JP3943380B2 - アーク溶接の制御方法及びアーク溶接装置 - Google Patents
アーク溶接の制御方法及びアーク溶接装置 Download PDFInfo
- Publication number
- JP3943380B2 JP3943380B2 JP2001371115A JP2001371115A JP3943380B2 JP 3943380 B2 JP3943380 B2 JP 3943380B2 JP 2001371115 A JP2001371115 A JP 2001371115A JP 2001371115 A JP2001371115 A JP 2001371115A JP 3943380 B2 JP3943380 B2 JP 3943380B2
- Authority
- JP
- Japan
- Prior art keywords
- arc
- welding
- illuminance
- arc welding
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Arc Welding In General (AREA)
Description
【発明の属する技術分野】
本発明はアーク溶接装置に有効な自動化技術に関する。
【0002】
【従来の技術】
溶接装置の自動化に伴なって、▲1▼特開平7−148576号公報「非消耗電極式自動アーク溶接方法」や▲2▼特開平10−249526号公報「回転体TIG溶接装置」が提案されいる。
【0003】
上記▲1▼は、同公報の図1において、定アーク長制御又は定電圧制御により駆動する溶接トーチ2(符号は公報記載のものを転記した。以下同じ)にレーザセンサ1を付属し、このレーザセンサ1で母材4からの高さHを測るという溶接時の距離測定技術が示されている。
【0004】
周知の通り、電極3と母材4との間に架かるアークは、極めて明るい光を発するため、この光がレーザセンサ1の誤作動を誘発する。そこで、上記▲1▼では電極3から離れた箇所にて母材4をレーザセンサ1でセンシングさせるようにしたものと思われる。
しかし、溶接では電極の先端と溶接金属(溶融池)との間隔が重要であり、電極と母材との間隔に基づいて制御するのでは正確な制御は困難である。
逆に制御精度を高めるためにレーザセンサを電極に接近させると、レーザセンサの視野にアーク光が入り、レーザセンサの誤作動を招く。
従って、上記▲1▼の技術では溶接制御の精度上課題が残る。
【0005】
上記▲2▼は、その公報の請求項1に示される通り、スリット光源とテレビカメラとを備え、スリット光源で開先を照し、この開先をテレビカメラで撮影し、画像処理し、その結果に応じて開先幅方向の制御をすること、及び上下軸は溶接電圧に応じて開先深さ方向に制御することを特徴とする。
【0006】
テレビカメラの視野には、スリット光線で照した開先の他に強いアーク光や溶接スパッタが存在するため、開先の像だけ選択して取込むには特殊な技術が必要となり、装置は高価なものとなる。
また、電極の高さ制御は、アーク電圧制御によるため次の様な課題がある。
【0007】
【発明が解決しようとする課題】
アーク電圧制御は、アーク長が電圧(電極−母材間電圧)にほぼ比例するというアーク物理現象を依り所として、電極−母材間電圧を計測し、この計測値からアーク長さを推定し、この推定したアーク長さが所望の値になるように、電極の昇降制御をなすことを特徴とする。
【0008】
しかし、本発明者らが実験したところ、一定の条件下では前記アーク電圧制御はパルスアーク、連続アーク共に制御が困難であることが分かった。
図8(a),(b)は従来のパルスアークによる電圧制御の実験装置及び得られたグラフを示す。
(a)は実験装置を示し、溶接電源101にて、母材102と電極103とにアークを飛ばし、そのときの電圧をフィルタ104を介して記録計105で記録するようにした装置を準備した。溶接条件中、電流は基準電流を4A、ピーク電流を20Aとし、パルス周波数は2Hz、デューティは40%とした。
【0009】
なお、「A」,「B」,「C」は電極103を便宜的に3形態に分けて図示したものであり、電極103は1本のみである。
そして、「A」点から「B」点へは、アーク長LAを0.3mmとした「A」点からアーク長LBが「B」点で1.0mmとなるように、トーチを一定の速さで上昇しながら、矢印のごとく、図面右へ20mmほど移動しつつ溶接し、さらに「B」点から「C」点へは、アーク長LCが「C」点で0.3mmとなるようにトーチを一定の速さで下降しながら、矢印のごとく、図面右へ20mmほど移動しつつ溶接した。
【0010】
(b)では横軸は溶接状態「A」,「B」,「C」、縦軸は計測電圧を示し、アーク長が0.3mmである「A」では、電圧は10.2V〜10.8Vの帯となり、アーク長が1.0mmである「B」では、電圧は10.0V〜10.6Vの帯となり、アーク長が0.3mmである「C」では、電圧は10.2V〜10.8Vの帯となった。
若干の変化はあるもののパルスアークのアーク長を0.3〜1.0mm変化させたにも拘らず、計測電圧はほぼ一定である、すなわち、パルスアークのアーク長と電圧との比例関係が認められなくなったと言える。
【0011】
図9(a),(b)は従来の連続アーク実験で得たアーク長さと電圧の相関グラフを示す。
電極が1.6mm径のタングステンであるTIG溶接機にて銅(Cu)板の連続アークによる溶接実験を行った。
(a)は電流値105Aでの連続アーク溶接での結果を示し、横軸はアーク長、縦軸は電圧であり、アーク長と電圧がほぼ一次関数に従った比例関係にあることが確認できた。
【0012】
(b)は電流値14Aでの連続アーク溶接での結果を示し、横軸で1mm以上の領域にはアーク長と電圧がほぼ一次関数に従った比例関係にあることは確認できたが、0.5mm以下では電圧の増加が認められ、結果として1mm未満ではアーク長と電圧の比例関係は認められなかった。
すなわち、小電流での連続アーク溶接には、アーク電圧制御は不適であることが確認できた。
【0013】
発明者らは、アーク長が比較的長く(1.0mmを超え、2mm〜5mm)、電流値が比較的高い(100A以上)溶接であれば公知のアーク長と電圧の比例関係は使用できるものの、アーク長が1.0mm以下であれば公知のアーク長と電圧の比例関係は適用できないと考えるに至った。
一方、近年の省エネルギー並びに環境対策から、車体や排気系を中心に極薄板の採用が進み、それらの製造には、20A程度の小電流溶接で0.5mm程度のアーク長さの溶接施工が不可欠となってきた。
【0014】
そこで、本発明の目的は従来のアーク電圧制御では達成できない極薄板の溶接が可能となる新たな溶接技術を提供することにある。
【0015】
【課題を解決するための手段】
本発明者らは、従来のアーク長制御やアーク電圧制御に代わる溶接制御技術を模索するなかで、電極と母材との距離を変化させるとアーク光が微妙に変化するに気が付いた。
図1(a)〜(c)はTIG溶接実験装置及び得られた相関グラフを示す図であり、(a)に示す通り、電極1と母材2との間に架かるアーク3を照度計4で計測することができる実験装置をつくり、アーク長と照度(ルクス、lx)との相関を調べた。
【0016】
実験条件は次の通りである。
母材:ステンレス板(SUS 316L)
電極の種類:タングステン
電極の径:1.6mm
電極の突出し長:6mm
電極の先端角度:30゜
電極と照度計の距離:150mm
溶接機:TIG溶接機
溶接電流:(b)では40A、(c)では81.25A
【0017】
(b)は溶接電流を40AとしてTIG溶接を実施したときのアーク長さと照度の関係をプロットしたものであり、アーク長0.25mmのときに照度は731ルクス、アーク長1.0mmのときに照度は2125ルクス、アーク長3.0mmのときに照度は6289ルクスであって、傾きが正の1次関数になることが判明した。
【0018】
(c)は溶接電流を81.25AとしてTIG溶接を実施したときのアーク長さと照度の関係をプロットしたものであり、アーク長0.25mmのときに照度は0.2006×104ルクス、アーク長1.0mmのときに照度は0.46×104ルクス、アーク長3.0mmのときに照度は1.2649×104ルクスであって、傾きが正の1次関数になることが判明した。
【0019】
(b),(c)から、母材がSUS316Lで電極−照度計間の距離を150mmに保ち、溶接電流を一定に保てば、照度をパラメータとしてアーク長を管理することができることが分かった。
そこで、このルールが他の材料や他の溶接法にも適用できるか否かを調べた。
【0020】
図2はMIG溶接実験装置を示す図であり、トーチ5に通した消耗電極(ワイヤ)6と母材7との間に架かるアーク8に光ファイバ9aの先端を臨ませ、この光ファイバ9aの基部に照度計9を取付け、この照度計9でアーク光の照度を計測することができる実験装置をつくり、母材7からトーチ5までの高さ(トーチ高さ)と照度(ルクス、lx)との相関を調べた。
【0021】
実験条件は次の通りである。
母材:6mmのアルミニウム板又は12mmのステンレス鋼板
電極の径:1.2mm
電極と照度計の距離:65mm
溶接機:MIG溶接機
溶接電流:200A
溶接電圧:25V(アルミニウム板)又は28V(ステンレス鋼板)
溶接速度:600mm/分
【0022】
図3(a),(b)はMIG溶接実験装置で得られた相関グラフを示す。
(a)は、アルミニウム板でMIG溶接を行ったところ、トーチ高さが7.5mmのときに照度は56.5ルクス、トーチ高さが19mmのときに照度は41.5ルクス、トーチ高さが22.5mmのときに照度は34.9ルクスとなり、傾きが負の一次関数になった。
【0023】
(b)は、ステンレス鋼板でMIG溶接を行ったところ、トーチ高さが10mmのときに照度は75ルクス、トーチ高さが19mmのときに照度は58ルクス、トーチ高さが22.5mmのときに照度は52ルクスとなり、傾きが負の一次関数になった。
【0024】
以上の図1(b),(c)及び図3(a),(b)から、TIG溶接にあってはアーク長さと照度とに良好な相関関係が有り、MIG溶接にあってはトーチ高さと照度とに良好な相関関係が有り、これらの相関関係は、母材の種類毎に決まる。
【0025】
従って、母材の種類や溶接の種類や溶接電流や電極形状などを包含した溶接条件毎に基礎実験を実施し、基準照度若しくはそれに対応した基準電圧等の「基準情報」を定めておけば、アーク長やトーチ高さを所望の値に維持することができることになる。このルールに基づいて定めたところの「課題を解決するための手段」は、次の通りである。
【0026】
請求項1のアーク溶接の制御方法は、アーク溶接の際に発生するアーク光からアーク光の照度を得るステップと、得られたアーク光の照度を基準情報と比較するステップと、この比較結果に基づいてアーク長を調整するステップと、調整後のアーク長で溶接を実施するステップとを、繰り返しながらアーク溶接を実施することを特徴とする。
【0027】
アーク光から得られるアーク光の照度はアーク長若しくはトーチ高さと良好な相関関係がある。そこで、アーク光の照度に基づいて、溶接制御を実施することにした。
アーク光の照度は入手容易な照度計で簡単に計測することができ、発明方法を実施する上で実施費用の高騰化を抑えることがきる。
【0028】
請求項2のアーク溶接の制御方法では、アーク溶接は、非溶極式アーク溶接であることを特徴とする。
TIG溶接に代表される非溶極式アーク溶接に本発明を適用すれば、照度とアーク長との相関関係はアーク長さが0.25mmであっても良好であることが確認できているので、超薄板の溶接を低電流、低電圧で実施するときにも本発明は有効になる。
【0029】
請求項3のアーク溶接の制御方法では、アーク溶接の際に発生するアーク光からアーク光の照度を得るステップと、得られたアーク光の照度を基準情報と比較するステップと、この比較により前記アーク光の照度と前記基準情報との差が一定以上大きいときに異常信号を発信するステップとを実施し、アーク溶接中に前記異常信号が発信されたときには溶接作業を中断若しくは中止することを特徴とする。
アーク光の照度は、開先形状が急変すると変化し、また、母材の材質が変わると変化する。したがって、アーク光の照度を基準情報と比較して、差が一定未満であれば、開先形状は健全であり、母材の材質に誤りがないと判定できる。逆に、アーク光の照度を基準情報と比較して、差が一定以上であれば、開先不良や材質の誤りが検出できる。この結果、溶接不良を未然に防止することができる。
【0030】
請求項4のアーク溶接装置は、電極と母材との間にアークを発生させる溶接機と、アーク溶接の際に発生するアーク光からアーク光の照度を得る光学センサと、得られたアーク光の照度に応じてアーク長を調整する処理装置と、からなる。
【0031】
アーク光から得られるアーク光の照度はアーク長若しくはトーチ高さと良好な相関関係がある。そこで、アーク光の照度に基づいて、溶接制御を実施することにした。そのための装置は既存の溶接機に光学センサ及び処理装置を付加するだけで済むため、装置費用の上昇を抑えることができる。
照度計は安価であり、容易に入手可能である。この様な照度計を組込むためアーク溶接装置の費用高騰を十分に抑えることができる。
【0032】
請求項5のアーク溶接装置では、アーク溶接は、非溶極式アーク溶接であることを特徴とする。
TIG溶接に代表される非溶極式アーク溶接に本発明を適用すれば、照度とアーク長との相関関係はアーク長さが0.25mmであっても良好であることが確認できているので、超薄板の溶接を低電流、低電圧で実施することができ、高い品質の溶接部を得ることができる。
【0034】
【発明の実施の形態】
本発明の実施の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。
図4は本発明に係るアーク溶接装置の原理図であり、アーク溶接装置10は、電極11と母材12との間にアーク13を発生させる溶接機14と、アーク溶接の際に発生するアーク光から光学的情報を得る光学センサ15と、得られた光学的情報に応じて、例えば昇降制御部16、昇降モータ17、スクリュー18を介してトーチホルダ19及びトーチ20を上げ下げすることでアーク13の長さ(アーク長L)を調整するごとく、溶接条件を調整する中央処理装置(CPU)21と、からなる。
22はA/D変換器であり、アナログ信号をデジタル信号に変換する必要があるときにのみ設ける。
【0035】
前記光学的情報は、アーク光の照度(全スペクトルにおける照度)、照度の変動、スペクトル分布、スペクトル強度などがあり、これらのうちでアーク光の照度を例に以下説明する。
【0036】
以上に述べたアーク溶接装置の作用を次に説明する。
図5は本発明に係るアーク溶接制御フロー図であり、ST××はステップ番号を示す。
ST01:基準電圧VstをCPUにインプットする。
すなわち、図1〜図3で説明した通りに、アーク光の照度はアーク長若しくはトーチ高さと良好な相関関係にある。溶接の種類、溶接電流、母材材質毎に予め実験にて相関を調べておき、相関を電圧信号に変換したときには基準電圧を中央処理装置に予め記憶させる。
【0037】
ST02:光学センサをアークに臨ませる。図4の符号15参照。
ST03:光学センサでアーク光の照度に応じた電圧信号Vacをサンプリングする。
ST04:計測電圧Vacを基準電圧Vstと比較し、Vac<VstならST05へ進み、Vac>VstならST06へ進み、Vac=VstならST07へ進む。
【0038】
ST05:Vac<Vstならトーチを上げる(ただし、母材がステンレスやアルミニウムの場合)。例えば図1(b)に示す通り、アーク長を長くすれば照度が大きくなる。この結果Vacが増加し、Vstに近づくからである。次に、ST03に戻し、上昇による効果を調べる。
ST06:Vac>Vstならトーチを下げる(ただし、母材がステンレスやアルミニウムの場合)。例えば図1(b)に示す通り、アーク長を短くすれば照度が小さくなる。この結果Vacが減少し、Vstに近づくからである。次に、ST03に戻し、下降による効果を調べる。
【0039】
ST07:Vac=Vstなら、アーク長若しくはトーチ高さが適当であるから、トーチをその位置に保持する。
ST08:溶接作業を終了するか否かを調べる。具体的には溶接作業を中断、中止若しくは終了する信号を受けたときにはYESであり、フローを終了する。終了信号を受けていないときにはNOであり、ST03に戻り、制御フローを継続しつつ溶接を続ける。
【0040】
図6は本発明に係るその他のアーク溶接制御フロー図である。
ST11:前記ST01と同じであり、基準電圧VstをCPUにインプットする。
ST12:前記ST02と同じであり、光学センサをアークに臨ませる。
ST13:前記ST03と同じであり、光学センサでアーク光の照度に応じた電圧信号Vacをサンプリングする。
【0041】
ST14:計測電圧Vacと基準電圧Vstとの差を調べ、この差|Vac−Vst|が、予め定めてある一定値A以下であるか否かを調べる。この一定値Aは通常の溶接で不可避的に発生し、且つ許容し得る程度の差を、実験等を重ねて予め定めた値である。|Vac−Vst|≦Aであれば正常であり、ST15に進む。|Vac−Vst|>AのときはST16に進む。
【0042】
ST15:溶接作業を終了するか否かを調べる。具体的には溶接作業を中断、中止若しくは終了する信号を受けたときにはYESであり、フローを終了する。終了信号を受けていないときにはNOであり、ST13に戻り、制御フローを継続しつつ溶接を続ける。
【0043】
ST16:|Vac−Vst|>Aのときは、次に述べる溶接異常や材質誤りの可能性があるので、異常信号を発信して対策を促すとともに、制御フローを終わらせ、溶接作業を中断若しくは中止する。
【0044】
溶接異常や材質誤りの可能性について説明する。
先ず、突合せ溶接では、レ字、V字、U字開先を溶着金属で埋めるが、これらの開先が局部的に不揃いになっていると、溶着不良又は溶着過多となって欠陥となる。この要因となる開先不良は、手溶接であれば溶接工の目で発見可能であるが、自動溶接であれば別途CCDカメラや画像解析装置が必要となる。この点、本発明では、開先が所定の形状から外れた部位に電極が到達すると、照度が大きく変化したり、スペクトルの大きさが変化し、若しくはスペクトルの分布が変化することが考えられる。そこで、例えば照度が急変した場合には、開先不良の可能性があるとみなせる。
【0045】
加えて突合せ溶接では、所定のギャップを保ちながら2枚の母材を付け合わせ、これらの母材を溶接で接合するが、一方の母材がずれると電極又はトーチから見てギャップがハ字状になることがある。このままで、溶接を進めるとギャップが過大の部位ではアークが突き抜けたり、溶着金属が落ちて溶接が不完全となる。ギャップが狭過ぎると母材の溶込みが不足して溶接が不十分となる。この要因となるギャップ不良は、手溶接であれば溶接工の目で発見可能であるが、自動溶接であれば別途CCDカメラや画像解析装置が必要となる。この点、本発明では、ギャップが所定値から外れた部位に電極が到達すると、照度が大きく変化したり、スペクトルの大きさが変化し、若しくはスペクトルの分布が変化することが考えられる。そこで、例えば照度が急変した場合には、ギャップ不良(開先不良)の可能性があるとみなせる。この具体例を次に説明する。
【0046】
図7(a)〜(d)はアーク光の照度と開先形状との関係を示すグラフである。
(b)は母材12の要部平面図であり、第1母材12aに第2母材12bを突合せ、その狭幅部12cに広幅部12d,12dを実験のために形成した。
(c)は(b)のc−c断面図であり、広幅部12dの断面を示し、母材12a,12bの厚さの75%に相当する深さのV字切欠きを設けた。
(a)は(b)のa−a断面図であり、狭幅部12cを示す。
【0047】
実験装置は図4と同等の装置を使用するが、それに光遮蔽カバーを付属し、照度計に外の光が入らぬように配慮した。その他は次の通りである。
実験条件:
母材:1mmのステンレス板(SUS 316)
電極の種類:タングステン
電極の径:1.6mm
電極の先端角度:60゜
電極と照度計の距離:300mm
溶接機:TIG溶接機
溶接電流:ピーク70A、ベース4A
【0048】
この結果得られたデータをグラフ化して(d)に示した。
(d)は縦軸がアーク光の照度、横軸が溶接部位を示し、照度はLx1とこれより大幅に大きいLx2との2つの値が計測できた。(b)の広幅部12d,12dから縦線を下ろしたところ、照度Lx2の部位に良好に合致していることが分かった。
狭幅部と広幅部との一方を健全開先部、他方を欠陥開先部とすれば、照度の変化で開先不良を精度良く検出できることが確認できた。
【0049】
また、母材の材質は目視で識別するには困難なものが多く、溶接工程では母材の材質のチェックは実質的に行わない。しかし、本発明によれば、材質別に特有の基準電圧をCPUにインプットしてあるため、選択した基準電圧と計測した電圧が極端に異なれば、母材が指定以外の材質である可能性がある。従って、材質の誤りを検出することが可能となる。
【0050】
ところで本発明は「アーク光の光情報」を巧みに利用するものであるから、本発明は、アーク光が露出している溶接であれば、非溶極式アーク溶接(TIG溶接、原子水素溶接、炭素アーク溶接)並びに溶極式アーク溶接(MIG溶接、炭酸ガスアーク溶接、エレクトロガスアーク溶接、被覆アーク溶接、金属アーク溶接)の何れにも適用可能である。
【0051】
そのうちで、非溶極式アーク溶接の代表例であるTIG溶接では、照度とアーク長との相関関係はアーク長さ0.25mm〜3.0mmに亘って良好であり、超薄板の溶接が極めて精度よく実施できることが確認できた。
【0052】
また、光情報は多岐にわたるが、その内で光量や照度は安価で入手容易な光量計、照度計で簡単に計測することができる。そのために、実用上及び経済的には、光量若しくは照度を溶接制御要素とすることが妥当である。
【0053】
なお、図4のアーク溶接装置10では、ホルダ20の昇降機構のみを説明したが、ホルダ20をロボットアームに取付けることで三次元的に位置決めできるようにすることは差支えなく、要は周知の自動溶接装置、半自動溶接装置に光学センサ及び光学情報を処理する処理装置を付加したものであればよい。
【0054】
【発明の効果】
本発明は上記構成により次の効果を発揮する。
請求項1のアーク溶接の制御方法は、従来の定電圧制御や定トーチ高さ制御に代わりに、アーク溶接の際に発生するアークの照度に基づいて溶接条件を調整しつつ電極やトーチの位置制御等を実施するものであり、アーク光から得られるアーク光の照度はアーク長若しくはトーチ高さと良好な相関関係があるので、高い精度並びに信頼性の高い溶接制御が実施できる。
アーク光の照度は入手容易な照度計で簡単に計測することができ、発明方法を実施する上で実施費用の高騰化を抑えることがきる。
【0055】
請求項2のアーク溶接の制御方法では、TIG溶接に代表される非溶極式アーク溶接に本発明を適用したものであり、照度とアーク長との相関関係はアーク長さが0.25mmであっても良好であることが確認できているので、特に超薄板の溶接の低電流及び低電圧化が達成でき、低入熱溶接が可能となる。低入熱溶接であれば、母材の歪の発生を十分に抑えることができる。
【0056】
請求項3のアーク溶接の制御方法によれば、アーク光の照度を基準情報と比較して、差が一定未満であれば、開先形状は健全であり、母材の材質に誤りがないと判定できる。逆に、アーク光の照度を基準情報と比較して、差が一定以上であれば、開先不良や材質の誤りが検出できる。この結果、溶接不良を未然に防止することができる。
【0057】
請求項4のアーク溶接装置は、既存の溶接機に光学センサ及び処理装置を付加するだけで済むため、装置費用の上昇を抑えることができる。
アーク光の照度を計測するための照度計は安価であり、容易に入手可能である。この様な照度計を組込むためアーク溶接装置の費用高騰を十分に抑えることができる。
【0058】
請求項5のアーク溶接装置は、非溶極式アーク溶接を行うものであり、TIG溶接に代表される非溶極式アーク溶接に本発明を適用すれば、照度とアーク長との相関関係はアーク長さが0.25mmであっても良好であることが確認できているので、超薄板の溶接を低電流、低電圧で実施することができ、高い品質の溶接部を得ることができる。
【図面の簡単な説明】
【図1】TIG溶接実験装置及び得られた相関グラフを示す図
【図2】MIG溶接実験装置を示す図
【図3】MIG溶接実験装置で得られた相関グラフを示す図
【図4】本発明に係るアーク溶接装置の原理図
【図5】本発明に係るアーク溶接制御フロー図
【図6】本発明に係るその他のアーク溶接制御フロー図
【図7】アーク光の照度と開先形状との関係を示すグラフ
【図8】従来のパルスアークによる電圧制御の実験装置及び得られたグラフを示す図
【図9】従来の連続アーク実験で得たアーク長さと電圧の相関グラフ
【符号の説明】
10…アーク溶接装置、11…電極、12…母材、13…アーク、14…溶接機、15…光学センサ、21…処理装置(中央処理装置、CPU)。
Claims (5)
- アーク溶接の際に発生するアーク光からアーク光の照度を得るステップと、得られたアーク光の照度を基準情報と比較するステップと、この比較結果に基づいてアーク長を調整するステップと、調整後のアーク長で溶接を実施するステップとを、繰り返しながらアーク溶接を実施することを特徴とするアーク溶接の制御方法。
- 前記アーク溶接は、非溶極式アーク溶接であることを特徴とする請求項1記載のアーク溶接の制御方法。
- アーク溶接の際に発生するアーク光からアーク光の照度を得るステップと、得られたアーク光の照度を基準情報と比較するステップと、この比較により前記アーク光の照度と前記基準情報との差が一定以上大きいときに異常信号を発信するステップとを実施し、アーク溶接中に前記異常信号が発信されたときには溶接作業を中断若しくは中止することを特徴とするアーク溶接の制御方法。
- 電極と母材との間にアークを発生させる溶接機と、アーク溶接の際に発生するアーク光からアーク光の照度を得る光学センサと、得られたアーク光の照度に応じてアーク長を調整する処理装置と、からなるアーク溶接装置。
- 前記アーク溶接は、非溶極式アーク溶接であることを特徴とする請求項4記載のアーク溶接装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001371115A JP3943380B2 (ja) | 2000-12-07 | 2001-12-05 | アーク溶接の制御方法及びアーク溶接装置 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-373141 | 2000-12-07 | ||
JP2000373141 | 2000-12-07 | ||
JP2001371115A JP3943380B2 (ja) | 2000-12-07 | 2001-12-05 | アーク溶接の制御方法及びアーク溶接装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002239728A JP2002239728A (ja) | 2002-08-28 |
JP3943380B2 true JP3943380B2 (ja) | 2007-07-11 |
Family
ID=26605438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001371115A Expired - Fee Related JP3943380B2 (ja) | 2000-12-07 | 2001-12-05 | アーク溶接の制御方法及びアーク溶接装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3943380B2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5066683B2 (ja) * | 2005-08-11 | 2012-11-07 | 国立大学法人大阪大学 | Tig溶接方法および被溶接物 |
US10065260B2 (en) * | 2013-01-03 | 2018-09-04 | Illinois Tool Works Inc. | System and method for controlling an arc welding process |
CN112894080A (zh) * | 2019-11-19 | 2021-06-04 | 中国石油天然气集团有限公司 | 焊接电弧长度的控制方法及装置 |
KR102302446B1 (ko) * | 2020-12-08 | 2021-09-14 | 이성관 | 용접 변수 모니터링을 통한 용접토치 제어시스템 및 제어방법 |
-
2001
- 2001-12-05 JP JP2001371115A patent/JP3943380B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002239728A (ja) | 2002-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6744012B2 (en) | Control method of arc welding and arc welder | |
US6977357B2 (en) | Welding wire positioning system | |
US5349156A (en) | Sensing of gas metal arc welding process characteristics for welding process control | |
US20100133239A1 (en) | Submerged Arc Narrow Gap Welding With Oscillating Electrode | |
US4399346A (en) | Optoelectronic weld travel speed sensor | |
EP0684101B1 (en) | System for automatically controlling weld material beading in orbital welding processes for medium- and large-size pipes | |
JP6052798B2 (ja) | 自動溶接機の異常監視装置 | |
JPS60203366A (ja) | ア−ク溶接方法における溶接工程の監視制御方法および装置 | |
Ancona et al. | A sensing torch for on-line monitoring of the gas tungsten arc welding process of steel pipes | |
JP3943380B2 (ja) | アーク溶接の制御方法及びアーク溶接装置 | |
GB1584017A (en) | Regulating the power of an arc-welding burner | |
JP2553915B2 (ja) | 円筒容器の自動溶接法 | |
JPH08290281A (ja) | レーザー溶接機 | |
JPH1110335A (ja) | 溶接状況の監視方法とその装置 | |
Nakamura et al. | Automatic control technology of welding machine MAG-II for onshore pipelines | |
JPH07148576A (ja) | 非消耗電極式自動アーク溶接方法 | |
JP3788659B2 (ja) | 非消耗式電極アーク溶接における開先倣い制御方法とそれを用いた溶接制御装置 | |
JPH0866769A (ja) | 固定管の片面突合せ溶接における初層溶接方法 | |
JP2721250B2 (ja) | 開先倣い方法および装置 | |
JPH069743B2 (ja) | 開先検出方法および装置 | |
JP2002045966A (ja) | 非消耗電極アーク溶接における開先倣い制御方法とその装置 | |
AU2005203174B2 (en) | Welding wire positioning system | |
JP2021186840A (ja) | 温度・反力計測装置及び温度・反力計測方法 | |
CN118253851A (zh) | 一种焊接方法及控制系统 | |
JPS626902B2 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060214 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060411 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061003 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070403 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070405 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |