JP3932976B2 - 誘導加熱装置、およびこれを用いた誘導加熱調理器と炊飯器 - Google Patents

誘導加熱装置、およびこれを用いた誘導加熱調理器と炊飯器 Download PDF

Info

Publication number
JP3932976B2
JP3932976B2 JP2002144230A JP2002144230A JP3932976B2 JP 3932976 B2 JP3932976 B2 JP 3932976B2 JP 2002144230 A JP2002144230 A JP 2002144230A JP 2002144230 A JP2002144230 A JP 2002144230A JP 3932976 B2 JP3932976 B2 JP 3932976B2
Authority
JP
Japan
Prior art keywords
switching element
bidirectional switching
induction heating
heating coil
bidirectional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002144230A
Other languages
English (en)
Other versions
JP2003339167A (ja
Inventor
和彦 麻田
英樹 大森
秀和 山下
正則 小川
真 北畠
信義 長潟
哲哉 田原
一博 登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002144230A priority Critical patent/JP3932976B2/ja
Publication of JP2003339167A publication Critical patent/JP2003339167A/ja
Application granted granted Critical
Publication of JP3932976B2 publication Critical patent/JP3932976B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)
  • General Induction Heating (AREA)
  • Induction Heating Cooking Devices (AREA)
  • Cookers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一般家庭や業務用などで使用される誘導加熱調理器、誘導加熱式炊飯器、誘導加熱加工機、誘導加熱式融雪装置などの誘導加熱装置に関するものである。
【0002】
【従来の技術】
従来、特開平11−111441号に示されている誘導加熱装置は、図14に示されているように、100V50Hzや60Hzの商用電源を用いた交流電源1、加熱コイル2、加熱コイル2に接続されIGBT(絶縁ゲート形バイポーラトランジスタ)とダイオードを内蔵させて実現したスイッチング素子3、スイッチング素子3をオンオフさせる駆動回路4を設けている。
【0003】
スイッチング素子3は内蔵されたダイオードを有することにより、逆方向、すなわちIGBTのエミッタからコレクタの向きに電圧がかかった場合において、ほぼ素通りの状態となり、スイッチで言うところのオン状態となるものである。
【0004】
さらに、共振コンデンサ5を加熱コイル2と並列に接続し、4本のダイオード6、7、8、9で構成した全波式のダイオードブリッジ10、およびダイオードブリッジ10の出力端子間に並列に接続した平滑用コンデンサ11を接続したものとなっている。
【0005】
負荷鍋12は、加熱コイル5に磁気結合したものとなっている。
【0006】
以上の構成において、交流電源1は、ダイオードブリッジ10によってリプルを含んだ直流に変換された電圧を平滑用コンデンサ11の端子間に発生させ、駆動回路4が高周波でスイッチング素子3をオンオフし、加熱コイル2に高周波電流を供給することによって、加熱コイル2と磁気的に結合した負荷鍋12に誘導電流を発生させるなどして、鉄損を生じさせて加熱するものであった。
【0007】
【発明が解決しようとする課題】
このような従来の技術においては、スイッチング素子3がスイッチとしてオンオフの制御ができるのは、コレクタからエミッタに流れる電流のみであり、逆方向すなわちエミッタからコレクタに向かう電流については、ダイオード部分を通ることから制御ができず、オンの状態のみに限られるという特性であった。
【0008】
このため、特にスイッチング素子3のオン期間を長くした場合には、加熱コイル2と共振コンデンサ5の共振作用が強くなり、スイッチング素子3内のダイオードに流れる電流が大きくなるとともに、その時間も長くなり、ダイオードとしての順電圧降下があるためかなりの損失が発生するものとなる。
【0009】
また、スイッチング素子3のダイオード部分に流れる電流は、加熱コイル2に蓄えられた磁気エネルギの一部が再び平滑用コンデンサ11に逆流、すなわち回生されている動作が行われていることになり、無効電力が発生していると見ることができる。
【0010】
これらの結果、特に加熱パワーを大きくした場合に、装置の効率を上げることが難しくなるという第1の課題を有しているものであった。
【0011】
【課題を解決するための手段】
本発明は、加熱コイルと双方向スイッチング素子の直列回路と、前記加熱コイルと双方向スイッチング素子の直列回路の両端に接続した直流電源と、前記加熱コイルと前記双方向スイッチング素子の接続点と前記直流電源の端子間に接続された共振コンデンサと、前記双方向スイッチング素子をオンオフさせる駆動回路を有し、前記駆動回路は選択手段を有し、前記選択手段が第1の信号を出力する場合は、前記双方向スイッチング素子をオフした後、逆阻止状態としてから前記双方向スイッチング素子をオンさせ、前記選択手段が第2の信号を出力する場合は、双方向スイッチング素子をオフした後、逆阻止状態となる前に前記双方向スイッチング素子をオンさせ、前記選択手段の出力信号は、被加熱物の大/小によって変化する誘導加熱装置とするものである。
【0012】
【発明の実施の形態】
【0013】
【実施例】
次に、本発明の具体例を説明する。
【0014】
(実施例1)
図1は、本発明の第1の実施例における、鍋を加熱する誘導加熱装置の回路図である。
【0015】
直径0.35mmのエナメル線35本をよったリッツ線を、平板の渦巻き状に巻いて構成した加熱コイル21と、SiC半導体すなわち炭化珪素半導体をMOS構造としたを用いた双方向スイッチング素子22は直列に接続され、加熱コイル21と双方向スイッチング素子22の直列回路の両端には直流電源23が接続されている。
【0016】
また、加熱コイル21と双方向スイッチング素子22の接続点と直流電源23のプラス端子間にはプラスチックフィルム形の共振コンデンサ24が接続されている。
【0017】
そして、双方向スイッチング素子22を25kHzでオンオフさせる駆動回路25を有しており、駆動回路25は、双方向スイッチング素子22をオフした後、一旦逆阻止状態とした後に、再び双方向スイッチング素子22をオンさせるものとなっている。
【0018】
直流電源23は、100V60Hzの商用電源を用いた交流電源26と、交流電源26の出力に接続された整流ブリッジ27、チョークコイル28、平滑コンデンサ29を有しており、25kHzという高周波に対するインピーダンスを低くすることで、電圧の安定化を図るとともに、交流電源26への高周波電流の逆流を抑える作用をするものとなっている。
【0019】
なお、鍋である負荷30は、加熱コイル21に底面が対向させている。
【0020】
図2は、本実施例の動作波形図を示したもので、直径22cmのホーロー鍋が負荷29として置かれている状態で、装置に1200Wの入力電力を受けて動作している状態におけるものである。(ア)は交流電源26の出力電圧VACの波形、(イ)は双方向スイッチング素子22の端子間電圧VSWの波形、(ウ)は双方向スイッチング素子22に流れる電流ISWの波形を示している。
【0021】
VAC波形は、60Hzで実効値100Vの正弦波であり、そのピークの絶対値は、実効値のルート2倍に相当する141Vとなる。
【0022】
また、VSW波形は正弦波の包烙線(エンベロープ)を有し、双方向スイッチング素子22のスイッチング周波数の高周波で埋め尽くされた電圧波形となっており、プラス側の最大電圧は550V、マイナス側の最大値は60Vとなっている。
【0023】
またISW波形についても、正弦波の包烙線(エンベロープ)をプラス側に持ち、双方向スイッチング素子22のスイッチング周波数の高周波で埋め尽くされた電流波形となっており、電流ピークは53Aとなっている。
【0024】
なお、この状態において交流電源26からの出力電流波形は、電圧VACと同じ正弦波であり、位相も等しく、力率がほぼ1のものとなり、送配電系統の損失を極力抑えた高能率のものとなっている。
【0025】
図3は、図2のt1およびt2付近の位相で、時間方向を拡大した動作波形図を示しており、この期間においてはVACの絶対値はほぼ141Vある。(ア)は駆動回路25からのオンオフ信号Sg、(イ)は双方向スイッチング素子22の端子間電圧VSW、(ウ)は双方向スイッチング素子22に流れる電流ISWの波形を示している。
【0026】
t3において、駆動回路25によって双方向スイッチング素子22がターンオフすると、ISWは零となり、加熱コイル21と共振コンデンサ24による共振回路が形成される。
【0027】
共振によって発生する電圧により、双方向スイッチング素子22には、最大550Vの電圧が印加され、その後更に加熱コイル21と共振コンデンサ24の共振により共振電圧波形がVSWに印加され、t4において再びVSWが零となる。
【0028】
その後t5まで逆阻止状態とし、t5にて双方向スイッチング素子22は、駆動回路25によってオンされ、順導通期間に入るものとなる。
【0029】
このような動作を繰り返すことにより、加熱コイル21に高周波電流が供給されるものとなる。
【0030】
また、本実施例では双方向スイッチング素子23として、SiC半導体を使用していることから、簡単な構成で低損失の双方向スイッチング素子23が実現され、さらに高温での動作も可能であるため、誘導加熱装置においては、非加熱物に近い高温の雰囲気中にあっても冷却が簡単に行うことができ、例えば冷却ファンなども不要、もしくは風量の少ないもので間に合うという構成となり、装置の小形化・軽量化と同時に、冷却ファンに要する電力の削減や冷却風によって非加熱物が冷却されてしまうというようなムダが省け、非常に高効率の誘導加熱装置が実現されるものとなる。
【0031】
(実施例2)
第2の実施例における誘導加熱装置は、共振コンデンサ33の一端は実施例1と同様、加熱コイル21と双方向スイッチング素子22の接続点に接続しているが、もう一つの端子は直流電源23のマイナス端子に接続しており、これによって共振コンデンサ33は、双方向スイッチング素子22の両端子間に接続された状態となっている。
【0032】
駆動回路34は、電圧比較器を用いた選択手段35と発振回路36を備えており、選択手段35がハイ、すなわち第1の信号を出力する場合は、双方向スイッチング素子22をオフした後、逆阻止状態としてから双方向スイッチング素子22をオンさせるものとなっている。
【0033】
また、選択手段35がロー、すなわち第2の信号を出力する場合は、双方向スイッチング素子22をオフした後、逆阻止状態となる前に双方向スイッチング素子22をオンさせるものとなっているものである。
【0034】
入力電流検知回路37は、交流電源26からの流入電流のピーク値を検知し、装置の入力電流を検知することで、加熱パワーにほぼ対応した電力値を知るためのものであり、電圧検知回路38は、双方向スイッチング素子22に印加される電圧のピーク値を検出するものである。
【0035】
したがって、選択手段35は、入力電流検知回路37と電圧検知回路38の出力電圧の大小比較を行い、前者が大の場合にはハイを、後者が大の場合にはローを出力するものとなっている。
【0036】
本実施例において、その他の部分の構成においては、実施例1の場合と同じである。
【0037】
次に、本実施例の誘導加熱装置の動作について、説明する。
【0038】
まず、負荷30の鍋が、底の直径が22cmである場合などは、装置の入力電流に対する、双方向スイッチング素子22の電圧が比較的低いものとなり、選択手段35の出力はハイとなって、ちょうど実施例1と同様の動作でもって駆動回路34による動作が行われるものとなり、加熱コイル21への高周波電流の供給による負荷30の誘導加熱が行われるものとなる。
【0039】
すなわち、逆阻止状態の後、VSW=0となる時点で双方向スイッチング素子22がオンされて、順導通状態となり、逆導通電流が流れないことから、双方向スイッチング素子22の損失は少なくてすむものとなり、また回生動作が無いことから、直流電源23から能率良く加熱の電力が供給されるものとなる。
【0040】
次に底の直径が80mmという比較的小さいポットを加熱する場合の動作について説明する。
【0041】
このような場合には、装置の入力電流に対し、双方向スイッチング素子22の印加電圧のピーク値が比較的大きくなり、選択手段35の出力がローとなる。
【0042】
よって、駆動回路34は逆阻止状態となる前に、双方向スイッチング素子22をオンさせて、逆導通状態とすることになる。
【0043】
図6は、本実施例において、比較的小さい負荷を加熱する場合の動作波形図を示している。
【0044】
(ア)は交流電源26の出力電圧VACの波形、(イ)は双方向スイッチング素子22の端子間電圧VSWの波形、(ウ)は双方向スイッチング素子22に流れる電流ISWの波形を示している。
【0045】
VAC波形は、60Hzで実効値100Vの正弦波であり、そのピークの絶対値は、実効値のルート2倍に相当する141Vとなる。
【0046】
また、VSW波形は正弦波の包烙線(エンベロープ)を有し、双方向スイッチング素子22のスイッチング周波数の高周波で埋め尽くされた電圧波形となっており、プラス側への最大電圧は550Vに達する。
【0047】
またISW波形についても、正弦波の包烙線(エンベロープ)をプラス側とマイナス側の両方に持ち、双方向スイッチング素子22のスイッチング周波数の高周波で埋め尽くされた電流波形となっており、電流ピークはプラス側が50A、マイナス側が25Aとなっている。
【0048】
なお、この状態においても交流電源26からの出力電流波形は、電圧VACと同じ正弦波であり、位相も等しく、力率がほぼ1のものとなり、送配電系統の損失を極力抑えた高能率のものとなっている。
【0049】
図6は、図5のt1およびt2付近の位相で、時間方向を拡大した動作波形図を示しており、この期間においてはVACの絶対値はほぼ141Vある。
(ア)は駆動回路34からのオンオフ信号Sg、(イ)は双方向スイッチング素子22の端子間電圧VSW、(ウ)は双方向スイッチング素子22に流れる電流ISWの波形を示している。
【0050】
t6において、駆動回路25によって双方向スイッチング素子22がターンオフすると、ISWは零となり、加熱コイル21と共振コンデンサ33による共振回路が形成される。
【0051】
共振によって発生する電圧により、双方向スイッチング素子22には、最大550Vの電圧が印加され、その後更に加熱コイル21と共振コンデンサ33の共振により共振電圧波形がVSWに印加され、t7において再びVSWが零となる。
【0052】
t7にて双方向スイッチング素子22は、駆動回路34によってオンされ、逆導通期間に入り、t8以降は順導通期間となる。
【0053】
このような動作を繰り返すことにより、加熱コイル21に高周波電流が供給されるものとなる。
【0054】
図7は、本実施例において、底の直径が22cmの鍋を負荷30とした場合の、入力パワーと双方向スイッチング素子22の損失を示したもので、aは図6に示したように逆導通期間を設けた場合、bは図3に示すように逆阻止期間を設けた場合の特性を示しているものである。
【0055】
すなわちbの逆阻止期間を設けた場合には、双方向スイッチング素子22に流れる電流が少なくてすむ分、入力パワーに対する損失はaに比べて小となるものとなる。
【0056】
よって、本実施例においては、直径22cmの鍋は選択手段35の出力がハイとなって、逆阻止期間を有するものとなるので、双方向スイッチング素子22の損失が小さい高効率の運転が実現されるものとなる。
【0057】
図8は、入力パワーに対する双方向スイッチング素子22の印加電圧のピーク値VSWを示しているが、aとbは直径22cmの鍋を負荷30とした場合で、cとdは直径80mmのポットを負荷30としているものであり、破線で示したaとcは逆導通期間を設けた場合、実線で示したbとdは逆阻止期間を設けた場合の特性を示したものとなっている。
【0058】
また、一点鎖線eは選択手段35のしきい値(スレッショルド)を示すもので、一点鎖線eよりも上側では、選択手段35は出力がローとなり、駆動回路34は逆導通期間を有する動作となり、cのカーブで入力パワーに対するVSWが決まる特性となって実際の動作がなされるものとなる。
【0059】
ここで、双方向スイッチング素子22には、印加することのできる最大電圧値、すなわち耐圧という仕様が存在し、現実にはそれを越えないように、所定のVSW以下での運転を制限する構成となる。
【0060】
本実施例では、VSWの最大値を700Vとしていることから、c曲線においては760Wの入力パワーを実現することができるものとなる。
【0061】
一方、逆阻止期間を設けて動作させた場合にはd曲線でVSW=700Vまでで、動作が可能となり、最大入力パワーは650Wにとどまるものとなる。
【0062】
したがって、本実施例は選択手段34により、直径が大きい負荷30では低損失で高効率の運転ができ、また直径が小さい負荷30では高パワーでの運転が可能となる。
【0063】
ただし、直径が小さい負荷30で低パワーでも良い場合、すなわち650W以下などの時には、選択手段からハイを出力するという構成としてもよく、その場合には逆阻止期間が有る分、双方向スイッチング素子22の損失が減り、効率も良くなると言う優れた効果が得られるものとなる。
【0064】
(実施例3)
図9は、本実施例の第3の実施例における誘導加熱装置の交流電源26のピーク付近での拡大動作波形図を示したもので、この期間においてはVACの絶対値はほぼ141Vある。(ア)は駆動回路25からのオンオフ信号Sg、(イ)は双方向スイッチング素子22の端子間電圧VSW、(ウ)は双方向スイッチング素子22に流れる電流ISWの波形を示している。
【0065】
本実施例においては、回路構成上は実施例1と同等であるが、駆動回路25の動作のみが異なるものとなっている。
【0066】
本実施例においては、双方向スイッチング素子22の順導通期間の後、順阻止期間、逆導通期間、逆阻止期間の順に設けた後、再び順導通期間に入らせるものとしている。
【0067】
加えて、駆動回路25は、逆導通期間を変化させ、周波数が25kHzのほぼ一定の状態で、加熱パワーを変化させるものとなっている。
【0068】
図9においては、順導通期間Ton1が終了すると、t9において双方向スイッチング素子22がオフされると、VSWには共振電圧波形が印加される順阻止期間Toff1となり、再びVSW=0となるt10において、駆動回路25は一旦双方向スイッチング素子22をオンとし、逆導通期間Ton2に入る。
【0069】
T11においては、駆動回路25によって双方向スイッチング素子22はオフされて逆阻止期間Toff2に入る。
【0070】
t12には、電流ISWが再び零となり、駆動回路25から双方向スイッチング素子22がオンされ、以降は順導通期間Ton1となる。
【0071】
以上のような動作を繰り返されることにより、負荷30の誘導加熱が行われるものとなる。
【0072】
特に本実施例においては、逆導通期間Ton2と逆阻止期間Toff2を存在させ、かつ逆導通期間Ton2の長さを変化させることにより、入力パワー、すなわち加熱パワーに対するVSWの絶対値の最大値、ISWの絶対値の最大値、動作周波数、双方向スイッチング素子22の損失などの特性が変化するものとなり、負荷30の種類、および入力パワーに応じて、例えば最も効率が高くなるようにTon2の期間を調整することも可能となる。
【0073】
また、周波数を一定として種類の異なる負荷30の加熱を行わせたり、周波数一定で加熱パワーを変化させることも可能となる。
【0074】
周波数が一定で制御ができるということは、複数の誘導加熱装置を近接して動作させた場合にも、動作周波数の差に起因して発生する耳障りな干渉音の発生はなく、静かな装置の実現も可能となるものである。
【0075】
(実施例4)
第4の実施例における誘導加熱装置は、駆動回路25が、双方向スイッチング素子22をオフした後、双方向スイッチング素子22の端子間電圧の絶対値がほぼ極小となる時点で、双方向スイッチング素子22をオンさせるものとなっているが、その他の構成については、第1の実施例と全くの同等のものとなっている。
【0076】
図10は、第2の実施例における誘導加熱装置が負荷30として銅バリの磁性ステンレス鍋が置かれた状態で、300Wの装置への入力パワーで誘導加熱している時の、動作波形図を示すもので、交流電源26の出力電圧VACの瞬時値の絶対値がほぼ141Vになっている期間を拡大したもので、(ア)は駆動回路25からのオンオフ信号Sg、(イ)は双方向スイッチング素子22の端子間電圧VSW、(ウ)は双方向スイッチング素子22に流れる電流ISWの波形を示している。
【0077】
銅バリの磁性ステンレス鍋は、加熱コイル21との磁気的結合が強いことから、双方向スイッチング素子22のオフ期間中の共振コンデンサ24と加熱コイル21の共振電圧の減衰が大きく、また加熱のパワーも実施例1よりも小さいため、t13においてターンオフされた後のVSWのピーク値は、320Vにとどまり、その後再びVSWが零となることはないものとなる。
【0078】
本実施例においては、駆動回路25による双方向スイッチング素子22のスイッチング周波数は、やはり25kHzとなっている。
【0079】
VSWが零でない時に、双方向スイッチング素子22がオンされると、平滑コンデンサ29と共振コンデンサ24を通じて双方向スイッチング素子22に短絡電流が流れて、双方向スイッチング素子22の損失が大となる傾向がある。
【0080】
本実施例では、特に双方向スイッチング素子22の端子間電圧の絶対値がほぼ極小となるt14の時点で、双方向スイッチング素子22をオンさせることにより、その際に発生する前記短絡電流を極小に抑え、極力損失を抑えて、連続的な加熱動作を行わせている。
【0081】
なお、t14におけるVSWの絶対値は40Vとなっている。
【0082】
同時に、上記短絡電流が流れることにより発生する電磁的ノイズも極小とすることができ、ラジオなどに与える妨害電波の発生も最小限に抑えることができるものとなる。
【0083】
(実施例5)
図8は、本発明の第5の実施例に用いている双方向スイッチング素子22の詳細回路図を示している。
【0084】
その他の部分については、実施例1と全く同等であり、動作も同じである。
【0085】
図8においては、シリコン半導体によるMOSFET41と、並列に接続されたダイオード42によって構成したスイッチング素子43、同様にシリコン半導体によるMOSFET44と、並列に接続されたダイオード45によって構成したスイッチング素子46が使用されており、スイッチング素子43、46のゲート端子Gとソース端子Sはいずれも共通に接続された上で、駆動回路50に接続されているものとなっている。
【0086】
ここで、ダイオード42、45は、MOSFETを製造する際に、寄生的に形成されるものを、そのまま使用しても良い。
【0087】
従来の技術に用いられているダイオードブリッジは、ダイオード素子2個分の順方向の電圧降下が発生するのに対し、ダイオード42、45はいずれか1個分のみが直列に入るだけであるので、その分電圧降下は小さく、損失が小さいものとなる。
【0088】
さらに、ダイオード42、45に順方向電流が流れている期間に、MOSFET41、44のゲート・ソース間電圧を+20Vとしてオンさせていることから、MOSFET41、45にも電流が分流し、さらに電圧降下による損失は低減されるものとなる。
【0089】
スイッチング素子43のドレイン端子Dは端子Aとして、またスイッチング素子46のドレイン端子Dは端子Bとして双方向スイッチング素子33の両端子となっている。
【0090】
駆動回路50からの出力電圧VGSが20ボルトとなると、MOSFET41、44は共にオンとなり、VGSが0ボルトとなると、共にオフの状態となる。
【0091】
オンの場合、A端子の電位が高い場合には、電流がMOSFET41のドレインDからソースSに流れ、ダイオード45を経てB端子に達し、逆にB端子の電位が高い場合には、電流がMOSFET44のドレインDからソースSに流れ、ダイオード42を経てA端子に達するものとなる。
【0092】
またオフの場合には、A端子が高電位の場合は、MOSFET41のドレインDとソースS間に順方向の阻止電圧が加わるものとなり、B端子が高電位の場合は、MOSFET44のドレインDとソースS間に順方向の阻止電圧が加わるものなる。
【0093】
したがって、双方向スイッチング素子33として動作するものとなる。
【0094】
(実施例6)
図12は、本発明の第6の実施例における誘導加熱調理器の断面図を示している。
【0095】
図12において、100V60Hzの交流電源をとるため、電源プラグ101から電源コード102が、誘導加熱装置103に接続されている。
【0096】
本実施例においては、誘導加熱装置103は、ちょうど実施例1と同等の構成となっているが、図1に示す加熱コイル21のみを省いた状態にあるものとなっていて、図13の加熱コイル104が、その代わりに接続されている。
【0097】
加熱コイル104の下側には、放射状にフェライトコア105が8本設けられている。
【0098】
誘導加熱装置103の動作と停止、および加熱パワーを変化させるための操作部106を接続している。
【0099】
セラミック製のトッププレートが、加熱コイル104の上側に設けられており、鉄やステンレスなどの鍋である負荷108を誘導加熱するものとなっている。
【0100】
以上の構成により、負荷108が誘導加熱されるが、特に本実施例においては、電源プラグから導かれた交流電源をダイオードブリッジなどによる整流を行うことなしに、双方向スイッチング素子22による直接の高周波電流への変換によって加熱コイル104が誘導加熱動作を行うことから効率が高いという効果を得ているものである。
【0101】
(実施例7)
図13は、本発明の第7の実施例における炊飯器の要部の構成図を示している。
【0102】
図13において、外コイル201と内コイル202は、それぞれリッツ線を9ターンずつ巻いて構成したもので、外コイル201と内コイル202は直列に接続されて加熱コイル203としている。
【0103】
特に外コイル201は、平板状ではなく、特に外側が上にせりあがった形状となっている。
【0104】
フェライトコア204は、加熱コイル203の下方に放射状に8本設けられており、加熱コイル203の磁界を有効に利用して高効率の誘導加熱動作が行われるものとなっている。
【0105】
負荷205は、外側に磁性ステンレス層、内側にアルミ層を有し、中に米と水を適量入れて加熱することにより、飯が炊けるものとなっている。
【0106】
また、このような加熱コイル203構成、フェライトコア204の配置、および負荷205の形状としたことにより、負荷205の加熱パワーの分布が良くなり、加熱による水の対流が程良く得られ、非常に美味な飯を炊くことができるものとなる。
【0107】
加熱コイル203は、例えば図1に示した実施例1の誘導加熱装置の加熱コイル21に代わって接続されるものであり、交流電源をダイオードブリッジなどによる整流を行うことなしに、双方向スイッチング素子22による直接の高周波電流への変換によって加熱コイル203が誘導加熱動作を行うことから効率が高いという効果を得ているものである。
【0108】
【発明の効果】
以上のように、本発明は高効率の装置を実現するものである。
【0109】
また、高効率で構成の簡単な誘導加熱調理器と炊飯器を実現するものとなる。
【図面の簡単な説明】
【図1】 本発明の実施例1における誘導加熱装置の回路図
【図2】 同、動作波形図
【図3】 同、拡大動作波形図
【図4】 本発明の実施例2における誘導加熱装置の回路図
【図5】 本発明の実施例2における誘導加熱装置の動作波形図
【図6】 同、拡大動作波形図
【図7】 同、入力パワーと双方向スイッチング素子の損失のグラフ
【図8】 同、入力パワーとVSWピーク値のグラフ
【図9】 本発明の実施例3における誘導加熱装置の動作波形図
【図10】 本発明の実施例4における誘導加熱装置の動作波形図
【図11】 本発明の実施例5における双方向スイッチング素子の回路図
【図12】 本発明の実施例6における誘導加熱調理器の断面図
【図13】 本発明の実施例7における炊飯器の要部構成図
【図14】 従来の技術における誘導加熱装置の回路図
【符号の説明】
21、104、203 加熱コイル
22 双方向スイッチング素子
23 直流電源
24、33 共振コンデンサ
25、34、50 駆動回路
35 選択手段
26 交流電源
27 整流ブリッジ
103 誘導加熱装置

Claims (6)

  1. 加熱コイルと双方向スイッチング素子の直列回路と、前記加熱コイルと双方向スイッチング素子の直列回路の両端に接続した直流電源と、前記加熱コイルと前記双方向スイッチング素子の接続点と前記直流電源の端子間に接続された共振コンデンサと、前記双方向スイッチング素子をオンオフさせる駆動回路を有し、前記駆動回路は選択手段を有し、前記選択手段が第1の信号を出力する場合は、前記双方向スイッチング素子をオフした後、逆阻止状態としてから前記双方向スイッチング素子をオンさせ、前記選択手段が第2の信号を出力する場合は、双方向スイッチング素子をオフした後、逆阻止状態となる前に前記双方向スイッチング素子をオンさせ、前記選択手段の出力信号は、被加熱物の大/小によって変化する誘導加熱装置。
  2. 加熱コイルと双方向スイッチング素子の直列回路と、前記加熱コイルと双方向スイッチング素子の直列回路の両端に接続した直流電源と、前記加熱コイルと前記双方向スイッチング素子の接続点と前記直流電源の端子間に接続された共振コンデンサと、前記双方向スイッチング素子をオンオフさせる駆動回路を有し、前記駆動回路は、双方向スイッチング素子の順導通期間の後、順阻止期間、逆導通期間、逆阻止期間の順に設けた後、再び順導通期間に入らせ、周波数が略一定となるように前記逆導通期間を変化させる誘導加熱装置。
  3. 直流電源は、交流電源と前記交流電源の出力に接続された整流ブリッジを有する請求項1または2に記載の誘導加熱装置。
  4. 双方向スイッチング素子は、SiC半導体を用いた請求項1から請求項のいずれか1項に記載の誘導加熱装置。
  5. 請求項1からのいずれか1項に記載の誘導加熱装置を有する誘導加熱調理器。
  6. 請求項1からのいずれか1項に記載の誘導加熱装置を有する炊飯器。
JP2002144230A 2002-05-20 2002-05-20 誘導加熱装置、およびこれを用いた誘導加熱調理器と炊飯器 Expired - Fee Related JP3932976B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002144230A JP3932976B2 (ja) 2002-05-20 2002-05-20 誘導加熱装置、およびこれを用いた誘導加熱調理器と炊飯器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002144230A JP3932976B2 (ja) 2002-05-20 2002-05-20 誘導加熱装置、およびこれを用いた誘導加熱調理器と炊飯器

Publications (2)

Publication Number Publication Date
JP2003339167A JP2003339167A (ja) 2003-11-28
JP3932976B2 true JP3932976B2 (ja) 2007-06-20

Family

ID=29703963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002144230A Expired - Fee Related JP3932976B2 (ja) 2002-05-20 2002-05-20 誘導加熱装置、およびこれを用いた誘導加熱調理器と炊飯器

Country Status (1)

Country Link
JP (1) JP3932976B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4818330B2 (ja) * 2008-08-06 2011-11-16 三菱電機株式会社 誘導加熱調理器
JP2011229215A (ja) * 2010-04-15 2011-11-10 Sumitomo Electric Ind Ltd 直流‐交流変換装置
JP2013188007A (ja) * 2012-03-07 2013-09-19 Mitsubishi Electric Corp 電力変換器
JP6832810B2 (ja) * 2017-08-22 2021-02-24 日立グローバルライフソリューションズ株式会社 電力変換装置

Also Published As

Publication number Publication date
JP2003339167A (ja) 2003-11-28

Similar Documents

Publication Publication Date Title
JP4652983B2 (ja) 誘導加熱装置
JP3884664B2 (ja) 誘導加熱装置
JP4310293B2 (ja) 誘導加熱装置
JP5909402B2 (ja) 電力変換装置およびそれを用いた誘導加熱装置
JP2006331964A (ja) 誘導加熱装置
Kawashima et al. Three-phase to single-phase multiresonant direct AC–AC converter for metal hardening high-frequency induction heating applications
WO2014033773A1 (ja) 誘導加熱調理器
JP4929305B2 (ja) 電磁誘導加熱装置
JPWO2005043958A1 (ja) 誘導加熱調理器
JP3932976B2 (ja) 誘導加熱装置、およびこれを用いた誘導加熱調理器と炊飯器
JP5521597B2 (ja) 炊飯器
JP4313331B2 (ja) 誘導加熱装置
JP2013013163A (ja) インバータ装置およびそれを用いた誘導加熱装置
JP3907550B2 (ja) 誘導加熱調理器
JP6278331B2 (ja) 誘導加熱用商用周波−高周波コンバータおよびその制御方法
JP3937918B2 (ja) 誘導加熱装置、およびこれを用いた誘導加熱調理器と炊飯器
JP3460997B2 (ja) 誘導加熱装置
JP4383942B2 (ja) 誘導加熱調理器
JP2003338357A (ja) 誘導加熱装置、およびこれを用いた誘導加熱調理器と炊飯器
JP6832810B2 (ja) 電力変換装置
JP4345209B2 (ja) 誘導加熱調理器
JP2003338358A (ja) 誘導加熱装置、およびこれを用いた誘導加熱調理器と炊飯器
JP5621252B2 (ja) インバータ装置
JP4314705B2 (ja) 誘導加熱調理器
Muthu et al. SEPIC Converter for Power Factor Correction in Free Biomass Induction Heating System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041025

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees