JP3928195B2 - Electronic component mounting board - Google Patents

Electronic component mounting board Download PDF

Info

Publication number
JP3928195B2
JP3928195B2 JP35856796A JP35856796A JP3928195B2 JP 3928195 B2 JP3928195 B2 JP 3928195B2 JP 35856796 A JP35856796 A JP 35856796A JP 35856796 A JP35856796 A JP 35856796A JP 3928195 B2 JP3928195 B2 JP 3928195B2
Authority
JP
Japan
Prior art keywords
circuit
hole
signal
power supply
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35856796A
Other languages
Japanese (ja)
Other versions
JPH09321393A (en
Inventor
直人 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP35856796A priority Critical patent/JP3928195B2/en
Publication of JPH09321393A publication Critical patent/JPH09321393A/en
Application granted granted Critical
Publication of JP3928195B2 publication Critical patent/JP3928195B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections

Description

【0001】
【技術分野】
本発明は,高速電子部品を作動させた場合にもスウィッチングノイズを低く抑制することができる電子部品搭載用基板に関する。
【0002】
【従来技術】
従来,電子部品搭載用基板としては,例えば,図11に示すごとく,絶縁基材97に設けた,電子部品98を搭載するための電子部品搭載部96と,電子部品搭載部96の周囲に設けた導体回路92及びスルーホール91とを有するものがある。
【0003】
導体回路92は,信号用回路921,電源用回路922及び接地用回路923とからなる。スルーホール91は,信号用穴911と電源用穴912と接地用穴913とよりなる。信号用回路921,電源用回路922及び接地用回路923は,信号用穴911,電源用穴912及び接地用穴913に対して,それぞれ接続している。
【0004】
信号用回路921,電源用回路922,及び接地用回路923の先端部は,電子部品98のパッド981と接続するボンディングワイヤー982と接合されている。
尚,本願の図面において,信号用穴及び信号用回路は「S」,電源用穴及び電源用回路は「P」,接地用穴及び接地用回路は「G」と表示する。
【0005】
【解決しようとする課題】
しかしながら,上記従来の電子部品搭載用基板においては,スルーホール又は導体回路の配置によっては,電子部品を搭載した場合にスウィッチングノイズが大きくなる場合があった。
【0006】
即ち,例えばスルーホール91について例示説明すると,図10に示すごとく,信号用穴911同志,電源用穴912同志,接地用穴913同志が隣接して配置される場合がある。また,図11に示すごとく,導体回路92についても,信号用回路921同志,電源用回路922同志,接地用回路913同志が隣接して配置されることがある。
【0007】
このように,同種の穴又は線同志が互いに隣接すると,それらに流れる電流によって実効インダクタンスが大きくなる。そのため,スウィッチングノイズが高くなり,電子部品搭載用基板の電気特性を損なうおそれがある。そして,このスウィッチングノイズは,電子部品に流れる電流が高速になればなるほど,高くなる。
【0008】
本発明はかかる従来の問題点に鑑み,高速電子部品を作動させた場合にもスウィッチングノイズを低く抑制することができる電子部品搭載用基板を提供しようとするものである。
【0009】
【課題の解決手段】
請求項1の発明は,絶縁基材に設けた導体回路と,該導体回路に接続されたスルーホールと,電子部品搭載部とを有すると共に,上記スルーホールは信号用穴,電源用穴及び接地用穴の各種の穴よりなる電子部品搭載用基板において,
上記信号用穴と電源用穴と接地用穴とは,異種の穴同志が互いに隣接しており,
上記導体回路は,信号用回路,電源用回路及び接地用回路の各種の回路よりなり,
上記信号用回路,上記接地用回路,及び上記電源用回路に電流が流れた時に形成される電流路の始点及び終点は,隣接する他方の回路に形成される電流路の終点及び始点に対して,近接した位置にあることを特徴とする電子部品搭載用基板にある。
【0010】
本発明は,電子部品を作動させた場合のスウィッチングノイズが,実効インダクタンス(Le)に比例することに着目したものである。
即ち,実効インダクタンス(Le)は,自己インダクタンス(Ls)から相互インダクタンス(Lm)を差し引いたものである(Le=Ls−Lm)。そのため,実効インダクタンス(Le)を小さくするためには,相互インダクタンス(Lm)を大きくすれば良く,これによりスウィッチングノイズを小さくすることができるのである。
【0011】
そこで,本発明においては,かかる観点に基づき,信号用穴と電源用穴と接地用穴とを,異種の穴同志が互いに隣接するように配置する。これにより,隣接する穴に流れる電流の向きが逆となる。即ち,信号用穴に電流が流れるときには,必ず電源用穴,接地用穴にも電流が流れ,その方向は逆である。
そのため,隣接する穴に流れる電流が相互に干渉し合い,自己インダクタンス(Ls)を打ち消すように相互インダクタンス(Lm)が働く。
【0012】
このため,各種の穴における実効インダクタンス(Le)が減少する。それ故,スウィッチングノイズを低く抑制することができる。従って,高速電子部品を作動させた場合にも,スウィッチングノイズを低く抑制することができる。
また,各穴の距離間が小さくなるため,スルーホールを高密度に配置することができる。
【0013】
また,請求項2の発明のように,上記導体回路は,信号用回路,電源用回路及び接地用回路の各種の回路よりなり,信号用回路と電源用回路と接地用回路とは,異種の回路同志が互いに隣接していることが好ましい。これにより,隣接する回路に流れる電流の向きが逆となる。そのため,上記のごとく,隣接する回路に流れる電流が互いに干渉し合い,自己インダクタンスを打ち消すように相互インダクタンスが働く。このため,各種回路の実効インダクタンスが減少する。
【0014】
それ故,上記で述べたスルーホールと同様に,スウィッチングノイズをより一層低く抑制することができる。また,各回路の距離間が小さくなるため,導体回路を高密度に配置することができる。
【0015】
信号用回路,接地用回路,電源用回路の各回路の周囲には,スウィッチのオン・オフによって,磁界が三次元的に発生する。そのため,異種の回路同志は,絶縁基材の平面方向に隣接している場合だけでなく,垂直方向に隣接している場合にも,相互に干渉し合って,実効インダクタンスを減少させ,スウィッチングノイズを抑制することができる。
【0016】
例えば,請求項3の発明のように,上記信号用回路と電源用回路と接地用回路とは,異種の回路同志が上記絶縁基材の厚み方向に互いに隣接しており,かつ,上記信号用回路は上記絶縁基材の表面に,上記接地用回路及び上記電源用回路は上記絶縁基材の内部に設けられていることが好ましい。
【0017】
これにより,隣接する回路に流れる電流の向きは,互いに逆方向となり,自己インダクタンスを打ち消すように相互インダクタンスが働く。そのため,各回路の実効インダクタンスが減少し,スウィッチングノイズを抑制することができる。
また,絶縁基材の内部に接地用回路及び電源用回路を設けることによって,絶縁基材の表面を信号用回路実装のために有効に利用することができる。そのため,絶縁基材表面に信号用回路を高密度に形成することができる。
【0018】
更に,請求項4の発明のように,上記信号用回路は,上記絶縁基材の内部に設けた上記接地用回路と隣接していることが好ましい。その理由は,接地用回路の電位がわずかでも変化すると電子部品に誤動作を生じさせる原因となるおそれがあるからである。そのため,接地用回路を信号用回路と隣接して設けることによって,両者の相互干渉によって自己インダクタンスを減少させ,スウィッチングノイズを抑制することにより,接地用回路の電位を安定に維持することができる。
【0019】
また,信号用回路,接地用回路及び電源用回路は,直線,曲線,幅広のベタ形状等の種々の形状を有することができるが,これらに電流が流れた時に形成される電流路の始点及び終点は,隣接する他方の回路に形成される電流路の終点及び始点に対して,近接した位置にある。これにより,孤立電流の発生を抑えて,スウィッチングノイズを抑制することができる。
【0020】
例示説明すると,図9に示すごとく,信号用回路210が直線形状であり,接地用回路230が幅広のベタ層であって,信号用回路210の電流路Aの始点Aa及び終点Azが,接地用回路230の電流路Bz及び終点Bと始点Baと同位置にない場合には,接地用回路230に,信号用回路210と隣接する隣接部分239のほかに,信号用回路210と隣接していない非隣接部分238が形成されることになる。
【0021】
この場合には,接地用回路230を流れる電流は,信号用回路210の電流路Aから影響を受けて,信号用回路210に近接した位置,即ち接地用回路230の隣接部分239を流れる。隣接部分239に形成される電流路Bqは,信号用回路210の電流路Aとカップリングがとれることになり,両者の実効インダクタンスは最小限(ゼロ)に抑制することができる。
【0022】
一方,接地用回路230の非隣接部分238には,始点Baから隣接部分239へ向かう電流路Bp,及び隣接部分239から終点Bzへ向かう電流路Brは孤立電流であり,スウィッチングノイズの発生原因となる。そのため,接地用回路230の電流路Bの始点Ba及び終点Bzは,信号用回路210の電流路Aの終点Az及び始点Aaに対して,近接した位置になるように,接地用回路230と信号用回路210とを配置することが好ましい。これにより,実用上問題のない範囲にスウィッチングノイズを抑制できる。
【0023】
上記電流路の始点及び終点としては,例えば,スルーホール,ボンディングパッド,ピン,接続用等のボール,コンデンサ等がある。
【0024】
【発明の実施の形態】
実施形態例1
本発明の実施形態例に係る電子部品搭載用基板について,図1〜図4を用いて説明する。
本例の電子部品搭載用基板は,図2に示すごとく,絶縁基材7に設けた導体回路2と,導体回路2に接続されたスルーホール1と,電子部品8を搭載するための凹状の電子部品搭載部6とを有する。スルーホール1は,信号用穴11,電源用穴12及び接地用穴13の各種の穴よりなる。
【0025】
図1に示すごとく,信号用穴11と電源用穴12と接地用穴13とは,異種の穴同志が互いに隣接している。換言すれば,同種の穴が隣接しないように配設されている。
例えば,図1のX軸線上には,接地用穴(G),信号用穴(S),接地用穴(G)というように,接地用穴13と信号用穴11とが交互に配列している。また,同図のY軸線上には,電源用穴(P),信号用穴(S),電源用穴(P)というように,電源用穴12と信号用穴11が交互に配列している。
【0026】
また,導体回路2は,図2に示すごとく,信号用回路21,電源用回路22及び接地用回路23の各種の回路よりなる。信号用回路21と電源用回路22と接地用回路23とは,異種の線同志が互いに隣接している。例えば,電子部品搭載部6の周辺には,電源用回路(P),信号用回路(S),接地用回路(G),信号用回路(S)というように,信号用回路21の間に,電源用回路22と接地用回路23とが交互に配列している。
【0027】
図2,図3に示すごとく,信号用回路21,電源用回路22,及び接地用回路23は,信号用穴11,電源用穴12,及び接地用穴13とそれぞれ接続している。
信号用回路21,電源用回路22,及び接地用回路23は,その先端に設けたボンディングパッドを,電子部品8のボンディングパッド81とボンディングワイヤー82と接合する。
【0028】
絶縁基材7は,図4に示すごとく,3枚の樹脂基板71,72,73からなる。上記スルーホール1は絶縁基材7を貫通して設けられている。スルーホール1の内壁には,銅めっき,ニッケル金めっき等の金属めっき膜20が施されている。
【0029】
本例の作用効果について説明する。
本例の電子部品搭載用基板5においては,図1に示すごとく,信号用穴11と電源用穴12と接地用穴13とを,異種の穴同志が互いに隣接するように配置してある。これにより,隣接する穴に流れる電流の向きが逆となる。
そのため,前記のごとく,隣接する穴に流れる電流が相互に干渉し合い,自己インダクタンス(Ls)を打ち消すように相互インダクタンス(Lm)が働く。このため,各種穴の実効インダクタンス(Le)が減少する。
【0030】
それ故,スウィッチングノイズを低く抑制することができる。なお,一般に,上記各穴に流れる電流が高速度になる程スウィッチングノイズが大きくなるが,本例においては上記のごとく実効インダクタンスが小さい。従って,高速電子部品を作動させた場合にも,スウィッチングノイズを低く抑制することができる。また,各穴の距離間,各回路の距離間が小さくなるため,スルーホール1および導体回路2を高密度に配置することができる。
【0031】
また,図2に示すごとく,信号用回路21と電源用回路22と接地用回路23とは,異種の回路同志が互いに隣接している。そのため,隣接する回路に流れる電流の向きが逆となる。そのため,隣接する回路に流れる電流が互いに干渉し合い,自己インダクタンスを打ち消すように相互インダクタンスが働く。このため,各種回路の実効インダクタンスが減少する。それ故,上記で述べたスルーホールと同様に,スウィッチングノイズをより一層低く抑制することができる。
【0032】
尚,図3に点線により示すように,異種の穴,例えば接地用穴13に対して信号用穴110を遠ざけた場合には,接地用穴13と信号用穴110との間には相互インダクタンス(Lm)が生じない。そのため,実効インダクタンス(Le)が減少しない。それ故,同図に実線で示すように,接地用穴13と信号用穴110とは隣接させる必要がある。
【0033】
実施形態例2
本例の電子部品搭載用基板は,図5に示すごとく,絶縁基材7の表面には信号用回路211を,絶縁基材7の内部には接地用回路231及び電源用回路221を設けている。信号用回路211,接地用回路231及び電源用回路221の異種同志の回路は,絶縁基材7の厚み方向に隣接している。接地用回路231及び電源用回路221は,図5,図8に示すごとく,絶縁基材7のほぼ全面に広がるベタ層である。
【0034】
電子部品搭載部6は,絶縁基材7を貫通する貫通穴61と,貫通穴61の一方の開口部を覆う放熱板62とより形成されている。貫通穴61の壁面には,絶縁基材内部の接地用回路231と接続する側面パターン232が設けられている。電子部品搭載部6の周囲には,側面パターン232と接続する接地用のボンディングパッド233と,信号用回路211及び電源用回路221と接続するボンディングパッド212,222とが設けられている。
ボンディングパッド212,222,233は,電子部品搭載部6に搭載した電子部品8のボンディングパッド81とボンディングワイヤー82により電気的に接続している。
【0035】
信号用穴11,電源用穴12及び接地用穴13の各種の穴は,互いに異種同志の穴が隣接するように配置されている。
その他は,実施形態例1と同様である。
【0036】
次に,本例の作用及び効果について説明する。
信号用回路211は,図6に示すごとく,絶縁基材7の表面に設けられている。ここで,信号用回路211の磁界Mは,信号用回路211を中心として三次元的に広がる。そのため,信号用回路211を流れる電流が変化すると,隣接する信号用回路211同志が干渉し合って,スウィッチングノイズが発生する。
そこで,本例においては,図7に示すごとく,絶縁基材7の厚み方向に,信号用回路211,接地用回路231,及び電源用回路221が,互いに隣接するようにこれらを配置している。
【0037】
そのため,図5,図7に示すごとく,スウィッチをオンにした場合には,電源用回路221に流れる電流と信号用回路211に流れる電流とが逆方向に流れ,実効インダクタンスが減少し,スウィッチングノイズを抑制できる。
【0038】
一方,スウィッチをオフにした場合には,接地用回路231に流れる電流と信号用回路211に流れる電流とが逆方向に流れ,スウィッチングノイズを抑制できる。
絶縁基材7の内部にはベタ層である接地用回路231及び電源用回路221を設けている。そのため,絶縁基材7の表面を信号用回路211のために有効に利用するスペースを確保することができる。
【0039】
また,接地用回路231は,絶縁基材7の厚み方向に信号用回路211と隣接して設けられている。そのため,両者の相互干渉によって自己インダクタンスを減少させ,スウィッチングノイズを抑制することにより,接地用回路231の電位を安定に維持することができる。
【0040】
また,図8に示すごとく,スウィッチをオフにした場合には,信号用回路211に,信号用穴11を始点Aaとし,ボンディングパッド212を終点Azとする電流路Aが形成される。一方,信号用回路211と隣接する接地用回路231には,側面パターン232を始点Baとし,接地用穴13を終点Bzとする電流路Bが形成される。そして,信号用回路211及び接地用回路231には,逆向きに電流路A,Bが形成される。
【0041】
接地用回路231の電流路Bは,信号用回路211の電流路Aの影響を受けて,信号用回路211と最短距離に位置する部分,即ち信号用回路211の真下の隣接部分239を経て,接地用穴13に至る。信号用回路211の電流路Aと,接地用回路231における上記隣接部分239を流れる電流路Bqとは,互いに干渉し合って双方のスウィッチングノイズを抑制する。
【0042】
一方,接地用回路231の電流路Bの始点Baから隣接部分の電流路Bqまでの間に形成される電流路Bp,及び電流路Bqから終点Bzまでの間に形成される電流路Brには,その上方には信号用回路211が配置されていない。そのため,電流路Bp,Brを流れる電流は,孤立電流となる。
【0043】
しかし,信号用回路211の電流路Aの始点Aaである信号用穴11と,接地用回路231の電流路Bの終点Bzである接地用穴13とは,上記のごとく狭いピッチで形成されている。そのため,孤立電流の発生を,実用に耐え得る程度にまで抑制することができる。
【0044】
【発明の効果】
本発明によれば,高速電子部品を作動させた場合にもスウィッチングノイズを低く抑制することができ,かつ高密度実装が可能な電子部品搭載用基板を提供することができる。
【図面の簡単な説明】
【図1】実施形態例1における,スルーホールの配置説明図。
【図2】実施形態例1の電子部品搭載用基板の平面図。
【図3】実施形態例1における,導体回路とスルーホールとの接続状態を示す説明図。
【図4】実施形態例1の電子部品搭載用基板の断面図。
【図5】実施形態例2の信号用回路の断面図。
【図6】実施形態例2における,信号用回路に形成される磁界の説明図。
【図7】実施形態例2における,電子部品搭載用基板の作用を示すための,図5のC−C矢視断面図。
【図8】実施形態例2における,信号用回路及び接地用回路に形成される電流路の説明図。
【図9】本発明における,隣接する回路に形成される電流路の相互作用を示す説明図。
【図10】従来例における,スルーホールの配置説明図。
【図11】従来例の電子部品搭載用基板の平面図。
【符号の説明】
1...スルーホール,
11...信号用穴,
12...電源用穴,
13...接地用穴,
2...導体回路,
21,210,211...信号用回路,
22,221...電源用回路,
23,230,231...接地用回路,
238...隣接部分,
239...非隣接部分,
5...電子部品搭載用基板,
6...電子部品搭載部,
7...絶縁基材,
8...電子部品,
[0001]
【Technical field】
The present invention relates to an electronic component mounting substrate that can suppress switching noise even when a high-speed electronic component is operated.
[0002]
[Prior art]
Conventionally, as an electronic component mounting substrate, for example, as shown in FIG. 11, an electronic component mounting portion 96 for mounting an electronic component 98 provided on an insulating base 97 and provided around the electronic component mounting portion 96 is provided. Some have a conductive circuit 92 and a through hole 91.
[0003]
The conductor circuit 92 includes a signal circuit 921, a power supply circuit 922, and a ground circuit 923. The through hole 91 includes a signal hole 911, a power supply hole 912, and a grounding hole 913. The signal circuit 921, the power supply circuit 922, and the grounding circuit 923 are connected to the signal hole 911, the power supply hole 912, and the grounding hole 913, respectively.
[0004]
The leading ends of the signal circuit 921, the power supply circuit 922, and the grounding circuit 923 are joined to bonding wires 982 that are connected to the pads 981 of the electronic component 98.
In the drawings of the present application, the signal hole and the signal circuit are indicated as “S”, the power supply hole and the power supply circuit are indicated as “P”, and the grounding hole and the grounding circuit are indicated as “G”.
[0005]
[Problems to be solved]
However, in the conventional electronic component mounting substrate, switching noise may be increased when the electronic component is mounted depending on the arrangement of the through hole or the conductor circuit.
[0006]
That is, for example, the through hole 91 will be described as an example. As shown in FIG. 10, the signal hole 911, the power supply hole 912, and the grounding hole 913 may be arranged adjacent to each other. As shown in FIG. 11, the signal circuit 921, the power supply circuit 922, and the grounding circuit 913 may be arranged adjacent to each other for the conductor circuit 92.
[0007]
Thus, when the same kind of holes or wires are adjacent to each other, the effective inductance is increased by the current flowing through them. As a result, switching noise increases, which may impair the electrical characteristics of the electronic component mounting board. And this switching noise becomes so high that the electric current which flows into an electronic component becomes high speed.
[0008]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an electronic component mounting board that can suppress switching noise even when a high-speed electronic component is operated.
[0009]
[Means for solving problems]
The invention of claim 1 has a conductor circuit provided on the insulating base, a through hole connected to the conductor circuit, and an electronic component mounting portion, and the through hole has a signal hole, a power supply hole, and a ground. In the electronic component mounting board consisting of various holes,
The signal hole, power supply hole, and grounding hole are adjacent to each other .
The conductor circuit is composed of various circuits such as a signal circuit, a power supply circuit, and a ground circuit.
The starting point and the ending point of the current path formed when a current flows through the signal circuit, the grounding circuit, and the power supply circuit are relative to the ending point and starting point of the current path formed in the other adjacent circuit. The electronic component mounting board is characterized by being in a close position .
[0010]
The present invention focuses on the fact that switching noise when an electronic component is operated is proportional to the effective inductance (Le).
That is, the effective inductance (Le) is obtained by subtracting the mutual inductance (Lm) from the self-inductance (Ls) (Le = Ls−Lm). Therefore, in order to reduce the effective inductance (Le), it is only necessary to increase the mutual inductance (Lm), and thereby switching noise can be reduced.
[0011]
Therefore, in the present invention, based on this viewpoint, the signal hole, the power supply hole, and the grounding hole are arranged so that different kinds of holes are adjacent to each other. This reverses the direction of the current flowing in the adjacent holes. In other words, whenever a current flows through the signal hole, a current always flows through the power supply hole and the ground hole, and the direction is reversed.
Therefore, the currents flowing in adjacent holes interfere with each other, and the mutual inductance (Lm) works so as to cancel the self-inductance (Ls).
[0012]
For this reason, the effective inductance (Le) in various holes decreases. Therefore, switching noise can be suppressed low. Therefore, even when high-speed electronic components are operated, switching noise can be suppressed low.
In addition, since the distance between the holes is small, the through holes can be arranged with high density.
[0013]
Further, as in the invention of claim 2, the conductor circuit is composed of various circuits such as a signal circuit, a power supply circuit, and a ground circuit, and the signal circuit, the power supply circuit, and the ground circuit are different from each other. It is preferable that the circuits are adjacent to each other. As a result, the direction of the current flowing in the adjacent circuit is reversed. Therefore, as described above, the currents flowing in adjacent circuits interfere with each other, and the mutual inductance works so as to cancel the self-inductance. This reduces the effective inductance of various circuits.
[0014]
Therefore, like the through hole described above, switching noise can be further suppressed. In addition, since the distance between the circuits is small, the conductor circuits can be arranged with high density.
[0015]
A magnetic field is generated three-dimensionally around each of the signal circuit, the ground circuit, and the power supply circuit by turning the switch on and off. Therefore, different types of circuits interfere with each other not only when they are adjacent in the planar direction of the insulating base material but also when they are adjacent in the vertical direction, reducing effective inductance and switching. Noise can be suppressed.
[0016]
For example, as in the invention of claim 3, the signal circuit, the power supply circuit, and the grounding circuit are such that different kinds of circuits are adjacent to each other in the thickness direction of the insulating base material, and the signal circuit is used. It is preferable that the circuit is provided on the surface of the insulating base material, and the grounding circuit and the power supply circuit are provided inside the insulating base material.
[0017]
As a result, the directions of currents flowing in adjacent circuits are opposite to each other, and the mutual inductance works so as to cancel the self-inductance. As a result, the effective inductance of each circuit is reduced, and switching noise can be suppressed.
In addition, by providing a grounding circuit and a power supply circuit inside the insulating base, the surface of the insulating base can be used effectively for signal circuit mounting. Therefore, signal circuits can be formed on the surface of the insulating base material with high density.
[0018]
Further, as in the invention of claim 4, it is preferable that the signal circuit is adjacent to the grounding circuit provided inside the insulating base material. The reason is that even a slight change in the potential of the grounding circuit may cause malfunction of the electronic component. Therefore, by providing the grounding circuit adjacent to the signal circuit, the self-inductance is reduced by mutual interference between the two, and the switching noise is suppressed, so that the potential of the grounding circuit can be stably maintained. .
[0019]
In addition, the signal circuit, the ground circuit, and the power supply circuit can have various shapes such as a straight line, a curve, and a wide solid shape, but the starting point of the current path formed when a current flows through them, endpoint for the endpoint and the starting point of the current path formed in the circuit of the other adjacent, Ru position near close. Thereby, the generation of isolated current can be suppressed and switching noise can be suppressed.
[0020]
For example, as shown in FIG. 9, the signal circuit 210 has a linear shape, the grounding circuit 230 is a wide solid layer, and the start point Aa and the end point Az of the current path A of the signal circuit 210 are grounded. If the current path Bz of the circuit 230 and the end point B and the start point Ba are not in the same position, the ground circuit 230 is adjacent to the signal circuit 210 in addition to the adjacent portion 239 adjacent to the signal circuit 210. No non-adjacent portion 238 will be formed.
[0021]
In this case, the current flowing through the grounding circuit 230 is affected by the current path A of the signal circuit 210 and flows through a position close to the signal circuit 210, that is, an adjacent portion 239 of the grounding circuit 230. The current path Bq formed in the adjacent portion 239 can be coupled to the current path A of the signal circuit 210, and the effective inductance of both can be suppressed to the minimum (zero).
[0022]
On the other hand, in the non-adjacent portion 238 of the grounding circuit 230, the current path Bp from the start point Ba to the adjacent portion 239 and the current path Br from the adjacent portion 239 to the end point Bz are isolated currents, which cause switching noise. It becomes. Therefore, the start point Ba and the end point Bz of the current path B of the ground circuit 230 are connected to the ground circuit 230 and the signal so that they are close to the end point Az and the start point Aa of the current path A of the signal circuit 210. The circuit 210 is preferably arranged. As a result, switching noise can be suppressed within a practically acceptable range.
[0023]
Examples of the start point and end point of the current path include through holes, bonding pads, pins, balls for connection, capacitors, and the like.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1
An electronic component mounting board according to an embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 2, the electronic component mounting substrate of this example has a conductor circuit 2 provided on the insulating base material 7, a through hole 1 connected to the conductor circuit 2, and a concave shape for mounting the electronic component 8. And an electronic component mounting portion 6. The through hole 1 includes various holes such as a signal hole 11, a power supply hole 12 and a grounding hole 13.
[0025]
As shown in FIG. 1, the signal hole 11, the power supply hole 12, and the grounding hole 13 are adjacent to each other. In other words, the holes of the same kind are arranged so as not to be adjacent to each other.
For example, on the X-axis line of FIG. 1, the ground holes 13 and the signal holes 11 are alternately arranged, such as a ground hole (G), a signal hole (S), and a ground hole (G). ing. Also, on the Y-axis line of the figure, power supply holes 12 and signal holes 11 are alternately arranged, such as power supply holes (P), signal holes (S), and power supply holes (P). Yes.
[0026]
The conductor circuit 2 includes various circuits such as a signal circuit 21, a power supply circuit 22, and a ground circuit 23 as shown in FIG. The signal circuit 21, the power supply circuit 22, and the ground circuit 23 are adjacent to each other in different lines. For example, the power supply circuit (P), the signal circuit (S), the ground circuit (G), and the signal circuit (S) are disposed between the signal circuits 21 around the electronic component mounting unit 6. , Power supply circuits 22 and grounding circuits 23 are alternately arranged.
[0027]
As shown in FIGS. 2 and 3, the signal circuit 21, the power supply circuit 22, and the grounding circuit 23 are connected to the signal hole 11, the power supply hole 12, and the grounding hole 13, respectively.
The signal circuit 21, the power supply circuit 22, and the grounding circuit 23 join the bonding pads provided at the tips thereof to the bonding pads 81 and the bonding wires 82 of the electronic component 8.
[0028]
As shown in FIG. 4, the insulating base material 7 includes three resin substrates 71, 72, and 73. The through hole 1 is provided through the insulating base material 7. A metal plating film 20 such as copper plating or nickel gold plating is applied to the inner wall of the through hole 1.
[0029]
The effect of this example will be described.
In the electronic component mounting board 5 of this example, as shown in FIG. 1, the signal hole 11, the power supply hole 12, and the grounding hole 13 are arranged so that different types of holes are adjacent to each other. This reverses the direction of the current flowing in the adjacent holes.
Therefore, as described above, the mutual inductance (Lm) works so that the currents flowing through the adjacent holes interfere with each other and cancel the self-inductance (Ls). For this reason, the effective inductance (Le) of various holes decreases.
[0030]
Therefore, switching noise can be suppressed low. In general, the switching noise increases as the current flowing through each hole increases, but in this example, the effective inductance is small as described above. Therefore, even when high-speed electronic components are operated, switching noise can be suppressed low. Further, since the distance between the holes and the distance between the circuits are reduced, the through holes 1 and the conductor circuits 2 can be arranged with high density.
[0031]
As shown in FIG. 2, the signal circuit 21, the power circuit 22, and the ground circuit 23 are adjacent to each other in different types of circuits. For this reason, the direction of the current flowing in the adjacent circuit is reversed. For this reason, currents flowing in adjacent circuits interfere with each other, and mutual inductance works so as to cancel self-inductance. This reduces the effective inductance of various circuits. Therefore, like the through hole described above, switching noise can be further suppressed.
[0032]
As shown by a dotted line in FIG. 3, when the signal hole 110 is moved away from different holes, for example, the ground hole 13, a mutual inductance is formed between the ground hole 13 and the signal hole 110. (Lm) does not occur. Therefore, the effective inductance (Le) does not decrease. Therefore, as shown by the solid line in the figure, the grounding hole 13 and the signal hole 110 need to be adjacent to each other.
[0033]
Embodiment 2
As shown in FIG. 5, the electronic component mounting board of this example is provided with a signal circuit 211 on the surface of the insulating base material 7, and a grounding circuit 231 and a power supply circuit 221 inside the insulating base material 7. Yes. Different circuits of the signal circuit 211, the ground circuit 231, and the power supply circuit 221 are adjacent to each other in the thickness direction of the insulating substrate 7. As shown in FIGS. 5 and 8, the grounding circuit 231 and the power supply circuit 221 are solid layers extending over almost the entire surface of the insulating base material 7.
[0034]
The electronic component mounting portion 6 is formed by a through hole 61 that penetrates the insulating base material 7 and a heat radiating plate 62 that covers one opening of the through hole 61. A side surface pattern 232 connected to the grounding circuit 231 inside the insulating base material is provided on the wall surface of the through hole 61. Around the electronic component mounting portion 6, a grounding bonding pad 233 connected to the side surface pattern 232 and bonding pads 212 and 222 connected to the signal circuit 211 and the power supply circuit 221 are provided.
The bonding pads 212, 222, and 233 are electrically connected to the bonding pad 81 of the electronic component 8 mounted on the electronic component mounting unit 6 by the bonding wire 82.
[0035]
The various holes of the signal hole 11, the power supply hole 12 and the grounding hole 13 are arranged so that holes of different kinds are adjacent to each other.
Others are the same as in the first embodiment.
[0036]
Next, the operation and effect of this example will be described.
The signal circuit 211 is provided on the surface of the insulating base material 7 as shown in FIG. Here, the magnetic field M of the signal circuit 211 spreads three-dimensionally around the signal circuit 211. Therefore, when the current flowing through the signal circuit 211 changes, adjacent signal circuits 211 interfere with each other, and switching noise is generated.
Therefore, in this example, as shown in FIG. 7, the signal circuit 211, the ground circuit 231, and the power supply circuit 221 are arranged in the thickness direction of the insulating base 7 so as to be adjacent to each other. .
[0037]
Therefore, as shown in FIGS. 5 and 7, when the switch is turned on, the current flowing through the power supply circuit 221 and the current flowing through the signal circuit 211 flow in opposite directions, reducing the effective inductance and switching. Noise can be suppressed.
[0038]
On the other hand, when the switch is turned off, the current flowing through the grounding circuit 231 and the current flowing through the signal circuit 211 flow in opposite directions, and switching noise can be suppressed.
A grounding circuit 231 and a power supply circuit 221 that are solid layers are provided inside the insulating base material 7. Therefore, a space for effectively using the surface of the insulating base 7 for the signal circuit 211 can be secured.
[0039]
The grounding circuit 231 is provided adjacent to the signal circuit 211 in the thickness direction of the insulating substrate 7. Therefore, the potential of the grounding circuit 231 can be stably maintained by reducing the self-inductance due to mutual interference between the two and suppressing switching noise.
[0040]
As shown in FIG. 8, when the switch is turned off, a current path A is formed in the signal circuit 211 with the signal hole 11 as the start point Aa and the bonding pad 212 as the end point Az. On the other hand, in the grounding circuit 231 adjacent to the signal circuit 211, a current path B having the side surface pattern 232 as the start point Ba and the grounding hole 13 as the end point Bz is formed. In the signal circuit 211 and the ground circuit 231, current paths A and B are formed in opposite directions.
[0041]
The current path B of the ground circuit 231 is affected by the current path A of the signal circuit 211 and passes through a portion located at the shortest distance from the signal circuit 211, that is, an adjacent portion 239 directly below the signal circuit 211. It reaches the grounding hole 13. The current path A of the signal circuit 211 and the current path Bq flowing through the adjacent portion 239 in the ground circuit 231 interfere with each other to suppress both switching noises.
[0042]
On the other hand, the current path Bp formed from the start point Ba of the current path B of the grounding circuit 231 to the current path Bq of the adjacent portion and the current path Br formed from the current path Bq to the end point Bz are , A signal circuit 211 is not disposed thereabove. Therefore, the current flowing through the current paths Bp and Br is an isolated current.
[0043]
However, the signal hole 11 that is the start point Aa of the current path A of the signal circuit 211 and the ground hole 13 that is the end point Bz of the current path B of the ground circuit 231 are formed at a narrow pitch as described above. Yes. Therefore, the generation of isolated current can be suppressed to a level that can withstand practical use.
[0044]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, even when a high-speed electronic component is operated, a switching noise can be suppressed low and the electronic component mounting board in which high-density mounting is possible can be provided.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of arrangement of through holes in Embodiment 1;
2 is a plan view of an electronic component mounting board according to Embodiment 1; FIG.
FIG. 3 is an explanatory diagram illustrating a connection state between a conductor circuit and a through hole in the first embodiment.
4 is a cross-sectional view of an electronic component mounting board according to Embodiment 1; FIG.
FIG. 5 is a cross-sectional view of a signal circuit according to a second embodiment.
6 is an explanatory diagram of a magnetic field formed in a signal circuit in Embodiment 2. FIG.
7 is a cross-sectional view taken along the line CC of FIG. 5 for illustrating the operation of the electronic component mounting board according to the second embodiment.
8 is an explanatory diagram of current paths formed in a signal circuit and a ground circuit in Embodiment 2. FIG.
FIG. 9 is an explanatory diagram showing the interaction of current paths formed in adjacent circuits in the present invention.
FIG. 10 is an explanatory diagram of arrangement of through holes in a conventional example.
FIG. 11 is a plan view of a conventional electronic component mounting board.
[Explanation of symbols]
1. . . Through hole,
11. . . Signal hole,
12 . . Power hole,
13. . . Grounding hole,
2. . . Conductor circuit,
21, 210, 211. . . Signal circuit,
22,221. . . Power circuit,
23, 230, 231. . . Grounding circuit,
238. . . Adjacent parts,
239. . . Non-adjacent part,
5). . . Electronic component mounting board,
6). . . Electronic component mounting part,
7). . . Insulating substrate,
8). . . Electronic components,

Claims (4)

絶縁基材に設けた導体回路と,該導体回路に接続されたスルーホールと,電子部品搭載部とを有すると共に,上記スルーホールは信号用穴,電源用穴及び接地用穴の各種の穴よりなる電子部品搭載用基板において,
上記信号用穴と電源用穴と接地用穴とは,異種の穴同志が互いに隣接しており,
上記導体回路は,信号用回路,電源用回路及び接地用回路の各種の回路よりなり,
上記信号用回路,上記接地用回路,及び上記電源用回路に電流が流れた時に形成される電流路の始点及び終点は,隣接する他方の回路に形成される電流路の終点及び始点に対して,近接した位置にあることを特徴とする電子部品搭載用基板。
It has a conductor circuit provided on the insulating substrate, a through hole connected to the conductor circuit, and an electronic component mounting portion. The through hole is formed from various holes such as a signal hole, a power supply hole, and a grounding hole. In the electronic component mounting board
The signal hole, power supply hole, and grounding hole are adjacent to each other .
The conductor circuit is composed of various circuits such as a signal circuit, a power supply circuit, and a ground circuit.
The starting point and the ending point of the current path formed when a current flows through the signal circuit, the grounding circuit, and the power supply circuit are relative to the ending point and starting point of the current path formed in the other adjacent circuit. An electronic component mounting board characterized by being in close proximity .
請求項1において,上記導体回路は,信号用回路,電源用回路及び接地用回路の各種の回路よりなり,信号用回路と電源用回路と接地用回路とは,異種の回路同志が互いに隣接していることを特徴とする電子部品搭載用基板。  2. The conductor circuit according to claim 1, wherein the conductor circuit includes various circuits such as a signal circuit, a power supply circuit, and a ground circuit. An electronic component mounting board characterized by that. 請求項2において,上記信号用回路と電源用回路と接地用回路とは,異種の回路同志が上記絶縁基材の厚み方向に互いに隣接しており,かつ,上記信号用回路は上記絶縁基材の表面に,上記接地用回路及び上記電源用回路は上記絶縁基材の内部に設けられていることを特徴とする電子部品搭載用基板。  3. The signal circuit, the power supply circuit, and the ground circuit according to claim 2, wherein different types of circuits are adjacent to each other in the thickness direction of the insulating base material, and the signal circuit is the insulating base material. The electronic component mounting board according to claim 1, wherein the grounding circuit and the power supply circuit are provided inside the insulating base. 請求項3において,上記信号用回路は,上記絶縁基材の内部に設けた上記接地用回路と隣接していることを特徴とする電子部品搭載用基板。  4. The electronic component mounting board according to claim 3, wherein the signal circuit is adjacent to the grounding circuit provided inside the insulating base material.
JP35856796A 1996-03-28 1996-12-27 Electronic component mounting board Expired - Lifetime JP3928195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35856796A JP3928195B2 (en) 1996-03-28 1996-12-27 Electronic component mounting board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10360296 1996-03-28
JP8-103602 1996-03-28
JP35856796A JP3928195B2 (en) 1996-03-28 1996-12-27 Electronic component mounting board

Publications (2)

Publication Number Publication Date
JPH09321393A JPH09321393A (en) 1997-12-12
JP3928195B2 true JP3928195B2 (en) 2007-06-13

Family

ID=26444222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35856796A Expired - Lifetime JP3928195B2 (en) 1996-03-28 1996-12-27 Electronic component mounting board

Country Status (1)

Country Link
JP (1) JP3928195B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998020557A1 (en) * 1996-11-08 1998-05-14 W.L. Gore & Associates, Inc. Method for reducing via inductance in an electronic assembly and device

Also Published As

Publication number Publication date
JPH09321393A (en) 1997-12-12

Similar Documents

Publication Publication Date Title
WO2004021435A1 (en) Module part
JPH08111015A (en) Supporting device of magnetic head slider and magnetic head device
JP2001102817A (en) High frequency circuit and shielded loop magnetic field detector using the same
US4551789A (en) Multilayer ceramic substrates with several metallization planes
JPH076928A (en) Installation structure of capacitor on printed circuit board
JP3164658B2 (en) Electronic circuit device
US6040621A (en) Semiconductor device and wiring body
US6407340B1 (en) Electric conductor with a surface structure in the form of flanges and etched grooves
JP5413597B2 (en) Wiring board
JP6504960B2 (en) Printed board
JP2009111132A (en) Multilayer wiring board
JP3928195B2 (en) Electronic component mounting board
JP4582491B2 (en) Metal substrate
JP4026188B2 (en) Printed wiring board
JPH07212077A (en) Hybrid integrated circuit device
JP3622428B2 (en) Electrical circuit device
JP6425632B2 (en) Printed board
JP2527507B2 (en) Lead frame and semiconductor device using the same
JP2754764B2 (en) Hybrid integrated circuit
JP3928152B2 (en) Printed wiring board
JPH07283580A (en) Printed wiring board
JPH0741161Y2 (en) Hybrid integrated circuit
JP3002573B2 (en) Mounting structure of semiconductor circuit element
JP2867737B2 (en) Hybrid integrated circuit
JP3796773B2 (en) Multi-layer board for mounting electronic components

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070226

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6