JP3942398B2 - Method for forming conductive pattern - Google Patents

Method for forming conductive pattern Download PDF

Info

Publication number
JP3942398B2
JP3942398B2 JP2001319500A JP2001319500A JP3942398B2 JP 3942398 B2 JP3942398 B2 JP 3942398B2 JP 2001319500 A JP2001319500 A JP 2001319500A JP 2001319500 A JP2001319500 A JP 2001319500A JP 3942398 B2 JP3942398 B2 JP 3942398B2
Authority
JP
Japan
Prior art keywords
insulating film
conductive pattern
filter paper
conductive
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001319500A
Other languages
Japanese (ja)
Other versions
JP2003124607A (en
Inventor
義幸 国分
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2001319500A priority Critical patent/JP3942398B2/en
Publication of JP2003124607A publication Critical patent/JP2003124607A/en
Application granted granted Critical
Publication of JP3942398B2 publication Critical patent/JP3942398B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気、電子、半導体等の分野で使用される導電パターンの形成方法に関するものである。
【0002】
【従来の技術】
従来、連続した可撓性の絶縁フィルム1に導電パターンを形成する場合には、図3ないし図5に示すように、先ず、絶縁フィルム1の上面である表面上に複数の第一の導電パターン8を流動性の導電ペースト9によりそれぞれスクリーン印刷して各第一の導電パターン8を乾燥機12で乾燥させ(図3(a)、(b)参照)、乾燥した各第一の導電パターン8にスルーホール14を上方から穿孔する(図4(a)、(b)参照)。
【0003】
こうして第一の導電パターン8にスルーホール14を穿孔したら、絶縁フィルム1を上下逆にしてその下面である表面に連続した可撓性のろ紙15を重ね合わせ、これら一体化した絶縁フィルム1とろ紙15を下流に搬送して絶縁フィルム1の上面である裏面上に複数の第二の導電パターン16を流動性の導電ペースト17によりそれぞれスクリーン印刷し、第一、第二の導電パターン8・16を貫通したスルーホール14と導電ペースト17により電気的に導通する(図5(a)、(b)参照)。
【0004】
この際、スルーホール14内に導電ペースト17が導通接続のために流入するが、絶縁フィルム1にろ紙15が既に付着しているので、絶縁フィルム1やテーブル7が導電ペースト17で汚れるのをある程度防止することができる。そしてその後、絶縁フィルム1とろ紙15とを分離してろ紙15を巻き取り、絶縁フィルム1の第二の導電パターン16を乾燥機12で乾燥させれば、連続した可撓性の絶縁フィルム1に導電パターンを形成することができる。
【0005】
【発明が解決しようとする課題】
従来における導電パターンの形成方法は、以上のようになされ、絶縁フィルム1にろ紙15を単に重ね合わせるに止まるので、スクリーン印刷後の搬送時に絶縁フィルム1とろ紙15とが摩擦抵抗値の相違から位置ズレを起こすことが少なくない。このような位置ズレが生じると、ろ紙15に導電ペースト17が付着しているので、導電ペースト17が絶縁フィルム1等を汚染し、その結果、外観不良やリーク不良を引き起こすこととなる。
【0006】
本発明は、上記に鑑みなされたもので、印刷後の搬送時に絶縁フィルムとろ紙とが位置ズレを起こすのを抑制防止し、絶縁フィルム等に外観不良やリーク不良等が生じるのを防ぐことのできる導電パターンの形成方法を提供することを目的としている。
【0007】
【課題を解決するための手段】
本発明においては上記課題を解決するため、可撓性の絶縁フィルムに導電パターンを形成する方法であって、
絶縁フィルムの表面に第一の導電パターンを形成して乾燥させ、この第一の導電パターンにスルーホールを開け、絶縁フィルムを表裏逆にしてその表面にろ紙を重ねて帯電装置の静電気により静電密着させ、その後、絶縁フィルムの裏面に第二の導電パターンを形成して第一、第二の導電パターンをスルーホールで電気的に接続することを特徴としている。
【0008】
なお、密着した上記絶縁フィルムと上記ろ紙のうち、絶縁フィルムに電源に接続された帯電電極を、ろ紙に導電プレートをそれぞれ対向させ、これら帯電電極と導電プレート間の距離を5〜15mmに形成することが好ましい。
【0009】
ここで、特許請求の範囲における第一、第二の導電パターンは、単数複数いずれでも良いし、いかなる図形でも良い。この第一、第二の導電パターンの形成に際しては、スクリーン印刷法を採用するのが主であるが、他の印刷方法でも良い。また、絶縁フィルムとろ紙の静電密着に際しては、絶縁フィルムを損傷させないという条件下でコロナ放電や誘導帯電等の方法を適宜利用することができる。
【0010】
【発明の実施の形態】
以下、図面を参照して本発明の好ましい実施形態を説明すると、本実施形態における導電パターンの形成方法は、図1や図2に示すように、可撓性の絶縁フィルム1の表面上に第一の導電パターン8を導電ペースト9によりスクリーン印刷して乾燥させ、第一の導電パターン8にスルーホール14を穿孔し、絶縁フィルム1を上下逆にしてその下方の表面に可撓性のろ紙15を重ね合わせて静電気により帯電密着させるとともに、絶縁フィルム1の裏面上に第二の導電パターン16を導電ペースト17によりスクリーン印刷して第一、第二の導電パターン8・16をスルーホール14と導電ペースト17で電気的に導通し、その後、絶縁フィルム1とろ紙15とを分離して絶縁フィルム1の第二の導電パターン16を乾燥させるようにしている。
【0011】
次に、この導電パターンの形成に用いる形成装置について説明すると、この導電パターンの形成装置は、同図に示すように、上流から下流にかけて回転駆動軸のロールに巻回される絶縁フィルム1、この絶縁フィルム1よりも上流にセットされて回転駆動軸のロールに巻回されるろ紙15、帯電装置3、テーブル7、スクリーン印刷装置10、複数の針を並べ備えた上下動可能な穿孔機13(この点に関しては、図4参照)、ろ紙15用の巻き取りロール18、及び赤外線や熱風等を使用する絶縁フィルム1用の乾燥機12等を備えている。
【0012】
絶縁フィルム1としては、連続した長尺のポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリカーボネート、ポリフェニレンサルファイド等があげられる。これらの中でも、導電ペースト9・17の密着性や寸法安定性、耐折り曲げ性に優れ、光や熱に対して安定な厚さ10〜50mmのポリエチレンテレフタレートが材料としては好適である。
【0013】
ろ紙15は、例えば合成繊維不織布や多孔質のセルロース紙等を用いて絶縁フィルム1の表面を覆うよう連続した略同じ大きさ、あるいはやや小さく形成され、0.2〜1.0mmの厚さに形成される。このろ紙15の厚さが0.2〜1.0mmの範囲なのは、この範囲の値よりも厚いと取り扱いに難を生じ、逆に薄過ぎると導電ペースト17がろ紙15の裏側に回りこむからである。ろ紙15の保留粒子径は、空気の通過を向上させ、スクリーン印刷に悪影響を及ぼさない滑らかさを得る観点から1〜5μmに形成される。
【0014】
帯電装置3は、図2に示すように、高圧電源4に接続されて上方の絶縁フィルム1に隙間を介して近接する帯電電極5と、下方のろ紙15に相対的に摺接して帯電させる導電プレートであるSUSプレート6とを備え、これら高電界を形成する帯電電極5とSUSプレート6の距離Lが5〜15mm、好ましくは8〜12mm、より好ましくは10mmに形成される。帯電電極5とSUSプレート6の距離Lが5〜15mmの範囲なのは、5mm未満の場合には、絶縁フィルム1に帯電電極5が接触するおそれがあるからである。逆に、15mmを超える場合には、帯電量が弱化するからである。
【0015】
帯電装置3の電圧値は、1〜10kV、特に3〜5kVの範囲が好ましい。これは、1kVよりも弱い場合には、絶縁フィルム1とろ紙15の密着が弱く、位置ズレが生じるからであり、逆に10kVよりも強い場合には、絶縁フィルム1とろ紙15の密着が強過ぎ、絶縁フィルム1とろ紙15とを容易に分離することができないからである。帯電電極5としては、例えば平板、円筒の電極、細いタングステン線やステンレス線等を使用することができる。
【0016】
テーブル7は、その作業面に多数の吸着孔がXY方向に並べて穿孔され、この多数の吸着孔が図示しない真空装置に接続されている。スクリーン印刷装置10、穿孔機13、巻き取りロール18、及び乾燥機12については、それぞれ周知の技術が採用される。
【0017】
上記構成において、連続した可撓性の絶縁フィルム1の表裏面に導電パターンを形成する場合には、先ず、ロール状の絶縁フィルム1を上流から複数のローラ2を介してテーブル7上に搬送し、このテーブル7上に絶縁フィルム1を真空吸着してその上面である表面に複数の第一の導電パターン8を流動性の導電ペースト9によりスクリーン印刷装置10でスクリーン印刷し、絶縁フィルム1をテーブル7から複数のローラ11を介して下流の乾燥機12に搬送して各第一の導電パターン8を乾燥させる(この点に関しては、図3参照)。導電ペースト9としては、カーボン、金、銀、銅、ニッケル等の導電性付与粉末をポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アクリル樹脂等のバインダーに40〜95重量%含有させ、体積抵抗率を0.05〜10Ωcmとしたペーストが好ましい。
【0018】
次いで、ロール状の絶縁フィルム1を上流から複数のローラ2を介してテーブル7上に搬送し、このテーブル7上に絶縁フィルム1を真空吸着してその表面の各第一の導電パターン8にスルーホール14を穿孔機13で上方から穿孔し、下流に搬送する(この点に関しては、図4参照)。この際、穿孔するスルーホール14の直径は0.1〜0.5mmが好ましい。これは、0.1mm未満だと穿孔機13の針が折れ易くなり、逆に0.5mmを超えると配線密度の観点から大き過ぎるからである。
【0019】
次いで、絶縁フィルム1を表裏逆にしてロール状に巻回し、これを再度上流の回転駆動軸にセットし、この絶縁フィルム1の上流には、ロール状のろ紙15をセットする。こうして絶縁フィルム1とろ紙15とをセットしたら、これら絶縁フィルム1とろ紙15とを上流から複数のローラ2を介して下流方向にそれぞれ搬送し、絶縁フィルム1の下方の表面にろ紙15を重ね合わせるとともに、絶縁フィルム1とろ紙15とを帯電装置3の誘導帯電に基づく静電気により帯電密着させて積層一体化し、下流のテーブル7上に搬送する。
【0020】
一体化した絶縁フィルム1とろ紙15とをテーブル7上に搬送したら、テーブル7上に真空吸着して絶縁フィルム1の上面である裏面に第二の導電パターン16を流動性の導電ペースト17によりスクリーン印刷装置10でスクリーン印刷し、第一、第二の導電パターン8・16を貫通したスルーホール14とこれに流入する導電ペースト17で電気的に導通する。この際に使用する導電ペースト17は、導通の安定性の観点から第一の導電パターン8用の導電ペースト9と同様の組成とするのが好ましいが、異なるものでも良い。そして、一体化した絶縁フィルム1とろ紙15とを複数のローラ11を介して下流に搬送し、ろ紙15を巻き取りロール18に巻き取って絶縁フィルム1から剥離した後、絶縁フィルム1の第二の導電パターン16を下流の乾燥機12で乾燥させれば、連続した可撓性の絶縁フィルム1の表裏面に導電パターンを形成することができる。
【0021】
上記構成によれば、絶縁フィルム1にろ紙15を単に重ね合わせるだけでなく、これらを静電気を応用して密着させ、密着度を著しく向上させるので、スクリーン印刷後の搬送時に絶縁フィルム1とろ紙15とが摩擦抵抗値の相違から位置ズレを起こすのをきわめて有効に抑制防止することができる。したがって、ろ紙15に付着した導電ペースト17が絶縁フィルム1の表面等を汚染し、これにより外観不良やリーク不良が発生するのを抑制防止することができる。
【0022】
【実施例】
以下、本発明に係る導電パターンの形成方法の実施例を説明する。
先ず、ロール状の絶縁フィルムを複数のローラを介してテーブル上に搬送し、このテーブル上に絶縁フィルムを真空吸着してその上面である表面に複数の第一の導電パターンを流動性の導電ペーストによりスクリーン印刷し、絶縁フィルムをテーブルから複数のローラを介して下流の乾燥機に搬送して各第一の導電パターンを乾燥させた。絶縁フィルムとしては、幅500mm、厚さ25μm、長さ200mのPETを使用した。また、導電ペーストとしては、市販のDW‐250H‐5[東陽紡績株式会社製 商品名]を使用した。テーブルの各吸着孔はφ0.5mmとした。
【0023】
次いで、ロール状の絶縁フィルムを上流から複数のローラを介してテーブル上に再度搬送し、このテーブル上に絶縁フィルムを真空吸着してその表面の各第一の導電パターンにφ0.2mmのスルーホールを穿孔機で上方から穿孔し、下流に搬送した。
【0024】
次いで、絶縁フィルムを表裏逆にしてロール状に巻回し、これを再度上流の回転駆動軸にセットし、この絶縁フィルムの上流にロール状のろ紙をセットした。ろ紙としては、保留粒子径2μm、幅400mm、厚さ0.5mm、長さ200mのものを使用した。絶縁フィルムとろ紙とをセットしたら、これら絶縁フィルムとろ紙とを上流から複数のローラを介してテーブル方向にそれぞれ搬送し、絶縁フィルムの下方の表面にろ紙を重ね合わせるとともに、絶縁フィルムとろ紙とを帯電装置の静電気により帯電密着させて一体化し、下流のテーブル上に搬送した。帯電装置の帯電電極には、4kVの直流高電圧を印加した。
【0025】
一体化した絶縁フィルムとろ紙とをテーブル上に搬送したら、テーブル上に真空吸着して絶縁フィルムの上面である裏面に第二の導電パターンを流動性の導電ペーストによりスクリーン印刷し、第一、第二の導電パターンを貫通したスルーホールと導電ペーストで電気的に導通した。この際に使用する導電ペーストは、第一の導電パターン用の導電ペーストと同様とした。そして、一体化した絶縁フィルムとろ紙とを複数のローラを介して下流に搬送し、ろ紙を巻き取りロールに巻き取って絶縁フィルムから分離し、その後、第二の導電パターンを下流の乾燥機で乾燥させた。
【0026】
本実施例によれば、ろ紙に付着した導電ペーストがスルーホールを介して絶縁フィルム等を汚染し、これにより外観不良やリーク不良が発生するという問題(従来は10〜30%生じた)をゼロにすることができ、製品率の向上に寄与することができるのを確認した。
【0027】
【発明の効果】
以上のように本発明によれば、絶縁フィルムを表裏逆にしてその表面にろ紙を重ねて帯電装置の静電気により静電密着させるので、第二の導電パターンの印刷後の搬送時に絶縁フィルムとろ紙が位置ズレを起こすのを抑制防止し、絶縁フィルム等に外観不良やリーク不良等が生じるのを有効に防ぐことができるという効果がある。
【図面の簡単な説明】
【図1】本発明に係る導電パターンの形成方法の実施形態を示す全体説明図である。
【図2】本発明に係る導電パターンの形成方法の実施形態を示す要部説明図である。
【図3】従来における導電パターンの形成方法を示す説明図で、(a)図は絶縁フィルムの表面上に第一の導電パターンを導電ペーストでスクリーン印刷してこれを乾燥させる状態を示す全体図、(b)図は(a)図における第一の導電パターンを示す説明図である。
【図4】従来における導電パターンの形成方法を示す説明図で、(a)図は第一の導電パターンにスルーホールを上方から穿孔する状態を示す全体図、(b)図は穿孔されたスルーホールを示す説明図である。
【図5】従来における導電パターンの形成方法を示す説明図で、(a)図は一体化した絶縁フィルムとろ紙を搬送して絶縁フィルムの裏面上に第二の導電パターンを導電ペーストでスクリーン印刷し、第一、第二の導電パターンをスルーホールで導通し、絶縁フィルムとろ紙を分離してろ紙を巻き取り、第二の導電パターンを乾燥機で乾燥させる状態を示す全体図、(b)図は(a)図における第二の導電パターンを示す説明図である。
【符号の説明】
1 絶縁フィルム
3 帯電装置
4 高圧電源(電源)
5 帯電電極
6 SUSプレート(導電プレート)
7 テーブル
8 第一の導電パターン
9 導電ペースト
10 スクリーン印刷装置
12 乾燥機
14 スルーホール
15 ろ紙
16 第二の導電パターン
17 導電ペースト
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming a conductive pattern used in the fields of electricity, electronics, semiconductors and the like.
[0002]
[Prior art]
Conventionally, when forming a conductive pattern on a continuous flexible insulating film 1, first, as shown in FIGS. 3 to 5, first, a plurality of first conductive patterns are formed on the surface which is the upper surface of the insulating film 1. 8 is screen-printed with a fluid conductive paste 9, and each first conductive pattern 8 is dried with a dryer 12 (see FIGS. 3A and 3B). A through hole 14 is drilled from above (see FIGS. 4A and 4B).
[0003]
After the through holes 14 are drilled in the first conductive pattern 8 in this way, the insulating film 1 is turned upside down, and the continuous flexible filter paper 15 is superimposed on the lower surface thereof, and the integrated insulating film 1 and filter paper are integrated. 15 is transported downstream, and a plurality of second conductive patterns 16 are screen-printed with a fluid conductive paste 17 on the back surface, which is the upper surface of the insulating film 1, and the first and second conductive patterns 8 and 16 are formed. Electrical conduction is established through the through-hole 14 and the conductive paste 17 (see FIGS. 5A and 5B).
[0004]
At this time, the conductive paste 17 flows into the through hole 14 for conducting connection. However, since the filter paper 15 has already adhered to the insulating film 1, the insulating film 1 and the table 7 may be contaminated with the conductive paste 17 to some extent. Can be prevented. After that, the insulating film 1 and the filter paper 15 are separated, the filter paper 15 is wound up, and the second conductive pattern 16 of the insulating film 1 is dried by the dryer 12 to form a continuous flexible insulating film 1. A conductive pattern can be formed.
[0005]
[Problems to be solved by the invention]
The conventional method for forming a conductive pattern is as described above. Since the filter paper 15 is simply overlapped with the insulating film 1, the insulating film 1 and the filter paper 15 are positioned due to the difference in frictional resistance during conveyance after screen printing. There are many cases that cause misalignment. When such misalignment occurs, the conductive paste 17 adheres to the filter paper 15, so that the conductive paste 17 contaminates the insulating film 1 and the like, and as a result, causes an appearance defect and a leakage defect.
[0006]
The present invention has been made in view of the above, and it is possible to prevent the insulating film and the filter paper from being misaligned during conveyance after printing, and to prevent the appearance failure or leakage failure of the insulating film or the like from occurring. An object of the present invention is to provide a method for forming a conductive pattern.
[0007]
[Means for Solving the Problems]
In the present invention, in order to solve the above problems, a method for forming a conductive pattern on a flexible insulating film,
A first conductive pattern is formed on the surface of the insulating film and dried. A through-hole is formed in the first conductive pattern, and the filter is placed on the surface with the insulating film turned upside down. Then, the second conductive pattern is formed on the back surface of the insulating film , and the first and second conductive patterns are electrically connected through the through holes .
[0008]
Of the insulating film and the filter paper that are in close contact with each other, the charging electrode connected to the power source is connected to the insulating film, the conductive plate is opposed to the filter paper, and the distance between the charging electrode and the conductive plate is set to 5 to 15 mm. It is preferable.
[0009]
Here, the first and second conductive patterns in the claims may be singular or plural, and may be any figure. In the formation of the first and second conductive patterns, the screen printing method is mainly employed, but other printing methods may be used. Further, in the electrostatic adhesion between the insulating film and the filter paper, a method such as corona discharge or induction charging can be appropriately used under the condition that the insulating film is not damaged.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. A method for forming a conductive pattern in the present embodiment will be described on the surface of a flexible insulating film 1 as shown in FIGS. One conductive pattern 8 is screen-printed with a conductive paste 9 and dried, a through hole 14 is drilled in the first conductive pattern 8, and the insulating film 1 is turned upside down so that a flexible filter paper 15 is formed on the lower surface thereof. And the second conductive pattern 16 is screen-printed with the conductive paste 17 on the back surface of the insulating film 1 to conduct the first and second conductive patterns 8 and 16 with the through hole 14. Electrical conduction is made with the paste 17, and then the insulating film 1 and the filter paper 15 are separated to dry the second conductive pattern 16 of the insulating film 1. .
[0011]
Next, a description will be given of a forming apparatus used for forming the conductive pattern. As shown in the figure, the forming apparatus for the conductive pattern includes an insulating film 1 wound around a roll of a rotary drive shaft from upstream to downstream, A filter paper 15 that is set upstream of the insulating film 1 and wound around a roll of a rotational drive shaft, a charging device 3, a table 7, a screen printing device 10, and a vertically movable punch 13 having a plurality of needles arranged ( In this regard, refer to FIG. 4), a take-up roll 18 for the filter paper 15, a dryer 12 for the insulating film 1 using infrared rays, hot air, and the like.
[0012]
Examples of the insulating film 1 include continuous long polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyester such as polyethylene naphthalate (PEN), polycarbonate, polyphenylene sulfide, and the like. Among these, polyethylene terephthalate having a thickness of 10 to 50 mm which is excellent in adhesion, dimensional stability, and bending resistance of the conductive pastes 9 and 17 and is stable to light and heat is suitable as a material.
[0013]
The filter paper 15 is formed, for example, with a synthetic fiber nonwoven fabric or porous cellulose paper so as to cover the surface of the insulating film 1 so as to cover the surface of the insulating film 1 or have a slightly smaller size, and has a thickness of 0.2 to 1.0 mm. It is formed. The thickness of the filter paper 15 is in the range of 0.2 to 1.0 mm because it is difficult to handle if it is thicker than the value in this range, and conversely, if it is too thin, the conductive paste 17 wraps around the back side of the filter paper 15. is there. The retained particle diameter of the filter paper 15 is 1 to 5 μm from the viewpoint of improving the passage of air and obtaining smoothness that does not adversely affect screen printing.
[0014]
As shown in FIG. 2, the charging device 3 is connected to a high voltage power source 4 and is electrically slidably contacted with a charging electrode 5 that is close to the upper insulating film 1 via a gap and a lower filter paper 15 to be charged. The SUS plate 6 which is a plate is provided, and the distance L between the charging electrode 5 and the SUS plate 6 forming the high electric field is 5 to 15 mm, preferably 8 to 12 mm, more preferably 10 mm. The reason why the distance L between the charging electrode 5 and the SUS plate 6 is in the range of 5 to 15 mm is that the charging electrode 5 may come into contact with the insulating film 1 when the distance L is less than 5 mm. On the other hand, when it exceeds 15 mm, the charge amount is weakened.
[0015]
The voltage value of the charging device 3 is preferably in the range of 1 to 10 kV, particularly 3 to 5 kV. This is because when the voltage is weaker than 1 kV, the insulation film 1 and the filter paper 15 are weakly adhered, and a positional deviation occurs. Conversely, when the voltage is higher than 10 kV, the adhesion between the insulating film 1 and the filter paper 15 is strong. This is because the insulating film 1 and the filter paper 15 cannot be easily separated. As the charging electrode 5, for example, a flat plate, a cylindrical electrode, a thin tungsten wire, a stainless steel wire, or the like can be used.
[0016]
The table 7 has a large number of suction holes arranged in the XY direction on the work surface, and the plurality of suction holes are connected to a vacuum device (not shown). For the screen printing apparatus 10, the punch 13, the take-up roll 18, and the dryer 12, well-known techniques are employed.
[0017]
In the above configuration, when forming a conductive pattern on the front and back surfaces of the continuous flexible insulating film 1, first, the roll-shaped insulating film 1 is conveyed onto the table 7 via a plurality of rollers 2 from upstream. The insulating film 1 is vacuum-adsorbed on the table 7, and a plurality of first conductive patterns 8 are screen-printed with a fluid conductive paste 9 on the surface of the upper surface of the insulating film 1 using a screen printing device 10. 7 to a downstream dryer 12 via a plurality of rollers 11 to dry each first conductive pattern 8 (see FIG. 3 for this point). As the conductive paste 9, 40 to 95% by weight of a conductive powder such as carbon, gold, silver, copper or nickel is contained in a binder such as polyester resin, polyurethane resin, epoxy resin or acrylic resin, and the volume resistivity is 0. A paste of 0.05 to 10 Ωcm is preferred.
[0018]
Next, the roll-shaped insulating film 1 is conveyed from upstream to the table 7 via a plurality of rollers 2, and the insulating film 1 is vacuum-adsorbed on the table 7 to pass through each first conductive pattern 8 on the surface. The hole 14 is drilled from above with a punch 13 and conveyed downstream (see FIG. 4 in this regard). At this time, the diameter of the through hole 14 to be drilled is preferably 0.1 to 0.5 mm. This is because if it is less than 0.1 mm, the needle of the punching machine 13 is easily broken, and conversely if it exceeds 0.5 mm, it is too large from the viewpoint of wiring density.
[0019]
Next, the insulating film 1 is turned upside down and wound into a roll shape, which is set again on the upstream rotary drive shaft, and a roll-shaped filter paper 15 is set upstream of the insulating film 1. When the insulating film 1 and the filter paper 15 are set in this way, the insulating film 1 and the filter paper 15 are respectively conveyed from the upstream through the plurality of rollers 2 in the downstream direction, and the filter paper 15 is superimposed on the lower surface of the insulating film 1. At the same time, the insulating film 1 and the filter paper 15 are charged and adhered by static electricity based on induction charging of the charging device 3 to be laminated and integrated, and conveyed onto the downstream table 7.
[0020]
When the integrated insulating film 1 and filter paper 15 are conveyed onto the table 7, the second conductive pattern 16 is screened on the back surface, which is the upper surface of the insulating film 1, by the fluid conductive paste 17. Screen printing is performed by the printing apparatus 10, and electrical connection is established by the through-holes 14 penetrating the first and second conductive patterns 8 and 16 and the conductive paste 17 flowing into the through-holes 14. The conductive paste 17 used at this time preferably has the same composition as the conductive paste 9 for the first conductive pattern 8 from the viewpoint of the stability of conduction, but may be different. Then, the integrated insulating film 1 and the filter paper 15 are conveyed downstream via the plurality of rollers 11, the filter paper 15 is wound around the take-up roll 18 and peeled off from the insulating film 1, and then the second of the insulating film 1. When the conductive pattern 16 is dried by the downstream dryer 12, the conductive pattern can be formed on the front and back surfaces of the continuous flexible insulating film 1.
[0021]
According to the above configuration, not only the filter paper 15 is simply superposed on the insulating film 1 but also these are closely adhered by applying static electricity to significantly improve the adhesion, so that the insulating film 1 and the filter paper 15 are transported after screen printing. It is possible to effectively suppress and prevent the occurrence of positional deviation due to the difference in the frictional resistance value. Accordingly, it is possible to suppress and prevent the conductive paste 17 attached to the filter paper 15 from contaminating the surface of the insulating film 1 and the like, thereby causing appearance defects and leakage defects.
[0022]
【Example】
Examples of the method for forming a conductive pattern according to the present invention will be described below.
First, a roll-shaped insulating film is transported onto a table via a plurality of rollers, and the insulating film is vacuum-adsorbed on the table so that a plurality of first conductive patterns are flown on the upper surface. The screen was printed, and the first conductive pattern was dried by conveying the insulating film from the table to a downstream dryer through a plurality of rollers. As the insulating film, PET having a width of 500 mm, a thickness of 25 μm, and a length of 200 m was used. As the conductive paste, commercially available DW-250H-5 [trade name, manufactured by Toyobo Co., Ltd.] was used. Each adsorption hole of the table was set to φ0.5 mm.
[0023]
Next, the roll-shaped insulating film is conveyed again from the upstream to the table via a plurality of rollers, and the insulating film is vacuum-adsorbed on the table, and a φ0.2 mm through hole is formed in each first conductive pattern on the surface. Was drilled from above with a punch and transported downstream.
[0024]
Subsequently, the insulating film was turned upside down and wound into a roll shape, which was set again on the upstream rotary drive shaft, and a roll-shaped filter paper was set upstream of the insulating film. As the filter paper, one having a reserved particle diameter of 2 μm, a width of 400 mm, a thickness of 0.5 mm, and a length of 200 m was used. When the insulating film and filter paper are set, these insulating film and filter paper are transported in the table direction from the upstream via a plurality of rollers, and the filter paper is superimposed on the lower surface of the insulating film. The charging device was charged and brought into close contact with static electricity and integrated and transported onto a downstream table. A high DC voltage of 4 kV was applied to the charging electrode of the charging device.
[0025]
After transporting the integrated insulating film and filter paper onto the table, vacuum-adsorb on the table and screen-print a second conductive pattern on the back, which is the top surface of the insulating film, with a fluid conductive paste. Electrical conduction was made with a through-hole penetrating the two conductive patterns and a conductive paste. The conductive paste used at this time was the same as the conductive paste for the first conductive pattern. Then, the integrated insulating film and filter paper are conveyed downstream through a plurality of rollers, the filter paper is wound on a take-up roll and separated from the insulating film, and then the second conductive pattern is removed by a downstream dryer. Dried.
[0026]
According to the present embodiment, the conductive paste adhered to the filter paper contaminates the insulating film and the like through the through holes, thereby eliminating the problem that the appearance defect and the leakage defect occur (conventionally 10 to 30% occurred). It was confirmed that it can contribute to the improvement of the product rate.
[0027]
【The invention's effect】
As described above, according to the present invention, the insulating film is turned upside down, and the filter paper is overlapped on the surface thereof and electrostatically adhered by the static electricity of the charging device. Therefore, the insulating film and the filter paper are transported after the second conductive pattern is printed. This prevents the occurrence of misalignment and effectively prevents the occurrence of defective appearance or leakage in the insulating film or the like.
[Brief description of the drawings]
FIG. 1 is an overall explanatory view showing an embodiment of a method for forming a conductive pattern according to the present invention.
FIG. 2 is a main part explanatory view showing an embodiment of a method for forming a conductive pattern according to the present invention.
FIG. 3 is an explanatory view showing a conventional method for forming a conductive pattern. FIG. 3A is a general view showing a state in which a first conductive pattern is screen-printed with a conductive paste on the surface of an insulating film and dried. (B) is explanatory drawing which shows the 1st conductive pattern in (a) figure.
4A and 4B are explanatory views showing a conventional method of forming a conductive pattern, in which FIG. 4A is a general view showing a state in which a through hole is drilled in the first conductive pattern from above, and FIG. It is explanatory drawing which shows a hole.
FIG. 5 is an explanatory view showing a conventional method for forming a conductive pattern. FIG. 5 (a) shows an integrated insulating film and filter paper conveyed, and a second conductive pattern is screen-printed with a conductive paste on the back surface of the insulating film. Then, the first and second conductive patterns are conducted through through holes, the insulating film and the filter paper are separated, the filter paper is taken up, and the second conductive pattern is dried by a dryer, (b) The figure is an explanatory view showing a second conductive pattern in FIG.
[Explanation of symbols]
1 Insulating film 3 Charging device 4 High voltage power supply
5 Charging electrode 6 SUS plate (conductive plate)
7 Table 8 First conductive pattern 9 Conductive paste 10 Screen printing device 12 Dryer 14 Through hole 15 Filter paper 16 Second conductive pattern 17 Conductive paste

Claims (1)

可撓性の絶縁フィルムに導電パターンを形成する方法であって、絶縁フィルムの表面に第一の導電パターンを形成して乾燥させ、この第一の導電パターンにスルーホールを開け、絶縁フィルムを表裏逆にしてその表面にろ紙を重ねて帯電装置の静電気により静電密着させ、その後、絶縁フィルムの裏面に第二の導電パターンを形成して第一、第二の導電パターンをスルーホールで電気的に接続することを特徴とする導電パターンの形成方法。A method of forming a conductive pattern on a flexible insulating film, wherein a first conductive pattern is formed on the surface of the insulating film and dried, a through hole is formed in the first conductive pattern, and the insulating film is turned upside down. On the other hand, filter paper is placed on the surface and electrostatically adhered by the static electricity of the charging device , and then the second conductive pattern is formed on the back surface of the insulating film , and the first and second conductive patterns are electrically connected through the through holes . A method for forming a conductive pattern, comprising:
JP2001319500A 2001-10-17 2001-10-17 Method for forming conductive pattern Expired - Fee Related JP3942398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001319500A JP3942398B2 (en) 2001-10-17 2001-10-17 Method for forming conductive pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001319500A JP3942398B2 (en) 2001-10-17 2001-10-17 Method for forming conductive pattern

Publications (2)

Publication Number Publication Date
JP2003124607A JP2003124607A (en) 2003-04-25
JP3942398B2 true JP3942398B2 (en) 2007-07-11

Family

ID=19137041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001319500A Expired - Fee Related JP3942398B2 (en) 2001-10-17 2001-10-17 Method for forming conductive pattern

Country Status (1)

Country Link
JP (1) JP3942398B2 (en)

Also Published As

Publication number Publication date
JP2003124607A (en) 2003-04-25

Similar Documents

Publication Publication Date Title
JP7477240B2 (en) Planar suction gripper
TW201337242A (en) Electrostatic attraction type inspection table for electric parts
JPH04221629A (en) Conductor foil assembly and manufacture of conductor foil assembly as well as conductor foil laminate
JP3942398B2 (en) Method for forming conductive pattern
JP2010500627A (en) Electronically biasable electronic recording member
CN107851585A (en) The system and method that foreign matter is removed using electric field absorption method
WO2019150563A1 (en) Method for producing touch panel sensor substrate and touch panel sensor substrate set
US3026234A (en) Laminates of insulating material embodying electrically conductive patterns and method and apparatus for producing same
JPH07254768A (en) Manufacturing method of circuit board
JP7347386B2 (en) Electrostatic induction adsorption conveyor and electrostatic induction adsorption transfer device
JP2001009389A (en) Sheet surface cleaning device and circuit substrate manufacturing device using this cleaning device
JP2000060168A (en) Medium transport substrate
JP2919063B2 (en) Manufacturing method of printed wiring board
JP2737315B2 (en) Endless belt for electrostatic suction conveyance
WO2019150562A1 (en) Method for producing touch panel sensor and touch panel sensor substrate set
WO2023190247A1 (en) Workpiece attraction device
GB1352715A (en) Electrostatic holding device
JP4167925B2 (en) Inspection method for flexible substrates
JP2595857B2 (en) Static eliminator
JP4962187B2 (en) Electronic component supply apparatus and supply method
JPH1177899A (en) Laminating device
JPH03226604A (en) Detecting method of pin hole of ceramic green sheet
JPH09224383A (en) Method for manufacturing element for electrostatic actuator use
KR20210105181A (en) Separation Apparatus of multilayer ceramic capacitor and Separation Method thereof
JP2010171035A (en) Method of manufacturing printed wiring board and printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070403

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160413

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees