて、外管1内に複数の流路が形成されるとともに、外管と内管との間隙で形成される流路に螺旋状の捩りテープ3が装入されている。そして、この外管1の流路を流れる水と内管2を流れる冷媒とが熱交換するような熱交換装置が知られている(例えば特許文献1参照)。
特開2003−343995号公報(第1―3頁、図1〜図4)
As an example of a heat exchange device for exchanging heat between a conventional first fluid and a second fluid, as shown in FIG. 5, a plurality of inner tubes 2 spirally twisted are mounted in an outer tube 1. A plurality of flow paths are formed in the outer tube 1 and a spiral twisted tape 3 is inserted into a flow path formed by a gap between the outer tube and the inner tube. A heat exchange device is known in which heat flowing between the water flowing through the flow path of the outer tube 1 and the refrigerant flowing through the inner tube 2 is exchanged (see, for example, Patent Document 1).
JP 2003-34395 A (page 1-3, FIGS. 1 to 4)

しかしながら上記従来の熱交換装置では、ねじりテープ3の挿入で、外管1の流路を流れる水を乱流化とすることによって、伝熱促進効果を図れるが、ねじりテープ3は別部品のため、それ自身の挿入と外管1内においての位置決め手段などの作業と措置は必要となり、製造コストは高くなるという課題があった。また、ねじりテープ3によって、外管1の流路を流れる水の流動抵抗は大きくなり、圧力損失が増え、設置制限や水の元圧、駆動力への要求などが厳しくなる課題もあった。   However, in the above conventional heat exchange device, the insertion of the torsion tape 3 can achieve the effect of promoting heat transfer by making the water flowing through the flow path of the outer tube 1 turbulent, but the torsion tape 3 is a separate part. However, there is a problem that the operation and measures such as insertion of itself and positioning means in the outer tube 1 are necessary, and the manufacturing cost is increased. In addition, the torsion tape 3 increases the flow resistance of the water flowing through the flow path of the outer tube 1, increasing the pressure loss, and makes it difficult to limit the installation, the water pressure, and the driving force.

そこで本発明は、上記従来の課題を解決するもので、製造コストが安く、圧力損失を抑えた高性能の熱交換装置を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object thereof is to provide a high-performance heat exchange device that is low in manufacturing cost and suppresses pressure loss.

上記目的を解決するために本発明の熱交換装置は、外管と、前記外管の管内に位置する内管と、前記外管と前記内管とが密着して構成される溝付二重管と、前記溝付二重管を複数本用いてお互いが密着しながら螺旋状に絡み合うように捻って構成されるねじり管と、前記ねじり管を内包する伝熱管とを備え、前記伝熱管の内壁面に螺旋状溝を設け、前記伝熱管の螺旋状溝の螺旋方向は、前記ねじり管の螺旋方向と同一方向であるとともに、前記伝熱管の螺旋状溝の螺旋ピッチは、前記ねじり管の螺旋ピッチと略同様で、前記伝熱管の内壁と前記ねじり管の外壁との間に、螺旋状の旋回流路を形成する構成としたことを特徴とする。 In order to solve the above-mentioned object, a heat exchanging device of the present invention comprises an outer tube, an inner tube located in the outer tube, and a grooved duplex formed by closely contacting the outer tube and the inner tube. A tube, a torsion tube that is twisted so as to be intertwined spirally using a plurality of the grooved double tubes, and a heat transfer tube that encloses the torsion tube, A spiral groove is provided on the inner wall surface, and the spiral direction of the spiral groove of the heat transfer tube is the same as the spiral direction of the torsion tube, and the spiral pitch of the spiral groove of the heat transfer tube is the same as that of the torsion tube. It is substantially the same as the spiral pitch, and is characterized in that a spiral swirl passage is formed between the inner wall of the heat transfer tube and the outer wall of the torsion tube .

この構成により、別部品を用いずに、伝熱促進を図ることができるとともに、製造コストが安く、圧力損失を抑えた高性能の熱交換装置を提供することができる。   With this configuration, it is possible to provide a high-performance heat exchange device that can promote heat transfer without using separate parts, is low in manufacturing cost, and suppresses pressure loss.

また、圧縮機と放熱器を有するヒートポンプサイクル装置を備え、前記放熱器は本発明の熱交換装置を用いたヒートポンプ給湯装置とする。   Moreover, the heat pump cycle apparatus which has a compressor and a heat radiator is provided, and let the said heat radiator be the heat pump hot-water supply apparatus using the heat exchange apparatus of this invention.

これにより、内管を流れる冷媒の放熱を用いて第一流体を加熱することによって、ねじり管によって冷媒と第一流体例えば水を共に乱流化させ、高効率の伝熱が実現できると共に、内管もしくは外管のどちらか一方が破損した場合でも、内管を流れる冷媒と伝熱管を流れる水とが混じりあうことがなく、圧縮機の潤滑油は使用者の口に入る可能性のある湯に入るのを防ぎ、早期故障診断と迅速な修理を実現でき、信頼性の高いヒートポンプ給湯装置を提供することができる。   As a result, the first fluid is heated using the heat radiation of the refrigerant flowing through the inner tube, whereby the refrigerant and the first fluid, for example, water are both turbulently flowed by the torsion tube, and highly efficient heat transfer can be realized. Even if either the outer tube or the outer tube is damaged, the refrigerant flowing through the inner tube and the water flowing through the heat transfer tube do not mix, and the lubricating oil of the compressor may enter the user's mouth. It is possible to provide a highly reliable heat pump hot water supply apparatus that can prevent entry into the system, realize early failure diagnosis and quick repair.

本発明によれば、別部品などを用いずに伝熱促進を図ることができ、製造コストが安く、圧力損失を抑えた高性能の熱交換装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, heat transfer promotion can be aimed at without using another components etc., a manufacturing cost is low, and the high performance heat exchange apparatus which suppressed the pressure loss can be provided.

第1の発明は、外管と、前記外管の管内に位置する内管と、前記外管と前記内管とが密着して構成される溝付二重管と、前記溝付二重管を複数本用いてお互いが密着しながら螺旋状に絡み合うように捻って構成されるねじり管と、前記ねじり管を内包する伝熱管とを備え、前記伝熱管の内壁面に螺旋状溝を設け、前記伝熱管の螺旋状溝の螺旋方向は、前記ねじり管の螺旋方向と同一方向であるとともに、前記伝熱管の螺旋状溝の螺旋ピッチは、前記ねじり管の螺旋ピッチと略同様で、前記伝熱管の内壁と前記ねじり管の外壁との間に、螺旋状の旋回流路を形成する構成としたことを特徴とするものである。 The first invention includes an outer tube, an inner tube positioned within the outer tube, a grooved double tube configured by closely contacting the outer tube and the inner tube, and the grooved double tube. A twisted tube constructed by twisting so that they are spirally entangled with each other and a heat transfer tube that encloses the torsion tube, and provided with a spiral groove on the inner wall surface of the heat transfer tube, The spiral direction of the spiral groove of the heat transfer tube is the same as the spiral direction of the torsion tube, and the spiral pitch of the spiral groove of the heat transfer tube is substantially the same as the spiral pitch of the torsion tube. A spiral swirl passage is formed between the inner wall of the heat pipe and the outer wall of the torsion pipe .

本実施の形態によれば、伝熱管の内壁面に螺旋状溝を設けたことによって、ねじり管を内包する伝熱管内で、ねじり管の外周と伝熱管の内壁面によって構成される螺旋状の旋回流路において、伝熱管の内壁面に近い流路部分も螺旋状な流路となるため、伝熱管の内壁面に近い流路部分でのショートカット流路を防ぐとともに、伝熱管の内壁面に近い流路部分を流れる流体へ螺旋状に流れるように規制を加え、乱流伝熱促進を図り、高性能の熱交換装置が提供できる。   According to the present embodiment, by providing the spiral groove on the inner wall surface of the heat transfer tube, the spiral tube formed by the outer periphery of the torsion tube and the inner wall surface of the heat transfer tube is included in the heat transfer tube that includes the torsion tube. In the swirling flow path, the flow path portion close to the inner wall surface of the heat transfer tube is also a spiral flow path, so that a shortcut flow path in the flow path portion close to the inner wall surface of the heat transfer tube is prevented and the inner wall surface of the heat transfer tube is It is possible to provide a high-performance heat exchange device by restricting the fluid flowing in the near flow path portion to flow in a spiral manner and promoting turbulent heat transfer.

このように、別部品を用いずに、伝熱促進を図ることができるとともに、製造コストが安く、圧力損失を抑えた高性能の熱交換装置を提供することができる。 As described above, it is possible to provide a high-performance heat exchanging device that can promote heat transfer without using a separate part, is low in manufacturing cost, and suppresses pressure loss .

また、本実施の形態によれば、螺旋状溝の螺旋方向をねじり管の螺旋方向と同一方向とすることによって、ねじり管の外周と伝熱管の内壁面によって構成される旋回流路の螺旋方向も螺旋状溝の螺旋方向と同一方向となるため、旋回流路によって螺旋状に流れる流体の螺旋方向は、螺旋状溝によって、伝熱管の内壁面に近い流路部分を流れる流体の螺旋方向と同一となる。よって、伝熱管内の流路全体において、流体の流れはスムーズとなり、少ない流路抵抗で高性能熱交換装置が提供できる。 Further, according to this embodiment, by a spiral in the same direction of the helical grooves in the spiral direction of the torsion pipe, the torsion pipe periphery and the spiral direction of the formed swirling flow path by the inner wall surface of the heat transfer tube of The spiral direction of the fluid flowing spirally by the swirl flow path is the same as the spiral direction of the fluid flowing through the flow path portion close to the inner wall surface of the heat transfer tube by the spiral groove. It will be the same. Therefore, the flow of fluid is smooth in the entire flow path in the heat transfer tube, and a high-performance heat exchange device can be provided with a small flow path resistance .

また、本実施の形態によれば、螺旋状溝の螺旋ピッチをねじり管の螺旋ピッチと略同様としたことによって、流体はねじり管の螺旋ピッチに沿って、伝熱管内の旋回流路を螺旋状に流れるのに対して、螺旋状溝によって、伝熱管の内壁面に近い流路部分を流れる流体が螺旋状溝の螺旋ピッチに沿って流れ、旋回流路の流れと同調するため、伝熱管内の流路全体において、流体の流れはスムーズとなり、少ない流路抵抗で高性能熱交換装置が提供できる。 Further , according to the present embodiment, the spiral pitch of the spiral groove is substantially the same as the spiral pitch of the torsion tube, so that the fluid spirals the swirl flow path in the heat transfer tube along the spiral pitch of the torsion tube. In contrast, the spiral groove causes the fluid flowing in the flow path portion near the inner wall surface of the heat transfer tube to flow along the spiral pitch of the spiral groove and synchronizes with the flow of the swirl flow path. In the entire flow path in the pipe, the flow of fluid becomes smooth, and a high-performance heat exchange device can be provided with a small flow path resistance.

第2の発明は、特に、第1の発明の熱交換装置において、伝熱管内壁に設けた螺旋状溝が管の軸方向と成すリード角は、20度以下となるようにしたものである。 In particular, the second invention is such that, in the heat exchange device of the first invention, the lead angle formed by the spiral groove provided on the inner wall of the heat transfer tube with the axial direction of the tube is 20 degrees or less.

本実施の形態によれば、螺旋状溝が伝熱管の軸方向と成すリード角は、20度以下となるようにしたことによって、リード角が小さいため、伝熱管の内壁面に近い流路部分を流れる流体が螺旋状溝の螺旋ピッチに沿って流れる際に、流動抵抗を小さく抑えることができる。   According to the present embodiment, the lead angle formed by the spiral groove with the axial direction of the heat transfer tube is set to be 20 degrees or less, so that the lead angle is small, so that the flow path portion close to the inner wall surface of the heat transfer tube When the fluid that flows through the spiral groove flows along the spiral pitch of the spiral groove, the flow resistance can be kept small.

第3の発明は、特に、第1または第2の発明の熱交換装置において、伝熱管を流れる第一流体と、内管を流れる第二流体とを対向流としたことである。 In a third aspect of the invention, in particular, in the heat exchanging device of the first or second aspect , the first fluid flowing through the heat transfer tube and the second fluid flowing through the inner tube are made to counter flow.

本実施の形態によれば、伝熱管を流れる第一流体と内管を流れる第二流体とを対向流とすることによって、第一流体と第二流体の伝熱を均一化し、加熱流体によって非加熱流体の温度レベルを高く上げられるため、熱交換効率のよい熱交換装置を提供することができる。   According to the present embodiment, the first fluid flowing through the heat transfer tube and the second fluid flowing through the inner tube are made to face each other, so that the heat transfer between the first fluid and the second fluid is made uniform and non-heated by the heating fluid. Since the temperature level of the heating fluid can be increased, a heat exchange device with good heat exchange efficiency can be provided.

第4の発明は、特に、圧縮機と放熱器を有するヒートポンプサイクル装置を備え、前記放熱器は第1〜3のいずれかの発明に記載の熱交換装置を用いたヒートポンプ給湯装置で
ある。
4th invention is equipped with the heat pump cycle apparatus which has a compressor and a heat radiator especially, and the said heat radiator is a heat pump hot-water supply apparatus using the heat exchange apparatus as described in any one of 1st-3rd invention .

本実施の形態によれば、内管を流れる冷媒の放熱を用いて第一流体を加熱することによって、ねじり管によって冷媒と第一流体例えば水を共に乱流化させ、高効率の伝熱が実現できると共に、内管もしくは外管のどちらか一方が破損した場合でも、内管を流れる冷媒と伝熱管を流れる水とが混じりあうことがなく、圧縮機の潤滑油は使用者の口に入る可能性のある湯に入るのを防ぎ、早期故障診断と迅速な修理を実現でき、信頼性の高いヒートポンプ給湯装置を提供することができる。   According to the present embodiment, the first fluid is heated using the heat radiation of the refrigerant flowing through the inner pipe, whereby the refrigerant and the first fluid, for example, water are both turbulently caused by the torsion pipe, and highly efficient heat transfer is achieved. This can be realized, and even if either the inner pipe or the outer pipe is damaged, the refrigerant flowing through the inner pipe and the water flowing through the heat transfer pipe do not mix, and the lubricating oil of the compressor enters the user's mouth. It is possible to prevent the possibility of entering hot water, realize early failure diagnosis and quick repair, and provide a highly reliable heat pump water heater.

第5の発明は、特に、第4のヒートポンプ給湯装置において、冷媒は二酸化炭素で、圧力は臨界圧力以上とすることである。 In particular, the fifth invention is that, in the fourth heat pump water heater, the refrigerant is carbon dioxide and the pressure is equal to or higher than the critical pressure.

本実施の形態によれば、臨界圧力以上とすることによって、冷媒の二酸化炭素は水により熱を奪われて温度低下しても凝縮することなく、熱交換装置全域で冷媒と水とに温度差を形成しやすくなり、必要な高温度レベルまで水を効率的に加熱できる。このように、高効率の熱交換装置をヒートポンプサイクルの放熱器として使用することによって、高効率のヒートポンプ給湯装置を提供することができる。   According to the present embodiment, by setting the pressure above the critical pressure, the carbon dioxide of the refrigerant is deprived of heat by the water and does not condense even if the temperature is lowered, and the temperature difference between the refrigerant and water throughout the heat exchange device. The water can be efficiently heated to the required high temperature level. Thus, a highly efficient heat pump hot-water supply apparatus can be provided by using a highly efficient heat exchange apparatus as a heat radiator of a heat pump cycle.

(実施の形態1)
図1は、本発明の第1の実施形態における熱交換装置を構成する伝熱管とねじり管を示す部品図、図中(a)は伝熱管の側面断面図、(b)はこの伝熱管に内包されるねじり管構成図である。図2は熱交換装置の要部側面図、図3は図2に示す同熱交換装置のA−A断面、B−B断面、C−C断面を示す断面図、図4は同熱交換装置を用いたヒートポンプサイクルシステム構成図である。
(Embodiment 1)
FIG. 1 is a component diagram showing a heat transfer tube and a torsion tube constituting the heat exchange device according to the first embodiment of the present invention, in which (a) is a side sectional view of the heat transfer tube, and (b) is the heat transfer tube. It is a torsion tube configuration diagram included. 2 is a side view of the main part of the heat exchange device, FIG. 3 is a cross-sectional view showing the AA, BB, and CC sections of the heat exchange device shown in FIG. 2, and FIG. 4 is the heat exchange device. It is a heat pump cycle system block diagram using the.

図3中、(a)は図2に示すA−A切断面の断面図、(b)は図2に示すB−B切断面の断面図、(C)は図2に示すC−C切断面の断面図を示す。   3, (a) is a cross-sectional view taken along the line AA shown in FIG. 2, (b) is a cross-sectional view taken along the line BB shown in FIG. 2, and (C) is a cross-sectional view taken along the line CC shown in FIG. A cross-sectional view of the surface is shown.

図1〜図3において、10は第一流体例えば水が流れる伝熱管で、11と12は第二流体例えば二酸化炭素冷媒が流れる冷媒管の溝付二重管である。13はこの二本の溝付二重管11と12がお互いに密接しながら絡み合うように螺旋状にねじって形成したねじり管、11a、12aは内面壁に複数の溝14を有する外管、11b、12bはそれぞれこの内管11aと12aの管内に配置され、外管11aと12aと密着する内管である。そして、このように、それぞれ外管11aと内管11bによって溝付二重管11が構成され、外管12aと内管12bによって溝付二重管12が構成される。P1はねじり管13の螺旋ピッチを示す。   1 to 3, reference numeral 10 denotes a heat transfer tube through which a first fluid such as water flows, and reference numerals 11 and 12 denote grooved double tubes of a refrigerant tube through which a second fluid such as carbon dioxide refrigerant flows. 13 is a torsion pipe formed by spirally twisting the two grooved double pipes 11 and 12 so that they are intertwined with each other, 11a and 12a are outer pipes having a plurality of grooves 14 on the inner wall, 11b , 12b are inner pipes arranged in the inner pipes 11a and 12a, and in close contact with the outer pipes 11a and 12a. Thus, the grooved double tube 11 is constituted by the outer tube 11a and the inner tube 11b, respectively, and the grooved double tube 12 is constituted by the outer tube 12a and the inner tube 12b. P1 indicates the helical pitch of the torsion tube 13.

そして、このねじり管13を伝熱管10に挿入して熱交換装置を構成することによって、ねじり管13の外壁と伝熱管の内壁の間に、第一流体の水が流れる旋回流路15が形成される。16は伝熱管10の内壁面に設けた複数の螺旋状溝を示す。αはこの螺旋状溝が伝熱管10の軸方向と成すリード角、このリード角は20度以下となるように設計されている。また、P2は螺旋状溝の螺旋ピッチを示し、この伝熱管の螺旋状溝の螺旋ピッチはねじり管13の螺旋ピッチと略同様である。   Then, by inserting this torsion tube 13 into the heat transfer tube 10 to constitute a heat exchange device, a swirl passage 15 through which water of the first fluid flows is formed between the outer wall of the torsion tube 13 and the inner wall of the heat transfer tube. Is done. Reference numeral 16 denotes a plurality of spiral grooves provided on the inner wall surface of the heat transfer tube 10. α is a lead angle formed by the spiral groove with the axial direction of the heat transfer tube 10, and the lead angle is designed to be 20 degrees or less. P2 indicates the helical pitch of the helical groove, and the helical pitch of the helical groove of the heat transfer tube is substantially the same as the helical pitch of the torsion tube 13.

図3において、16aは複数個螺旋状溝16の内の一つであり、螺旋方向を説明するために用いられる。図3に示すように、A−A切断面において、溝付二重管11は上方、溝付二重管12は下方に位置し、B−B切断面において、溝付二重管11は下方、溝付二重管12は上方に位置し、C−C切断面において、溝付二重管11は上方、溝付二重管12は下方に位置するようになっている。このように、A−A切断面の方向からみると、ねじり管13は螺旋方向Lに示すように、反時計方向に螺旋状になっている。それによって、
旋回流路15も反時計方向に螺旋状になっている。
In FIG. 3, 16a is one of the plurality of spiral grooves 16, and is used to explain the spiral direction. As shown in FIG. 3, the grooved double tube 11 is located above and the grooved double tube 12 is located below on the AA cut surface, and the grooved double tube 11 is located below on the BB cut surface. The grooved double tube 12 is located above, and the grooved double tube 11 is located above and the grooved double tube 12 is located below the CC cut surface. Thus, when viewed from the direction of the AA cut surface, the torsion tube 13 is spiral in the counterclockwise direction as shown in the spiral direction L. Thereby,
The swirling flow path 15 is also spiraled counterclockwise.

16aは、A−A切断面においては上方、B−B切断面においては下方、C−C切断面において上方に位置するようになっている。このように、A−A切断面からB−B切断面そしてC−C切断面に渡り、溝16aをはじめとする複数の螺旋状溝16も同様に、螺旋方向Lに示すように、反時計方向に螺旋状になっている。   16a is positioned above the AA cut surface, below the BB cut surface, and above the CC cut surface. As described above, the plurality of spiral grooves 16 including the groove 16a from the AA cut surface to the BB cut surface and the CC cut surface are similarly counterclockwise as shown in the spiral direction L. It is spiraling in the direction.

このように、螺旋状溝16の螺旋方向Lは、ねじり管13の螺旋方向そして旋回流路15の螺旋方向とは同一方向となっている。   Thus, the spiral direction L of the spiral groove 16 is the same as the spiral direction of the torsion tube 13 and the spiral direction of the swirl flow path 15.

なお、各図において、螺旋状溝16の数や形状や分布などは実施例を説明するためのものであり、必ずしも一致したものではない。   In each figure, the number, shape, distribution, and the like of the spiral grooves 16 are for explaining the embodiments and are not necessarily the same.

図4において、圧縮機17、放熱器18、減圧手段19、吸熱器20が冷媒循環回路により閉回路に接続されている。冷媒循環回路は、例えば炭酸ガス(CO)を冷媒として使用し、高圧側の冷媒圧力が冷媒の臨界圧以上となる超臨界ヒートポンプサイクルを使用している。そして圧縮機17は、内蔵する電動モータ(図示せず)によって駆動され、吸引した冷媒を臨界圧力まで圧縮して吐出する。減圧手段19はステッピングモータ(図示せず)により駆動する絞り弁で、冷媒流路抵抗を制御している。 In FIG. 4, the compressor 17, the heat radiator 18, the pressure reduction means 19, and the heat absorber 20 are connected to the closed circuit by the refrigerant circuit. The refrigerant circuit uses, for example, carbon dioxide (CO 2 ) as a refrigerant, and uses a supercritical heat pump cycle in which the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant. The compressor 17 is driven by a built-in electric motor (not shown), and compresses and sucks the sucked refrigerant to a critical pressure. The decompression means 19 is a throttle valve that is driven by a stepping motor (not shown), and controls the refrigerant flow path resistance.

放熱器18は冷媒流路と、その冷媒流路と熱交換を行う水流路を備える。この放熱器18は前述の熱交換装置を用い、冷媒流路は溝付二重管11の内管11bと、溝付二重管12の内管12bとし、水流路は伝熱管10の内壁と溝付二重管11、12の外壁との間の流路としている。そして、この水流路はねじり管13の外周と伝熱管10の内周によって構成された旋回流路15となっている。このように、前述熱交換装置の内管11bと12bの入口は圧縮機17からの冷媒循環回路部分と連通し、出口は減圧器19への冷媒循環回路部分と連通するように接続されている。そして、この伝熱管の冷媒流路の流れ方向は水流路の流れ方向とを対向としている。   The radiator 18 includes a refrigerant channel and a water channel that performs heat exchange with the refrigerant channel. The radiator 18 uses the heat exchange device described above, the refrigerant flow path is the inner pipe 11b of the grooved double pipe 11 and the inner pipe 12b of the grooved double pipe 12, and the water flow path is the inner wall of the heat transfer pipe 10. It is set as the flow path between the outer walls of the grooved double tubes 11 and 12. This water flow path is a swirl flow path 15 constituted by the outer periphery of the torsion tube 13 and the inner periphery of the heat transfer tube 10. As described above, the inlets of the inner pipes 11b and 12b of the heat exchange device are connected to the refrigerant circulation circuit portion from the compressor 17, and the outlets are connected to the refrigerant circulation circuit portion to the decompressor 19. . And the flow direction of the refrigerant flow path of this heat exchanger tube is opposite to the flow direction of the water flow path.

この水流路に水または予温水を供給する給水管21と、水流路から出湯される湯を貯湯タンク22へ通水させるための給湯回路23が接続されている。そして、給水管21は前述の熱交換装置の入水口(図示せず)と接続し、前述の熱交換装置の出湯口(図示せず)は給湯回路23と連通している。24は給水管21に設けた水または予温水を輸送する積層ポンプである。このように、貯湯タンク22から水または予温水が積層ポンプ24によって輸送され、水流路で所定温度まで加熱された後、貯湯タンク22へ輸送され貯留されるようになっている。そして、25は貯湯タンク22と連通する出湯管である。   A water supply pipe 21 for supplying water or pre-warm water to the water flow path and a hot water supply circuit 23 for passing hot water discharged from the water flow path to the hot water storage tank 22 are connected. The water supply pipe 21 is connected to a water inlet (not shown) of the heat exchange device described above, and a hot water outlet (not shown) of the heat exchange device is communicated with the hot water supply circuit 23. A laminated pump 24 transports water or pre-warm water provided in the water supply pipe 21. In this way, water or pre-warm water is transported from the hot water storage tank 22 by the stacking pump 24, heated to a predetermined temperature in the water flow path, and then transported to the hot water storage tank 22 for storage. A hot water discharge pipe 25 communicates with the hot water storage tank 22.

以上のように構成された熱交換装置及び同熱交換装置を用いたヒートポンプ給湯装置について、以下その作用、動作を説明する。   About the heat exchange apparatus comprised as mentioned above and the heat pump hot-water supply apparatus using the same heat exchange apparatus, the effect | action and operation | movement are demonstrated below.

給水管21を通じて水または予温水が貯湯タンク22から供給されると、圧縮機17が起動し、冷媒を高温高圧の臨界状態まで圧縮し、ヒートポンプサイクルが作動する。   When water or preheated water is supplied from the hot water storage tank 22 through the water supply pipe 21, the compressor 17 is started, the refrigerant is compressed to a critical state of high temperature and pressure, and the heat pump cycle is activated.

そして、圧縮機17から吐出される高温高圧の冷媒ガスは放熱器18へ流入し、旋回流路15を含める水流路を流れる水を加熱する。そして、加熱された水は給湯回路23を経て貯湯タンク22へ流れ貯留される、いわゆる積層沸き上げを行う。一方、放熱器18で冷却された冷媒は減圧手段19で減圧されて吸熱器20に流入し、ここで大気熱、太陽熱、地中熱など自然エネルギーを吸熱して蒸発ガス化し、圧縮機17に戻る。   The high-temperature and high-pressure refrigerant gas discharged from the compressor 17 flows into the radiator 18 and heats water flowing through the water flow path including the swirl flow path 15. Then, the heated water flows through the hot water supply circuit 23 and flows into the hot water storage tank 22 and is stored, so-called stacked boiling. On the other hand, the refrigerant cooled by the radiator 18 is decompressed by the decompression means 19 and flows into the heat absorber 20, where it absorbs natural energy such as atmospheric heat, solar heat, and underground heat to evaporate and is converted into the compressor 17. Return.

そして、給湯需要のある時、給湯管25を通じて貯湯タンク22内に貯湯される湯がユ
ーザーの使用する給湯蛇口(図示せず)などへ供給される。給湯需要の温度レベルに応じて、途中で水道水などとミキシングして所定の温度となり供給することもできる。
When there is a demand for hot water supply, hot water stored in the hot water storage tank 22 is supplied to the hot water supply faucet (not shown) used by the user through the hot water supply pipe 25. Depending on the temperature level of hot water supply demand, it can be mixed with tap water or the like and supplied at a predetermined temperature.

放熱器18において、放熱器18の冷媒流路11b、12bを流れる冷媒は、圧縮機17で臨界圧力以上に加圧されているので、放熱器18の水流路を流れる水により熱を奪われて温度低下しても凝縮することがない。したがって放熱器18全域で冷媒と水とに温度差を形成しやすくなり、高温の湯が得られ、かつ熱交換効率を高めることができ、高効率のヒートポンプサイクル式給湯装置を提供することができる。   In the radiator 18, the refrigerant flowing through the refrigerant channels 11 b and 12 b of the radiator 18 is pressurized to a critical pressure or higher by the compressor 17, so heat is taken away by the water flowing through the water channel of the radiator 18. It does not condense even when the temperature drops. Therefore, it becomes easy to form a temperature difference between the refrigerant and water in the entire radiator 18, high-temperature hot water can be obtained, and the heat exchange efficiency can be increased, thereby providing a highly efficient heat pump cycle type hot water supply device. .

図1〜図3に示すように、螺旋状にお互いに密着しながら絡み合うように捻れた二本の溝付二重管11、12によって構成されたねじり管13を伝熱管10内に配置することによって、伝熱管10の内壁とねじり管13の外壁の間に、自然に螺旋状の水の旋回流路15が形成されるとともに、冷媒も螺旋状に旋回されるため、水と冷媒ともに乱流化され、効率よく熱交換でき、熱交換性能のよい熱交換装置を得られ、高効率のヒートポンプサイクル給湯装置を得られる。   As shown in FIGS. 1 to 3, a torsion tube 13 constituted by two grooved double tubes 11 and 12 twisted so as to be intertwined with each other in a spiral manner is disposed in the heat transfer tube 10. As a result, a spiral water swirl flow path 15 is formed between the inner wall of the heat transfer tube 10 and the outer wall of the torsion tube 13, and the refrigerant is also swirled spirally. Therefore, it is possible to obtain a heat exchange device that can efficiently exchange heat and has good heat exchange performance, and a highly efficient heat pump cycle hot water supply device.

特に、伝熱管10の内壁面に螺旋状溝16を設けたことによって、ねじり管13を内包する伝熱管10の中で、ねじり管13の外周と伝熱管10の内壁面によって構成される螺旋状の旋回流路15において、伝熱管10の内壁面に近い流路部分も螺旋状溝16の影響で、螺旋状な流路となるため、伝熱管10の内壁面に近い流路部分でのショートカット流路を防ぐとともに、伝熱管10の内壁面に近い流路部分を流れる流体へ螺旋状に流れるように規制を加え、乱流伝熱促進を図り、熱交換装置の高性能化を図ることができる。   In particular, by providing the spiral groove 16 on the inner wall surface of the heat transfer tube 10, the spiral shape constituted by the outer periphery of the torsion tube 13 and the inner wall surface of the heat transfer tube 10 in the heat transfer tube 10 including the torsion tube 13. In the swirling flow path 15, the flow path portion near the inner wall surface of the heat transfer tube 10 also becomes a spiral flow channel due to the influence of the spiral groove 16. In addition to preventing the flow path, it is possible to restrict the fluid flowing in the flow path portion close to the inner wall surface of the heat transfer tube 10 to flow spirally, thereby promoting turbulent heat transfer and improving the performance of the heat exchange device. .

このように、別部品を用いずに、伝熱促進を図ることができるとともに、製造コストも安く、水側の流れ圧力損失を抑えた高性能の熱交換装置を提供することができる。   As described above, it is possible to provide a high-performance heat exchanging device that can promote heat transfer without using separate parts, is low in manufacturing cost, and suppresses water-side flow pressure loss.

また、螺旋状溝16の螺旋方向をねじり管13の螺旋方向と同一方向とし、ともに反時計方向(図示)で、螺旋方向Lとすることによって、ねじり管13の外周と伝熱管10の内壁面によって構成される旋回流路15の螺旋方向も螺旋状溝16の螺旋方向と同一方向となるため、螺旋状溝16によって、伝熱管10の内壁面に近い流路部分を流れる流体の螺旋方向は、旋回流路15によって螺旋状に流れる流体の螺旋方向と同一となる。よって、伝熱管10内の流路全体において、流体の流れはスムーズとなり、少ない流路抵抗で高性能熱交換装置が実現できる。   Further, by setting the spiral direction of the spiral groove 16 to the same direction as the spiral direction of the torsion tube 13 and the counterclockwise direction (illustrated) and the spiral direction L, the outer periphery of the torsion tube 13 and the inner wall surface of the heat transfer tube 10 are obtained. The spiral direction of the swirl flow path 15 configured by the same is the same direction as the spiral direction of the spiral groove 16, so that the spiral direction of the fluid flowing through the flow path portion near the inner wall surface of the heat transfer tube 10 is changed by the spiral groove 16. The spiral direction of the fluid flowing spirally by the swirl flow path 15 is the same. Therefore, the flow of fluid is smooth in the entire flow path in the heat transfer tube 10, and a high-performance heat exchange device can be realized with a small flow path resistance.

また、螺旋状溝16の螺旋ピッチP2をねじり管13の螺旋ピッチP1と略同様としたことによって、第一流体の水はねじり管13の螺旋ピッチP1に沿って、伝熱管内の旋回流路15を螺旋状に流れるのに対して、螺旋状溝16によって、伝熱管10の内壁面に近い流路部分を流れる流体が螺旋状溝16の螺旋ピッチP2に沿って流れ、旋回流路15の流れと同調なるため、伝熱管内の流路全体において、第一流体の流れの全体はスムーズとなり、少ない流路抵抗で高性能熱交換装置が提供できる。   Further, since the spiral pitch P2 of the spiral groove 16 is substantially the same as the spiral pitch P1 of the torsion tube 13, the water of the first fluid flows along the spiral pitch P1 of the torsion tube 13 in the swirl flow path in the heat transfer tube. 15, the fluid flowing in the flow path portion near the inner wall surface of the heat transfer tube 10 flows along the spiral pitch P <b> 2 of the spiral groove 16. Since it synchronizes with the flow, the entire flow of the first fluid is smooth over the entire flow path in the heat transfer tube, and a high-performance heat exchange device can be provided with low flow resistance.

また、螺旋状溝16が伝熱管10の軸方向と成すリード角αは、20度以下となるようにしたことによって、リード角が小さいため、伝熱管10の内壁面に近い流路部分を流れる流体が螺旋状溝16の螺旋ピッチP2に沿って流れる際に、流動抵抗を小さく抑えることができる。   In addition, since the lead angle α formed by the spiral groove 16 and the axial direction of the heat transfer tube 10 is 20 degrees or less, the lead angle is small, and therefore the flow angle flows near the inner wall surface of the heat transfer tube 10. When the fluid flows along the spiral pitch P2 of the spiral groove 16, the flow resistance can be suppressed small.

このように、伝熱管10の内壁面に螺旋状溝16を設けたことによって、製造コストが安く、圧力損失を抑えた高性能の熱交換装置とその熱交換装置を用いた高効率のヒートポンプ給湯装置を提供することができる。   Thus, by providing the spiral groove 16 on the inner wall surface of the heat transfer tube 10, a high-performance heat exchange device with low manufacturing cost and reduced pressure loss, and a high-efficiency heat pump hot water supply using the heat exchange device An apparatus can be provided.

なお、上記実施の形態1において、溝付二重管を2本としたが、2本以上の場合でも同様な効果が得られる。   In the first embodiment, two fluted double tubes are used, but the same effect can be obtained even when there are two or more fluted tubes.

また、第一流体は二酸化炭素冷媒、第二流体は水としたが、その他の流体を用いても同様な効果が得られる。   Further, although the first fluid is carbon dioxide refrigerant and the second fluid is water, the same effect can be obtained by using other fluids.

また、水流路で加熱された水は貯湯タンクへ輸送されるとしたが、水流路を流れる水を所定温度まで加熱した後、貯湯タンクへ流れなくて、直接ユーザーの使用する給湯蛇口などへ供給してもよい。   Although the water heated in the water channel is transported to the hot water storage tank, after the water flowing in the water channel is heated to a predetermined temperature, it does not flow to the hot water storage tank and is directly supplied to the hot water tap used by the user. May be.

以上のように、本発明にかかる熱交換装置及びそれを用いたヒートポンプサイクル給湯装置は、製造コストが安く、圧力損失を抑えた高性能の熱交換装置と、それを冷媒―水熱交換器として用いた高効率のヒートポンプ給湯装置を提供することができる。   As described above, the heat exchange device according to the present invention and the heat pump cycle hot water supply device using the heat exchange device are low in production cost and have a high performance heat exchange device that suppresses pressure loss, and is used as a refrigerant-water heat exchanger. The high-efficiency heat pump hot water supply apparatus used can be provided.

その他、幅広く熱交換、熱搬送などの用途にも適用できる。   In addition, it can be widely applied to applications such as heat exchange and heat transfer.

(a)は本発明の実施の形態1における熱交換装置の伝熱管の側面断面図(b)は同伝熱管に内包されるねじり管部品図(A) is side surface sectional drawing of the heat exchanger tube of the heat exchange apparatus in Embodiment 1 of this invention. (B) is a twisted pipe component figure enclosed in the heat exchanger tube. 本発明の実施の形態1における熱交換装置の要部側面図Side view of essential parts of heat exchange apparatus according to Embodiment 1 of the present invention (a)は図2に示すA−A切断面の断面図(b)は図2に示すB−B切断面の断面図(C)は図2に示すC−C切断面の断面図2A is a cross-sectional view taken along the line AA shown in FIG. 2, FIG. 2B is a cross-sectional view taken along the line BB shown in FIG. 2, and FIG. 2C is a cross-sectional view taken along the line CC shown in FIG. 本発明の実施の形態1における同熱交換装置を用いたヒートポンプ給湯装置の構成図The block diagram of the heat pump hot-water supply apparatus using the same heat exchange apparatus in Embodiment 1 of this invention (a)は従来の熱交換装置の構成図(b)は同熱交換装置の螺旋状の捩りテープを示す図(A) is a block diagram of a conventional heat exchange device (b) is a diagram showing a helical twist tape of the heat exchange device

符号の説明Explanation of symbols

10 伝熱管
11、12 溝付二重管
11a、12a 外管
11b、12b 内管
13 ねじり管
16 螺旋状溝
17 圧縮機
18 放熱器
19 減圧器
20 吸熱器
P1 ねじり管のねじりピッチ
P2 螺旋状溝の螺旋ピッチ
DESCRIPTION OF SYMBOLS 10 Heat transfer tube 11, 12 Grooved double tube 11a, 12a Outer tube 11b, 12b Inner tube 13 Torsion tube 16 Spiral groove 17 Compressor 18 Radiator 19 Decompressor 20 Heat absorber P1 Twist pitch of torsion tube P2 Spiral groove Spiral pitch

Claims (5)

外管と、前記外管の管内に位置する内管と、前記外管と前記内管とが密着して構成される溝付二重管と、前記溝付二重管を複数本用いてお互いが密着しながら螺旋状に絡み合うように捻って構成されるねじり管と、前記ねじり管を内包する伝熱管とを備え、前記伝熱管の内壁面に螺旋状溝を設け、前記伝熱管の螺旋状溝の螺旋方向は、前記ねじり管の螺旋方向と同一方向であるとともに、前記伝熱管の螺旋状溝の螺旋ピッチは、前記ねじり管の螺旋ピッチと略同様で、前記伝熱管の内壁と前記ねじり管の外壁との間に、螺旋状の旋回流路を形成する構成としたことを特徴とする熱交換装置。 An outer tube, an inner tube located within the outer tube, a grooved double tube formed by close contact between the outer tube and the inner tube, and a plurality of the grooved double tubes. A torsion tube that is twisted so as to be intertwined in a spiral manner, and a heat transfer tube that encloses the torsion tube , a spiral groove is provided on the inner wall surface of the heat transfer tube, and the spiral shape of the heat transfer tube The spiral direction of the groove is the same as the spiral direction of the torsion tube, and the spiral pitch of the spiral groove of the heat transfer tube is substantially the same as the spiral pitch of the torsion tube, and the inner wall of the heat transfer tube and the twist A heat exchange device characterized in that a spiral swirl passage is formed between an outer wall of a tube . 伝熱管内壁に設けた螺旋状溝が管の軸方向と成すリード角は、20度以下となるようにした請求項1に記載の熱交換装置。 The heat exchange device according to claim 1 , wherein a lead angle formed by a spiral groove provided on an inner wall of the heat transfer tube with an axial direction of the tube is 20 degrees or less. 内管を流れる第二流体と、伝熱管を流れる第一流体とを対向流とした請求項1または2に記載の熱交換装置。 The heat exchange device according to claim 1 or 2 , wherein the second fluid flowing through the inner pipe and the first fluid flowing through the heat transfer pipe are opposed to each other. 圧縮機と放熱器を有するヒートポンプサイクル装置を備え、前記放熱器は請求項1〜3のいずれか1項に記載の熱交換装置を用いたヒートポンプ給湯装置。 A heat pump water heater using the heat exchange device according to any one of claims 1 to 3 , further comprising a heat pump cycle device having a compressor and a heat radiator. 冷媒は二酸化炭素で、圧力は臨界圧力以上とする請求項4記載のヒートポンプ給湯装置。 The heat pump hot water supply apparatus according to claim 4 , wherein the refrigerant is carbon dioxide and the pressure is equal to or higher than a critical pressure.
JP2004215230A 2004-07-23 2004-07-23 Heat exchange device and heat pump water heater using the same Expired - Fee Related JP4200323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004215230A JP4200323B2 (en) 2004-07-23 2004-07-23 Heat exchange device and heat pump water heater using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004215230A JP4200323B2 (en) 2004-07-23 2004-07-23 Heat exchange device and heat pump water heater using the same

Publications (2)

Publication Number Publication Date
JP2006038271A JP2006038271A (en) 2006-02-09
JP4200323B2 true JP4200323B2 (en) 2008-12-24

Family

ID=35903449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004215230A Expired - Fee Related JP4200323B2 (en) 2004-07-23 2004-07-23 Heat exchange device and heat pump water heater using the same

Country Status (1)

Country Link
JP (1) JP4200323B2 (en)

Also Published As

Publication number Publication date
JP2006038271A (en) 2006-02-09

Similar Documents

Publication Publication Date Title
JP4200329B2 (en) Heat exchange device and heat pump water heater using the same
AU2007292663B2 (en) Hot water corrugated heat transfer tube
US8215380B2 (en) Hot water heat transfer pipe
JP6687022B2 (en) Refrigeration cycle equipment
EP1895257A1 (en) Heat exchanger
JP2006336894A (en) Heat pump water heater
JP2008069993A (en) Heat exchanger and heat pump water heater using the same
JP4063237B2 (en) Heat exchange device and heat pump water heater using the same
WO2013180030A1 (en) Heat pump device
JP2005133999A (en) Heat pump type hot-water supplier
JP2008057859A (en) Heat exchanger and heat pump hot water supply device using the same
KR102238465B1 (en) Heat exchanger, heating device, heating system and method for heating water
JP2006003028A (en) Heat exchanger and heat pump water heater using the same
JP4200323B2 (en) Heat exchange device and heat pump water heater using the same
JP5513738B2 (en) Heat exchanger and heat pump water heater
EP3009767A1 (en) Heat pump device
JP5929012B2 (en) Heat exchanger and heat pump water heater
JP2005221087A (en) Heat exchanger
JP3922190B2 (en) Heat exchange device and heat pump water heater using the same
JP2007139284A (en) Heat exchanger and heat pump hot water supply device using the same
JP3945492B2 (en) Heat exchange device and heat pump water heater using the same
JP3919699B2 (en) Heat exchange device and heat pump water heater
JP2008057860A (en) Heat exchanger
JP5857197B2 (en) Double-pipe heat exchanger and heat pump hot water generator equipped with the same
JP2005257189A (en) Heat exchange device, and heat pump hot-water supply device using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080922

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees