JP3939759B2 - 傾斜角度測定用光学センサ - Google Patents

傾斜角度測定用光学センサ Download PDF

Info

Publication number
JP3939759B2
JP3939759B2 JP54157797A JP54157797A JP3939759B2 JP 3939759 B2 JP3939759 B2 JP 3939759B2 JP 54157797 A JP54157797 A JP 54157797A JP 54157797 A JP54157797 A JP 54157797A JP 3939759 B2 JP3939759 B2 JP 3939759B2
Authority
JP
Japan
Prior art keywords
light beam
detector
tilt sensor
tilt
imaging optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP54157797A
Other languages
English (en)
Other versions
JP2001501726A5 (ja
JP2001501726A (ja
Inventor
ブラオネッカー、ベルンハルト
ライス ロジャース、ジョン
エフ. ゲヒター、ベルンハルト
Original Assignee
ライカ ゲオズュステムス アーゲー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ライカ ゲオズュステムス アーゲー filed Critical ライカ ゲオズュステムス アーゲー
Publication of JP2001501726A publication Critical patent/JP2001501726A/ja
Publication of JP2001501726A5 publication Critical patent/JP2001501726A5/ja
Application granted granted Critical
Publication of JP3939759B2 publication Critical patent/JP3939759B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/18Measuring inclination, e.g. by clinometers, by levels by using liquids
    • G01C9/20Measuring inclination, e.g. by clinometers, by levels by using liquids the indication being based on the inclination of the surface of a liquid relative to its container
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/06Electric or photoelectric indication or reading means
    • G01C2009/066Electric or photoelectric indication or reading means optical

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

[技術分野]
本発明は、
a)光学的放射源と、第1,第2光束方向変更、結像光学素子と、位置解像光電検知器と、b)第1,第2光学素子の間の光路に設置され、放射源の光束の入射を受け、以降の光路においてセンサの傾斜に依存する方向へ光束を方向変更し、かくして、傾斜に依存して検知器上の放射源の像の位置を決定する傾斜面と、
を有する、傾斜角度測定用光学センサに関する。
[背景技術]
この種の公知のセンサは、機器の傾斜または傾斜変化を把握するのに役立つ。この目的のため、上記センサは、機器に機械的に強固に結合される。上記センサは、重力にもとづき調整され、機器の傾斜が異なる場合に光束を異なる態様で偏向する構成要素を有する。即ち、機器の傾斜角度には、光束の対応する偏向角度が関連される。この種の傾斜測定装置は、一方では、例えば、水準器またはセオドライトのような測量技術用機器の場合に認められる如く、機器の機能に直接に介入する。この場合、上記装置は、視準した目標点の像の位置を対応してずらして、理想的水平位置に対する機器の傾斜の偏差を補償するコンペンセータとして役立つ。
他方、傾斜測定器は、機能的に、機器とは無関係に作動し、傾斜を表示するか、電子的ディジタル処理のために計算で傾斜を求める。セオドライトに結合され、しかも、セオドライトとは無関係に作動する傾斜測定器は、ドイツ特許公開第2638621号に記載されている。上記傾斜測定器は、セオドライトの水平誤差を求める。計算ユニットにおいて、水平誤差にもとづき生ずる誤差を含むセオドライトの方向測定値を計算機的に修正する。方向測定値は、平行な明るい縞と暗い縞とからなるモアレパタンの光電式走査によって求める。セオドライトの水平誤差の尺度として、回転コイル駆動の振り子の位置調節回路の制御電流を使用する。2座標(2次元座標)式傾斜測定の他の実施例の場合、鋭敏な2座標ショットキー障壁ダイオードが基板上に設置してある。上記ダイオードは、透明なガラス底および適合プリズムを有する液体ミラーを介して発光ダイオードから光束を受光する。この場合、光束の入射点は、基板の傾斜に依存する。
ドイツ特許公開第3634244号には、送光器の光路に光を屈折または反射する液状媒体を設けた光電式傾斜センサが記載されている。送光器および受光器を液体表面の上方に配置した場合、液体表面に置ける光の反射を傾斜測定に利用する。送光器を液体の上方に配置し、受光器を液体の下方に配置した場合、液体に入射する光の屈折を利用する。系の傾斜に応じて、対応する反射角または屈折角を調節し、かくして、検知器に入射する光束の位置を求める。
液体を通過する光束を液体表面で全反射させる傾斜測定装置は、ドイツ特許公開第2636706号から公知である。この場合も、液体表面は、重力方向へ自動的に調節される構成要素として役立つ。別の方策として、光束の偏向のために、振り子に固定したミラーを使用することもできる。光束は、焦点に発光ダイオードを設けた対物レンズから発生される。光束は、液体表面における全反射後、第2対物レンズによって光電受光器に、送光器が受光器上に、即ち、鋭敏な2座標ショットキー障壁ダイオード上に結像されるよう、合焦される。機器に固定の対物レンズ、発光ダイオードおよび受光ダイオードが傾斜した場合、受光器上の発光ダイオードの像は、傾斜によって方向および大きさが決定される区間だけ移動される。かくして、受光器の出力信号が対応して変化され、この変化は、電子回路によって記録、評価される。
ヨーロッパ特許第0302821号に開示の傾斜測定装置は、同じく、液体表面における全反射効果を利用する。この場合、形状安定の透明な支持板の下面には、光を導く複数のプリズムおよびレンズ、光源および位置に敏感なフォトダイオードが設けてある。上面には、自由表面を有する液体が支持板直上にあり、鐘状容器によって保持される。光束は、2つの方向変更プリズム、下方の他のプリズムおよび支持板を介して液体内に入り、液体表面で全反射され、再び、支持板および後者のプリズムを通過し、2つの他の方向変更プリズムおよび長いプリズムを介してフォトダイオードに達する。方向変更プリズムの2つは、それぞれ、位置に敏感なフォトダイオード上に光源の発光面を結像するレンズを備えている。要求される高い光学的、機械的、熱的安定性は、このような複雑な構造を必要とする。
[発明の開示]
総括して、上記のすべての傾斜測定装置は、光を導き検知器上に放射源を結像するため、個々に製造、保持、設置して、相互に正確に調整しなければならない各光学的構成素子を含む。構成素子の大半は、可動で調整可能である。かくして、同時に、高い安定性を達成しようとすれば、光学的、機械的構造が、特に複雑となる。
本発明の課題は、測定精度を同一に保持するとともにまたは更に向上するとともに且つ角度測定範囲を同一に保持するとともにまたは更に向上するとともに、コスト、所要スペースおよび安定性の理由から且つ製造信頼性の向上のため傾斜センサの光学的構造を小型化し、しかも、光学的構造部材の製造および取付をできる限り一工程だけで実施することにある。
上記の課題を解決するために、本発明の一視点により、a)光学的放射源と、複数の光束方向変更・結像光学素子と、位置解像光電検知器と、b)前記複数の光束方向変更・結像光学素子の少なくとも1つからなる第1光束方向変更・結像光学素子群と、前記複数の光束方向変更・結像光学素子の残りからなる第2光束方向変更・結像光学素子群との間の光路に設置され、放射源の光束の入射を受け、以降の光路においてセンサの傾斜に依存する方向へ光束を方向変更し、かくして、傾斜に依存して検知器上の放射源の像の位置を決定する傾斜面と、を有する傾斜角度測定用光学センサ(以下「傾斜センサ」ということもある。)が提供される。この傾斜センサにおいて、前記複数の光束方向変更・結像光学素子が、光伝送材料からなる基部上におよび/または内にモノリシックに構成されており、かくして、光束は、基部内部において案内されること、基部が、前記第1光束方向変更・結像光学素子群の後で傾斜面の方向へ光束を出射し、傾斜面における反射後に再び基部への光束の入射を行うための表面範囲を有することを特徴とする(形態1・基本構成)。
以下に、本発明の好ましい実施の形態を上記基本構成を形態1として示し、更に、従属請求項の対象でもある実施の形態を示す。
(形態1) 上記基本構成参照。
(形態2) 上記形態1の傾斜センサにおいて、前記複数の光束方向変更・結像光学素子は、リトグラフィー、エッチング、フライス加工、グラビュール加工、スタンピング加工、打抜き加工または射出成形法によって基部にモノリシックに構成されていることが好ましい。
(形態3) 上記形態1の傾斜センサにおいて、前記複数の光束方向変更・結像光学素子は、基部上に蒸着または転写されていることが好ましい。
(形態4) 上記形態1〜3の傾斜センサにおいて、前記複数の光束方向変更・結像光学素子は、反射素子であることが好ましい。
(形態5) 上記形態1〜3の傾斜センサにおいて、前記複数の光束方向変更・結像光学素子は、屈折素子であることが好ましい。
(形態6) 上記形態1〜3の傾斜センサにおいて、前記複数の光束方向変更・結像光学素子は、回折素子であることが好ましい。
(形態7) 上記形態6の傾斜センサにおいて、前記複数の光束方向変更・結像光学素子は、最終的に唯1つの回折次数の光束のみが検知器に達するよう、構成され且つ相互に配置されていることが好ましい。
(形態8) 上記形態1〜3の傾斜センサにおいて、前記複数の光束方向変更・結像光学素子は、反射素子、屈折素子および回折素子の組合せとして、基部上にモノリシックに構成されていることが好ましい。
(形態9) 上記形態1〜8の傾斜センサにおいて、前記複数の光束方向変更・結像光学素子は、基部の唯一つの面上に配置されていることが好ましい。
(形態10) 上記形態1〜8の傾斜センサにおいて、基部の複数の面の少なくとも2つ上には、夫々、少なくとも1つの前記複数の光束方向変更・結像光学素子が配置されていることが好ましい。
(形態11) 上記形態1〜10の傾斜センサにおいて、前記第1光束方向変更・結像光学素子群は、傾斜面に入射する発散光束または収歛光束を形成することが好ましい。
(形態12) 上記形態1〜10の傾斜センサにおいて、前記第1光束方向変更・結像光学素子群は、傾斜面に入射する平行光束を形成することが好ましい。
(形態13) 上記形態1〜12の傾斜センサにおいて、傾斜測定の精度向上のため、光源が、複数の強度ピークを有する強度分布を検知器上に形成する構造を有することが好ましい。
(形態14) 上記形態13の傾斜センサにおいて、光源が、各別の複数光源、特に、LEDーアレイから構成されていることが好ましい。
(形態15) 上記形態1〜12の傾斜センサにおいて、光源と検知器との間の傾斜測定の精度向上のため、位置に依存して光束を部分反射する物体が配置されかつモノリシックに構成され、該物体は、複数のピークを有する反射機能を有し、光源の代わりに検知器上に結像されることが好ましい。
(形態16) 上記形態1〜12の傾斜センサにおいて、光源と検知器との間の傾斜測定の精度向上のため、位置に依存して光束を部分透過する物体が配置されかつモノリシックに構成され、該物体は、複数のピークを有する透過機能を有し、光源の代わりに検知器上に結像されることが好ましい。
(形態17) 上記形態1〜12の傾斜センサにおいて、光源と検知器との間の傾斜測定の精度向上のため、複数のピークを有する強度分布が検知器上に形成されるよう光束の波面を構造化(パタン化)する光学素子が配置され、かつモノリシックに組込まれていることが好ましい。
(形態18) 上記形態17の傾斜センサにおいて、光束の波面を構造化する光学素子が、同時に、結像特性を有することが好ましい。
(形態19) 上記形態13〜18の傾斜センサにおいて、検知器上に形成された強度分布の空間基本周波数またはその空間高調波周波数が、検知器の感光性構造の空間基本周波数とともに、低周波数の重畳パタンを形成することが好ましい。
(形態20) 上記形態1〜19の傾斜センサにおいて、傾斜面が、重力によって決定される平面内に調整されることが好ましい。
(形態21) 上記形態20の傾斜センサにおいて、重力に従って方向づけられる傾斜面が、液体表面であることが好ましい。
石英ガラス上の光学素子のモノリシック的組込自体は、公知である。Optics Letters,Vol.18,No.19(Oct.1,1993)p1594−1596には、例えば、閉光路を介してハイブリッド構造の結像系の入力側から出力側へ画素アレーの構造を伝送する一体の平面状の結像系が記載されている。
本発明にもとづき、光束のガイドは、光束が基部の所定の表面範囲から出て傾斜面に入射するよう、構成されている。傾斜面における反射後、光束は、再び、基部に入射する。この際、検知器上の光束のすべての位置変化は、専ら、基部外における光束の方向変化に起因する。モノリシックに組込んだ光学素子による基部内の光束ガイドは、安定である。更に、モノリシック的組込にもとづき、傾斜角度の測定精度の向上および測定範囲の拡大が要求された場合に、光学素子の多様な構成方式および簡単な適合の可能性が与えられる。
この場合、基部上および/または基部内の光学素子のモノリシック組込の概念は、狭義にも広義にも解釈される。厳密なモノリシック組込とは、1つの基部のすべての光学素子が、基部の製造および加工に際して直接に得られるということを意味する。即ち、例えば、光学素子を基部からエッチング、フライス加工によって形成できるか、基部内にエッチング、フライス加工によって形成できるか、対応する構造をグラヴュール(浮彫り)加工、プレス加工またはスタンピング(刻印)加工できる。更に、打抜き加工または射出成形によって光学素子を製造することもできる。
このような複数の基部を外れないよう強固に相互に結合すれば、この全ユニットは、同じく、モノリシックユニットをなす。
広義には、光学素子のレプリカ(転写)もモノリシック組込と云える。この場合、加工可能な材料を基部に被覆し、印刷版によって所定の幾何学的形状を形成し、次いで、例えば、化学的処理、熱的処理またはUV処理によってジオメトリを形成し、基部に固定する。かくして、光学素子は、その形成時に既に、外れないよう相互に配列される。
更に、基部上の材料の蒸着によって形成される光学素子もモノリシックに組込んだものと理解される。
写真技術の多くの用途の場合と同様、関連の光学系に一連の要求が課せられる。光学的コンポーネント相互の正確な配列および機械的、熱的安定性が、光学構造の小さい寸法および低廉な製造コストと同様に要求される。自由に構成された各光学的コンポーネントからなる装置について、すべての条件を同時に満足することは不可能である。公知のすべての解決法は、各要求の重点間の妥協をなす。本発明にもとづき、傾斜センサについて基部上に光学的コンポーネントをモノリシックに組込むことによって、ほぼすべての要求を同時に満足する確実且つコンパクトで妥当なコストの光学系が得られる。
光学素子は、単独で基部にモノリシックに組込むことができる。しかしながら、共通の基部上に多数の同種または異種の光学素子を同時に作成することによってモノリシック組込の大きい利点が得られる。即ち、傾斜センサに必要なすべての結像、光束方向変更光学素子を完全なユニットとして1つの製造工程で得られる。従って、このようなユニットの製造確実性は、極めて高い。
単一素子からなる従来の光学的構造の場合、光学素子、そのソケットおよびホルダについて、異なる材料特性(例えば、異なる熱膨張係数)を有する異なる材料を使用する。他方、唯一つの基部材料にモノリシックに組込まれた光学素子は、機械的、熱的影響に対して、長期にわたって極めて安定である。更に、上記光学素子は、その製造にもとづき既に相互に位置調整(justiert)され、強固に“取付”られている。ズレまたは調整狂いが起きることはない。取付作業および調整作業が不要であることによって、作業費が節減され、大量生産が可能である。多数の単一コンポーネントを唯一つの構成部材に減少したことによって、材料費も著しく減少する。言うまでもないが、小さい基部にモノリシックに組込んだ光学素子から構成された光学系のコンパクトな構造は、従来の構造の光学系に比して極めて小さい重量および極めて小さい所要スペースを意味する。これは、可搬測定機器(例えば、セオドライトまたはディジタル水準器)の場合に特に有利である。即ち、この種の機器においてマイクロチップの集積回路を含む最新の電子構造と全く同様に、光学構造も容易に且つコンパクトに構成される。
光束ガイド伝送のために、光源、傾斜に敏感な面および位置に敏感な検知器とともにモノリシックユニットとして構成できる反射素子、屈折素子または回折素子を使用できる。基部内の光束伝送のための非結像光学素子としては、全反射による光束方向変更が起きる基部自体の表面が好適である。光束方向変更は、基部表面の所定の箇所に被覆した反射フィルムによって達成できる。
しかしながら、反射光学素子は、球状また非球状表面を有することもできる。かくして、上記素子には、結像特性も与えられる。即ち、傾斜センサの全光学系は、各種の反射素子のみから構成でき、唯一つのモノリシックユニットとして製造できる。
このようなユニットは、例えば、打抜きプレスによってガラスからまたは射出技術によって合成樹脂から製造できる。このように製造したモノリシックユニットは、支持板上に固定できまたはそれ自体で支持板の役割を果たすことができる。更に、複数のモノリシックユニットをー場合によっては、各種の基部材料とともにー総合ユニットに統合できる。この場合、各ユニットは、所定の相互間隔を有することができまたは直接に重畳させて構成することもできる。かくして、光路のためにまたは組込んだ光学素子の相互配置のためにより大きい自由スペースが得られる。
反射光学素子を含む上述の組込光学構造と同様に、屈折素子を1つまたは複数の基部にモノリシックに組込むことができる。組込んだ屈折光学素子によっても、光束方向変更特性および結像特性を達成できる。更に、公知の態様で、プリズム効果およびレンズ効果を利用できる。もちろん、1つの基部上に屈折光学素子および反射光学素子を組合せることができる。この種の傾斜センサにおいて、モノリシック組込にもとづき、コストおよびスペースの節減が達成される。
上述の屈折または反射による解決法の所要スペースは、フレネルレンズまたはフレネルミラーの使用によって更に減少できる。フレネルレンズおよびフレネルミラーは、面を専ら段階的に連続して構成した光学素子である。
段寸法が使用する波長の範囲にある場合、光束偏向の物理的機構は異なる。即ち、屈折効果または反射効果の代わりに、光束制御は、物理的に回折現象によって記述される。
このような回折構造によって、例えば、フレネルゾーンプレートまたはホログラフィック素子または局部的に変化する格子構造を有する素子によって、同じく、光束方向変更・結像光学素子を構成できる。
このようなマイクロ格子構造は、基部の表面に任意の態様で組込むことができる。1つの方法として、エッチングまたは刻印(ないしエンボス)加工によって基部上に構造を構成できる。他の方法として、構造を基部表面に被覆、例えば、蒸着または接着できる。各種のリトグラフィー法、エッチング法および蒸着法(気相析着法)が知られている。特に、光学的リトグラフィーおよび反応性イオンエッチングによってガラス基板上に構造(パタン)を構成できる。
組込光学素子の製造法の他のグループは、複数の分布光の干渉によって空間的に強度の異なるゾーンを形成できるホログラフィック法である。感光性塗料を塗布したガラス板を干渉ゾーンに置けば、対応して空間的に異なる露光が行われ、かくして、塗料の現像後、上記説明の意味における回折格子構造が得られる。
本発明に係る傾斜センサの場合、モノリシックに組込んだ結像光学素子によって、光源を検知器上に結像でするか、以下に説明する如く、強度パタンを検知器上に投影する。この場合、光源の光束は、基本的に、発散してまたは収歛してまたは平行に傾斜面に入射できる。傾斜面への発散状態または収歛状態の入射の場合、光源の見かけの距離が傾斜とともに変化する。かくして、有利には、以降の光学系において結像エラー、特に、像面の湾曲(そり)および非点収差を修正できる。
入射光波の波面は、傾斜面によって反射され、モノリシックに組込まれた他の光学素子によってまたは複数のこの種の素子の組合せによって調整面(焦面)にフォーカシングされる。上記焦面には、かくして形成された光源像(例えば、光点)の位置を定めるための位置に敏感な光電検知器が設けてある。傾斜センサの傾きに応じて、傾斜面と入射する、即ち、上記傾斜面で反射される(光束の)波面との間の角度が変化し、その結果、光点が検知器上を移動する。二次元位置に敏感な検知器(例えば、CCDアレイ)上の光点の重心座標から、公知の態様で、基準として役立つ水平面に関する傾斜センサの双方の傾斜角度を求めることができる。
光束が、傾斜面によって複数回反射される場合、光点のずれ量は、対応して、単一反射の場合のずれ量の数倍である。
傾斜測定精度は、検知器上の光点の位置決定の精度に依存する。この精度は、一方では、検知器平面の光点の種類および大きさに依存し、他方では、検知器の空間的、放射測定(radiometrisch)的分解能に依存する。光電検知器を使用する場合、位置分解能は、画素の大きさによって与えられる。光源の大きさの選択によって且つ画素の大きさの光学系の倍率の選択によって光点の大きさを調整することを試みる。
しかしながら、実際には、検知器の放射的分解能との矛盾が生ずる。なぜならば、強いフォーカシングによって、場合によっては、局部的光束密度が高くなり、従って、検知器が飽和範囲において運転されるからである。照明(ブルーミング,etc.)によって、空間的分解能が劣化し、応答時間が望ましくなく増加し、最悪の場合には、検知器の破損の危険性が生ずる。
検知器上の点状の光分布の代わりに、強度パタン、即ち、複数の強度ピークを有するパタン状強度分布を形成すれば、矛盾を解決できる。この場合、入射光強度は、放射的に好適に、検知器の広い画素範囲にわたって分布されるが、微細パタンによって高い空間的分解能を保持する。大きい構造の位置評価は、確実であり、信号/雑音比を改善し、従って、測定精度を向上する。
複数の強度ピークを有する光分布は、各種の手段によって達成できる。第1の方式は、構造化(パタン化)した光源である。構造化(パタン形成)は、例えば、孔パタンを備え面状光源の前にまたはは点状光源の拡張された光束内に設置されたカバーによって行うことができる。更に、例えば、発光ダイオード・アレイ(LED−アレイ)の場合のように、光源自体を複数の各別の光源から構成することもできる。各別のダイオードは、検知器上に結像されるパタン(Muster)を形成し、検知器上のパタン位置の評価がなされる。既知の傾斜角度による較正から求めたパタン位置との比較によって、検知器に入射する光束の実際の方向を求めることができ、かくして、傾斜センサの傾きを求めることができる。実際に測定されたパタンから傾斜センサの傾きを求めるため、較正の代わりに、LED−アレイ上の各光源の位置のデータを利用できる。
検知器上にこの種のパタンを形成する他の方法の場合、光源によって照明される局部的に部分透過性ないしは部分反射性の物体を使用する。光源の代わりに、上記物体を検知器上に結像する。光束の部分透過性の物体の場合、物体の透過率は、箇所に依存して変化するので、透過率関数は、複数のピークを有する。光束の部分反射性の物体の場合、同じく強度パタンの形成のために、その局部的に部分反射性の構造を利用する。このような物体は、基部にモノリシックに統合することができる。
複数の強度ピークを有する強度分布を検知器上に形成する他の可能性は、光束の波面に対する空間的(立体的)に適切な影響力の付与(制御)から生ずる。この場合、各種の光学的性質(例えば、屈折性、反射性または偏光性)を利用でき、更に、光源と検知器との間の光路において適当なパタンを有する光学素子の回折も利用できる。(光束の)波面を形成する光学素子を基部にモノリシックに組込めば有利である。
例えば、(光束の)波面は、光学素子の異なる材料厚さまたは異なる屈折率によって空間的に影響を与えることができる。検知器上に所望の強度構造を達成するため、対応して、(光束の)波面の変調、即ち、変調を形成する厚さ関数または屈折率関数、を変更できる。同様に、パタン形成光学素子を局部的に異なる偏光ゾーンから構成できる。二色性材料は、この材料の配位方向に応じて箇所に依存して異なる偏光方向を誘起する線形偏光を生ずる。一般的に、例えば、複屈折材料の局部的に異なる厚さによって形成される各種の楕円偏光状態も可能である。検光子によって、この場合にパタン形成光学素子の構造関数をなす局部的な偏光変調から、検知器上に対応する強度分布が生ずる。
(光束の)波面の構造化(パタン形成)をする光学素子は、独立の光学素子として傾斜センサの基部にモノリシックに一体形成することができる。しかしながら、上記素子は、結像光学素子とともに共通の構造(例えば、回折構造)から構成して、モノリシックに組込むことができ、かくして、基部に組込まれる光学素子の数が減少される。即ち、このような素子は、同時に、結像特性および(光束の)波面構造化(パタン形成)特性を有する。
上記方法の1つにもとづき、検知器上に強度パタンを形成し、傾斜センサの傾きを変更すれば、全パタンが検知器上を移動(シフト)する。例えば、測定したパタンを公知の平均値形成法またはあてはめないし適合(fit)アルゴリズムによって評価すれば、単一光点の評価に比して傾斜測定精度が改善されることが知られる。更に、例えば、製造に起因する局部的エラーによって誘起される光路のトラブルは、強度パタンの多数の光点の測定によって容易に補償される。
強度分布の空間基本周波数またはその空間高調周波数と、検知器の感光性構造の空間基本周波数とで低周波数の重畳パタンを形成する場合、この強度分布から、特に改善された位置分解能が得られ、かくして、特殊な感度が得られる。低周波数重畳パタンは、モアレパタンと同様に作用する。モアレパタンについて良く知られているのだが、モアレパタンは、モアレパタンを形成する構造のシフトに極めて敏感である。即ち、この場合、強度分布が検知器上をその画素構造に対して極く僅かにシフトすれば、低周波数重畳パタンの空間周波数が強く変化する。即ち、重畳パタンの変化は、検知器上の強度分布の変化に関して極めて敏感に反応するインジケータである。かくして、位置情報は、検知器の画素構造のジオメトリの場合よりも100倍超良好に分析できる。
構造化(パタン化)された光分布を検知器上に形成すれば、精度の向上および角度測定の確実さ以外に、測定範囲拡大の利点が得られる。点状光分布の場合、傾斜角度の測定範囲は、検知器面の大きさによって決定される。しかしながら、パタン化強度分布の場合、下記の例に示す如く、空間的構造測定範囲の大きさが規定的である。光学素子の境界における屈折によって、検知器上に、1つの主ピークと両側に配されるの複数の副ピークを有する強度分布が生ずる。この場合、副ピーク、即ち、高次の回折ピークは、検知器の活性面を越えることすらある。光束の大きな入射角にもとづき、光源の始めの点状像に対応する主ピークが、もはや検知器の活性面上にない場合には、副ピークの位置から主ピークを再構成できる。副ピークが特定できることのみが重要であるが、これは基本的にその異なった強度にもとづき可能である。
更に、検知器上の部分透過性または部分反射性物体の結像またはパタン化光源の結像によって生ずる強度分布は、検知器の活性面を大きく越えて拡がり、かくして、傾斜角度の測定範囲を著しく拡張することになる。対応して強度分布をシフトさせる大きい傾斜角度の場合にも、強度のピークは、なお十分に、検知器の活性面内にある。
傾斜面としては、光源の光束が傾斜センサの傾きに依存する角度で入射する面を使用する。傾斜面は、重力にもとづき、特定の平面内に現れる。この平面は、液面を使用し、液体が自由に移動できる場合は、水平である。液体は、傾斜センサの基部と直接に接触でき、被覆された閉じた壁によって保持できる。液体は、基部と結合される閉じたカプセルに受容することもできる。傾きの変化にもとづき入射角が変化すると、対応して、反射光の出射角が変化し、かくして、反射光は、異なる方向をもって、即ち、検知器の異なる箇所に入射する。
液体上方に、光学密度の小さい光学的媒体(例えば、空気)または上記液体と混和しない比重の小さい液体が存在する場合、全反射の臨界角を越えると、液体を下から上へ通過する光束は全反射される。この全反射は、光束の高い収率のために有利であるが、基本的に、本発明に係る傾斜センサの機能のために必ずしも不可欠ではない。
基本的に、光束を上方から液面に入射させ、液面における反射を利用することもできる。
重力にもとづき生ずる傾斜面の他の実施例は、傾斜時に自由に移動できる固体の表面である。固体は液体中を浮遊させるか、或いは固体は懸架させるか又は支えに支持できる。精密機械の構造可能性によって、傾斜に敏感なこの種の固体を基板上に顕微鏡的微細さで形成、支持できる。即ち、傾斜面も光学素子とともにモノリシックに一体化することができる。傾斜測定のため、固体表面における光束の屈折または反射を利用する。
以下に図面を参照して本発明の複数の実施例を説明する。なお、特許請求の範囲に付した図面参照符号は、専ら理解を助けるためのものであり、図示の態様に本発明を限定することを意図するものではない。
【図面の簡単な説明】
第1図は、厳密な意味でモノリシックに組込まれた反射光学素子を含む傾斜センサの模式的横断面図であり、
第1a図は、傾斜面に発散光路を含む第1図の変更例の図面であり、
第2図は、補足的基板を含む第1図の変更例の図面であり、
第3図は、基体に設置して外れないよう結合した反射光学素子を含む傾斜センサの模式的横断面図であり、
第4図は、基体の2つの異なる面に光学素子を設けた第3図の変更例の図面であり、
第5図は、補足的基板によって2つの異なる面に光学素子を設けた第3図の変更例の図面であり、
第6図は、モノリシックに組込まれた屈折光学素子を含む傾斜センサの模式的横断面図であり、
第7a図は、モノリシックに組込まれた回折光学素子を含む傾斜センサの模式的空間的展開図であり、
第7b図は、第7a図の傾斜センサの模式的立体的展開図であり、
第8図は、複数の強度ピークを有するパタン化光源を含む傾斜センサの模式的横断面図であり、
第9a図は、複数の強度ピークを形成するためモノリシックに組込まれた部分反射物体を含む傾斜センサの模式的横断面図であり、
第9b図は、第9a図の部分反射物体を含む傾斜センサの模式的立体的展開図であり、
第9c図は、複数の強度ピークを形成するためモノリシックに組込まれた部分透過物体を含む傾斜センサの模式的横断面図であり、
第9d図は、部分反射または部分透過物体の構造例を示す図面であり、
第9e図は、部分反射または部分透過物体の別の構造例を示す図面であり、
第10図は、(光束の)波面フロントを構造化(パタン化)し検知器上に複数の強度ピークを有する強度分布を形成する光学素子を含む傾斜センサの模式的横断面図である。
[実施例]
第1図に、本発明に係る傾斜センサ50の模式的横断面図を示した。上記傾斜センサは、光束伝送に利用される反射特性を有する反射光学素子2a,2b,3a,3bを備えている。光学素子2a,2b,3a,3bは、本明細書の冒頭の定義にもとづき、厳密な意味でモノリシックに構成されており、即ち、1つの基部(基体)1からなり、その製造または加工に際して1つの部材から得られる。
この実施例の場合、反射光学素子2a,2b,3a,3bは、湾曲表面を有し、従って、結像特性を有する。光源6の発散光束は、光学素子2a,3aによって、平行光束に形成され、この平行光束は、傾斜面10における反射後、光学素子3b,2bによって位置に敏感な光電検知器7上にフォーカシングされる。即ち、光源6は、検知器7上に焦点を結ぶ。関連して生ずる検知器信号は、評価電子系(図示してない)において処理される。
基部1の平面9は、総合的に連続の光路を確保するための光束反射を司る。このために、面9に反射性材料を被覆ないし蒸着できる。この可能性は、反射光学電素子2a,2b,3a,3bの表面にも適用できる。更に、全反射を利用することもできる。
第6図に、傾斜センサ50のすべての素子、即ち、光源6,傾斜面10を有するハウジング12、検知器7および順次に線形に配置された光学素子2a,2b,3a,3bを示した。しかしながら、これは、傾斜センサ50の全機能に必ずしも不可欠ではない。上記素子は、基部1上にまたは基部内に相互に側方へずらしてモノリシックに組込むこともでき、この場合、光束伝送路は、対応して設計(レイアウト)する。
傾斜面10は、液体11の表面から構成される。液体11は、封入した空気泡またはガス泡にもとづきハウジング12内を自由に移動でき、従って、液体表面は、重力にもとづき、常に水平面をなすことができる。かくして、傾斜センサ50の傾斜時に、傾斜面10と入射光束または反射光束との間の角度は変化する。かくして、光学素子3b,2bによって反射光束から検知器7上に点状に形成される光点8の変化した位置座標が得られる。即ち、検知器7上の光点8の座標は、傾斜センサ50の傾きを決定する。
第1図に示した如く、光学素子2a,3aによって、傾斜面10に入射し、傾斜面で平行光束として反射される平行光束が形成される。しかしながら、既述の如く、光束は、傾斜面10上に発散状態または収歛状態で入射することもでき、このことは、光学素子2a,2b,3a,3bに特定の結像エラーがある場合に好ましい。第1a図に、傾斜面10に発散入射する光束を示した。光学素子3aの表面の曲率によって、特定の発散度を有する光束の形成が暗示される。傾斜面10における反射後、発散光束が、光学素子3b,2bによって検知器上にフォーカシングされる。
第1図および第1a図の光路は、−液体11中の光路は除いて−基部1内にのみ延びている。従って、この装置は、著しくコンパクトに構成できる。即ち、この装置は、高い安定性を特徴とする。もちろん、基部1には、光学的均一性に関して高度の要求が課せられる。
上記要求は、基部1が細くなるとともに減少する。即ち、第2図に、基板15を基部1に補足して(付加的に)接合又は塗布(スプレー)した、第1図の傾斜センサ50の変更例を示した。基板15は、一方では、支持板(担体)として役立つ。かくして、有利には、モノリシックに組込んだ光学素子2a,2b,3a,3bを含む基部1を薄く構成できる。更に、例えば、修正フォーカシングのために、基板15の厚さにわたって適合自由度が得られる。基板15は、基部1と同一の材料から構成できる。第2図の装置の全機能は、第1図の装置の機能と同一である。
第3図に、基部1の一面4に転写(レプリカ)によって形成した反射光学素子2a,2b,3a,3bを含む傾斜センサ50の模式的横断面図を示した。転写時、塑性変形可能な材料を基部1上に被覆し、工具(例えば、ネガ型)によって光学特性を決定する適切な構造にプレスする。化学的処理、熱的処理またはUV処理によって上記構造を固定する。かくして、光学素子2a,2b,3a,3bは、その形成時に既に、相互に配列され、基部1に外れないよう結合される。上記光学素子は、基部1の1つの面4上に配置される。機能態様は、第1図の場合と同一である。
第4図に、光学素子2a,2b,3a,3bを2つの異なる面9,4に配置した第3図の実施例の変更例を示した。
更に、第5図の場合も、光学素子2a,2b,3a,3bは、基部1a,1bに帰属する2つの異なる面4,5に設けてある。基部1a,1bは、各平坦な表面を有するプレートとして構成してある。すべての実施例において、基本的に、面4,5,9は湾曲させることもできる。上記面は、更に、レンズ表面として使用できる。基部1a,1bは、異なる材料からも構成できる。
もちろん、第5図の実施例を越えて、第5図に示した2つの基部1a,1bよりも多数の基部を使用して多層の傾斜センサを構成することもできる。更に、補足(付加的)の光学素子2a,2b,3a,3bを面4,5および面9にモノリシックに組込むこともできる。かくして、光学的結像性質を改善できる。更に、第5図の面9の場合と同様、面4,5においても付加的反射を行うこともできる。反射数によって、光源6と、光学素子2a,3aと、素子3b,2bと、検知器7との間の光路の長さが決定される。即ち、結像素子2a,2b,3a,3bの光学的間隔について付加的な自由度が生ずる。これは、基部1a,1bの異なる厚さによってまたは基部1a,1bに異なる材料を使用することによって得られる。
もちろん、第4,5図を参照して説明したすべての変更例は、第1,2図の傾斜センサ50と同様に構成できる。
第6図に、基部1cにモノリシックに組込んだ屈折光学素子2a,2b,3a,3bを含む傾斜センサ50の模式的横断面図を示した。上記光学素子の場合、その屈折特性を光束伝送に利用する。基部1cは、機械的ホルダ18を介してプレート1dに剛に結合されている。光源6および検知器7は、プレート1dの下面に設けてある。基部1cとプレート1dとの間の媒体17は、最も簡単な場合、空気からなるが、適切な屈折率を有する他のガス状、液状または固形物質から構成することもできる。
媒体17が液体である場合、その表面の少なくとも一部は、同時に、傾斜面10として役立つことができる。このため、傾斜箇所には、ガス泡13が封入されている。この場合、液体11を含むハウジング12はなしですますことができる。
光源6の光束は、媒体17と基部1cとの間の通過時、屈折される。屈折光学素子2a,2b,3a,3bの湾曲表面によって、結像特性が得られる。この場合、表面の湾曲部に課せられる精度要求は、上述の反射光学素子の場合よりも低い。
プレート1dの表面9aは、光束を反射するので、連続の光路が得られる。この実施例の場合も、光源6は検知器7上に結像される。
プレート1dは、もちろん、基部1cと類似の、他の光学素子2a,2b,3a,3bを含む基部と置換えることができ、かくして、モノリシックに組込まれた屈折素子2a,2b,3a,3bは、2つの異なる面上に配置されることになる。更に、屈折光学素子2a,2b,3a,3bを含む傾斜センサ50のために、第1a〜5図の実施例と類似のすべての実施例を使用できる。
第7a図に、面4にモノリシックに組込んだ回折光学素子2a,2b,3a,3bを含む傾斜センサ50の模式的横断面図を示した。上記光学素子の場合、その回折性質を光束伝送に利用する。各回折素子2a,2b,3a,3bは、この性質にもとづき、複数の回折次数を有する光束を形成する。異なった各回折次数は、その光束方向によって区別される。この場合、それぞれ次段の回折光学素子は、複数の回折次数の光束ー少なくとも1つの回折次数の光束ーを受光できるよう配置されている。これを第7a図に実線で模式的に示した。残余の回折次数の光束は、吸収されるか、他の態様で傾斜センサ50から放射され、この場合、検知器7に達しない。この事例を破線で示した。
第7b図に、第7a図の傾斜センサ50の模式的立体的展開図を示した。この場合、光源6、光学素子2a,2b,3a,3b、傾斜面10および検知器7は、相互にずらして配置されている。かくして、例えば、光学素子2aによって形成された破線で示した第0次回折の光束は、光学素子3aに達しないが、より高い回折次数の少なくとも1つの光束(実線)が達する。回折素子2a,2b,3a,3bにおける光束の入射角および反射角は、回折にもとづき、鏡面の公知の反射法則には従わない。回折角に対応して回折素子2a,2b,3a,3bを基部1に配置する。更に、この場合、1つの回折次数の光束のみが検知器7に達することが好ましい。
回折光学素子2a,2b,3a,3bは、第4,5図の実施例と同様に基部1の異なる面にモノリシックに組込むこともできる(面9,4,5)。更に、補足の基板15を含む第2図の同様の実施例も、回折光学素子2a,2b,3a,3bを含む傾斜センサ50に適用できる。
第1〜7図に示した実施例の場合、光学的結像プロセスの各種の実現方式に注目するため、常に、光源6を点として説明する。第8図に、光源6が構造(パタン)を有する点で上述の実施例と区別される本発明に係る傾斜センサ50を模式的に示した。パタン化光源6として、例えば、有孔マスクを被覆した放射面または光源アレイを使用できる。光源アレイの場合、各光源は、並べてまたはマトリックス状に配置され、それぞれ、円錐形光束を放射する。光源アレイとして、発光ダイオードアレイ(LED−アレイ)を使用できる。光源のパタン20は、検知器7上に結像され、次いで、対応する数の強度ピークを有する強度分布21を生ずる。本明細書の導入部に置いて既に述べた如く、多数の強度ピークの座標の評価によって、唯一つの強度ピークを評価する測定の場合に比して傾斜センサ50のより高い精度が得られる。検知器7によって記録された複数の強度ピークの座標の評価のため、公知の適切な方法(例えば、平均値形成または適合アルゴリズム)を利用する。
第8図の光学素子2a,2b,3a,3bは、反射性、屈折性または回折性であってよい。反射性、屈折性および回折性光学素子2a,2b,3a,3bの組合せを基部1上にモノリシックに形成することもできる。
複数の強度ピークを有する検知器7上の強度分布は、複数のピークを有する反射機能を有する位置依存の部分反射性物体25によって形成することもできる。上記物体は、光源6と検知器7との間の光路に配置される。例えば、第9a図の横断面図または第9b図の模式的立体展開図に示した如く、コンデンサー光学系24によって部分反射性物体25を照明する。光源6の代わりに、部分反射性物体25が検知器7上に結像される。好ましくは同じくモノリシックに組込んだ部分反射性物体25は、異なった種々の構造およびパタンから構成できる。第9d図および第9e図に2つのパタン例を示した。白い面は、入射光束を反射し、他方、黒い面は、光束を吸収する。もちろん、任意の他のパタンも可能である。更に、反射面と吸収面との間の移行部は連続的にも構成できる、即ち、反射度を連続的に増減できる。第9a図および第9b図の光学素子2a,2b,3a,3bは、反射性、屈折性および/または回折性である。
第9c図に示した如く、部分反射性物体25の代わりに、複数のピークを有する透過機能を有する位置依存の部分透過性物体26を使用することもできる。部分透過性物体26は、コンデンサー光学系24によって照明され、検知器7上に結像される。検知器上に、上記物体の透過機能に対応する強度分布21が誘起される。透過率変化が連続的なまたは急激な部分透過性物体26の各種実施例が可能である。後者の事例について、第9d図および第9e図に特殊な形の2つの実施例を示した。この場合、白い面は、入射光束について透過性であり、他方、黒い面は、光束を吸収する。部分透過性物体26を光学素子として基部1にモノリシックに構成するのが好ましい。
検知器上の複数のピークを有する強度分布の利点を利用するため、第10図に示した他の変更例を提示する。この変更例は、基本構造に関して、第7a図と同一であるが、下記の特殊性を有する。モノリシックに形成された光学素子28は、2つの機能を同時に果たす。即ち、この素子は、一方では、第7a図の光学素子2bと同様な結像特性を有し、他方では、回折によって検知器7上に光源6の点状像の代わりに複数の強度ピークを有する強度分布21が生ずるよう光束の波面を構成する機能を有する。検知器7上のこの強度分布21から、即ち、光学素子28の公知の構造機能からまたは較正から、既述の如く、極めて高い精度で傾斜面10から来る光束の方向を求め、かくして、傾斜センサ50の傾きを求めることができる。
もちろん、光学素子28の結像特性および(光束)波面構造化(パタン化)特性は、モノリシックに組込んだ各別の光学素子に分配することもできる。即ち、モノリシックに形成した光学素子28は、上記の(光束)波面構造化特性のみを有することもできる。

Claims (21)

  1. a)光学的放射源(6)と、複数の光束方向変更・結像光学素子(2a,2b,3a,3b)と、位置解像光電検知器(7)と、
    b)前記複数の光束方向変更・結像光学素子(2a,2b,3a,3b)の少なくとも1つからなる第1光束方向変更・結像光学素子群(2a,3a)と、前記複数の光束方向変更・結像光学素子(2a,2b,3a,3b)の残りからなる第2光束方向変更・結像光学素子群(2b,3b)との間の光路に設置され、放射源(6)の光束の入射を受け、以降の光路においてセンサ(50)の傾斜に依存する方向へ光束を方向変更し、かくして、傾斜に依存して検知器(7)上の放射源(6)の像の位置を決定する傾斜面(10)と、
    を有する傾斜角度測定用光学センサ(50)において、
    前記複数の光束方向変更・結像光学素子(2a,2b,3a,3b)が、光伝送材料からなる基部(1;1a,1b;1c)上におよび/または内にモノリシックに構成されており、かくして、光束は、基部(1;1a,1b;1c)内部において案内されること、
    基部(1;1a,1b;1c)が、前記第1光束方向変更・結像光学素子群(2a,3a)の後で傾斜面(10)の方向へ光束を出射し、傾斜面(10)における反射後に再び基部(1;1a,1b;1c)への光束の入射を行うための表面範囲を有すること
    を特徴とする傾斜センサ。
  2. 前記複数の光束方向変更・結像光学素子(2a,2b,3a,3b)は、リトグラフィー、エッチング、フライス加工、グラビュール加工、スタンピング加工、打抜き加工または射出成形法によって基部(1;1a,1b;1c)にモノリシックに構成されていることを特徴とする請求項1に記載の傾斜センサ。
  3. 前記複数の光束方向変更・結像光学素子(2a,2b,3a,3b)は、基部(1;1a,1b;1c)上に蒸着または転写されていることを特徴とする請求項1に記載の傾斜センサ。
  4. 前記複数の光束方向変更・結像光学素子(2a,2b,3a,3b)は、反射素子であることを特徴とする請求項1〜3の1つに記載の傾斜センサ。
  5. 前記複数の光束方向変更・結像光学素子(2a,2b,3a,3b)は、屈折素子であることを特徴とする請求項1〜3の1つに記載の傾斜センサ。
  6. 前記複数の光束方向変更・結像光学素子(2a,2b,3a,3b)は、回折素子であることを特徴とする請求項1〜3の1つに記載の傾斜センサ。
  7. 前記複数の光束方向変更・結像光学素子(2a,2b,3a,3b)は、最終的に唯1つの回折次数の光束のみが検知器(7)に達するよう、構成され且つ相互に配置されていることを特徴とする請求項6に記載の傾斜センサ。
  8. 前記複数の光束方向変更・結像光学素子(2a,2b,3a,3b)は、反射素子、屈折素子および回折素子の組合せとして、基部(1;1a,1b;1c)上にモノリシックに構成されていることを特徴とする請求項1〜3の1つに記載の傾斜センサ。
  9. 前記複数の光束方向変更・結像光学素子(2a,2b,3a,3b)は、基部(1;1a,1b;1c)の唯一つの面(4)上に配置されていることを特徴とする請求項1〜8の1つに記載の傾斜センサ。
  10. 基部(1;1a,1b;1c)の複数の面(4,5,9)の少なくとも2つ上には、夫々、少なくとも1つの前記複数の光束方向変更・結像光学素子(2a,2b,3a,3b)が配置されていることを特徴とする請求項1〜8の1つに記載の傾斜センサ。
  11. 前記第1光束方向変更・結像光学素子群(2a,3a)は、傾斜面(10)に入射する発散光束または収斂光束を形成することを特徴とする請求項1〜10の1つに記載の傾斜センサ。
  12. 前記第1光束方向変更・結像光学素子群(2a,3a)は、傾斜面(10)に入射する平行光束を形成することを特徴とする請求項1〜10の1つに記載の傾斜センサ。
  13. 傾斜測定の精度向上のため、光源(6)が、複数の強度ピークを有する強度分布(21)を検知器(7)上に形成する構造を有することを特徴とする請求項1〜12の1つに記載の傾斜センサ。
  14. 光源(6)が、各別の複数光源、特に、LEDーアレイから構成されていることを特徴とする請求項13の傾斜センサ。
  15. 光源(6)と検知器(7)との間の傾斜測定の精度向上のため、位置に依存して光束を部分反射する物体(25)が配置されかつモノリシックに構成され、該物体(25)は、複数のピークを有する反射機能を有し、光源(6)の代わりに検知器(7)上に結像されることを特徴とする請求項1〜12の1つに記載の傾斜センサ。
  16. 光源(6)と検知器(7)との間の傾斜測定の精度向上のため、位置に依存して光束を部分透過する物体(26)が配置されかつモノリシックに構成され、該物体(25)は、複数のピークを有する透過機能を有し、光源(6)の代わりに検知器(7)上に結像されることを特徴とする請求項1〜12の1つに記載の傾斜センサ。
  17. 光源(6)と検知器(7)との間の傾斜測定の精度向上のため、複数のピークを有する強度分布(21)が検知器(7)上に形成されるよう光束の波面を構造化(パタン化)する光学素子(28)が配置され、かつモノリシックに組込まれていることを特徴とする請求項1〜12の1つに記載の傾斜センサ。
  18. 光束の波面を構造化する光学素子(28)が、同時に、結像特性を有することを特徴とする請求項17に記載の傾斜センサ。
  19. 検知器(7)上に形成された強度分布(21)の空間基本周波数またはその空間高調波周波数が、検知器(7)の感光性構造の空間基本周波数とともに、低周波数の重畳パタンを形成することを特徴とする請求項13〜18の1つに記載の傾斜センサ。
  20. 傾斜面(10)が、重力によって決定される平面内に調整されることを特徴とする請求項1〜19の1つに記載の傾斜センサ。
  21. 重力に従って方向づけられる傾斜面(10)が、液体表面であることを特徴とする請求項20に記載の傾斜センサ。
JP54157797A 1996-05-25 1997-05-23 傾斜角度測定用光学センサ Expired - Fee Related JP3939759B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19621189.1 1996-05-25
DE19621189A DE19621189C2 (de) 1996-05-25 1996-05-25 Optischer Sensor zur Neigungswinkelbestimmung
PCT/EP1997/002661 WO1997045701A1 (de) 1996-05-25 1997-05-23 Optischer sensor zur neigungswinkelbestimmung

Publications (3)

Publication Number Publication Date
JP2001501726A JP2001501726A (ja) 2001-02-06
JP2001501726A5 JP2001501726A5 (ja) 2004-12-09
JP3939759B2 true JP3939759B2 (ja) 2007-07-04

Family

ID=7795364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54157797A Expired - Fee Related JP3939759B2 (ja) 1996-05-25 1997-05-23 傾斜角度測定用光学センサ

Country Status (4)

Country Link
EP (1) EP0901608B1 (ja)
JP (1) JP3939759B2 (ja)
DE (2) DE19621189C2 (ja)
WO (1) WO1997045701A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10308085B4 (de) * 2002-03-08 2006-09-07 Leuze Electronic Gmbh & Co Kg Optoelektronische Vorrichtung
EP1491855A1 (de) * 2003-06-23 2004-12-29 Leica Geosystems AG Optischer Neigungsmesser
DE10357062B4 (de) * 2003-12-04 2005-12-15 Albert-Ludwigs-Universität Freiburg, vertreten durch den Rektor System zur Messung der Verkippung von strukturierten Oberflächen
DE202004010922U1 (de) 2004-07-12 2005-11-24 Leica Geosystems Ag Neigungssensor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2403909A1 (de) * 1974-01-28 1975-08-14 Cornelius Leonard Gooley Orientierungs-anzeigevorrichtung
CH599536A5 (ja) * 1975-09-02 1978-05-31 Kern & Co Ag
CH597591A5 (ja) * 1975-10-07 1978-04-14 Kern & Co Ag
JPS6032143A (ja) * 1983-07-30 1985-02-19 Nec Home Electronics Ltd 姿勢制御装置
DE3634244A1 (de) * 1986-10-08 1988-04-21 Telefunken Electronic Gmbh Optoelektronischer neigungssensor
CH673707A5 (ja) * 1987-07-24 1990-03-30 Kern & Co Ag

Also Published As

Publication number Publication date
WO1997045701A1 (de) 1997-12-04
EP0901608B1 (de) 2002-11-06
EP0901608A1 (de) 1999-03-17
DE19621189A1 (de) 1997-11-27
DE19621189C2 (de) 2000-06-29
DE59708671D1 (de) 2002-12-12
JP2001501726A (ja) 2001-02-06

Similar Documents

Publication Publication Date Title
EP0409572B1 (en) Position detecting system
US6878916B2 (en) Method for focus detection for optically detecting deviation of the image plane of a projection lens from the upper surface of a substrate, and an imaging system with a focus-detection system
US7388696B2 (en) Diffuser, wavefront source, wavefront sensor and projection exposure apparatus
US7433052B2 (en) Systems and methods for tilt and range measurement
CN101446775B (zh) 一种对准光源装置
US7593114B2 (en) Device and method for focusing a laser light beam
EP1342984B1 (en) Optical distance sensor
US7295315B2 (en) Focus and alignment sensors and methods for use with scanning microlens-array printer
KR20110016400A (ko) 측정 장치, 노광 장치 및 디바이스 제조 방법
CN102725673A (zh) 具有至少两镜面的反射镜的制造方法、用于微光刻的投射曝光装置的反射镜及投射曝光装置
US7542150B2 (en) Displacement interferometer system and exposer using the same
US7649621B2 (en) Optical inclinometer
US5235408A (en) Position detecting method and apparatus
US5196711A (en) Deviation measuring device including a mask having a grating pattern and a zone plate pattern
US6661446B2 (en) Parallel-processing, optical distance-measuring device
JP3939759B2 (ja) 傾斜角度測定用光学センサ
EP0358425A2 (en) Position detecting method and apparatus
JP4357002B2 (ja) 物体の方向を測定する方法および装置
EP0358511B1 (en) Device for detecting positional relationship between two objects
KR20180104022A (ko) 빔 측정 시스템, 리소그래피 시스템, 및 방법
JP2581227B2 (ja) 位置検出装置
RU2085873C1 (ru) Многолучевое интерференционное устройство
JP3222295B2 (ja) 光学式変位センサ
JPH0690052B2 (ja) 光学干渉装置
JP4700825B2 (ja) 光学式エンコーダ

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040406

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060630

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees