JP3928152B2 - Printed wiring board - Google Patents

Printed wiring board Download PDF

Info

Publication number
JP3928152B2
JP3928152B2 JP2002030790A JP2002030790A JP3928152B2 JP 3928152 B2 JP3928152 B2 JP 3928152B2 JP 2002030790 A JP2002030790 A JP 2002030790A JP 2002030790 A JP2002030790 A JP 2002030790A JP 3928152 B2 JP3928152 B2 JP 3928152B2
Authority
JP
Japan
Prior art keywords
copper
copper plate
conductor pattern
plate
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002030790A
Other languages
Japanese (ja)
Other versions
JP2003234548A (en
Inventor
和弘 新宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP2002030790A priority Critical patent/JP3928152B2/en
Publication of JP2003234548A publication Critical patent/JP2003234548A/en
Application granted granted Critical
Publication of JP3928152B2 publication Critical patent/JP3928152B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、プリント配線板、特に、供給する電流容量の異なる複数種の銅張板が形成されたプリント配線板に関するものである。
【0002】
【従来の技術】
プリント配線板上には、信号パターンの他、電源パターンやグランドパターンが形成され、これらの導体パターンに流れる電流量はそれぞれ相違している。それぞれの導体パターンは使用される電流容量に応じて形成され、通常の使用状態において導体パターンの温度上昇が10°C以下になるように設計される。この使用条件を満たすための手段として、導体パターンを流れる電流量に応じて導体パターンの幅を変化させて形成する方法が用いられている。即ち、小さな電流が流れる導体パターン(例えば、弱電流信号パターン)では幅を狭く形成し、大きな電流が流れる導体パターン(例えば、電源パターン)では幅を広く形成する方法である。
【0003】
また、使用条件を満たす別な手段として、導体パターンを流れる電流量に応じて導体パターンの厚さを変化させて形成する方法が用いられている。即ち、小さな電流が流れる導体パターンでは厚さを薄く形成し、大きな電流が流れる導体パターンでは厚さを厚く形成する方法である。導体パターンを厚くする手段としては、例えば、半田付けにより導体パターン上に半田を肉盛りする方法が取られている。更に、使用条件を満たす別な手段として、銅板やビニール被覆電線等の導電性材料をパターン間に半田付けにより追加接続あるいは代替接続する方法が用いられている。
【0004】
【発明が解決しようとする課題】
しかしながら、近年の電子部品の小型化に伴いプリント配線板上に実装される部品の高密度化が進み、それぞれの部品間を接続する導体パターンの線幅および線間スペースも微細に形成することが必要となってきている。従って、上述した使用条件を満たすために流れる電流量に応じて導体パターンの幅を変化させて形成する従来の方法では、大きな電流の流れる導体パターンの面積が広くなり、導体パターンを微細に形成するという方向性に反すると共に、プリント配線板を小型化できないという不具合があった。
【0005】
また、使用条件を満たすために流れる電流量に応じて導体パターンの厚さを変化させて形成する従来の方法では、プリント配線板の面積を小型化するという点では有効であるが、エッチングの際に隣接する導体パターン間で半田がブリッジしてパターンショートが発生したり、半田の熱によって導体パターンが変形あるいは切断されるという虞があった。
更に、使用条件を満たすために銅板やビニール被覆電線等の導電性材料をパターン間に半田付けにより代替接続あるいは追加接続する従来の方法では、銅板とプリント配線板を接続するためにバーリング加工が必要となったり、ビニール被覆電線を接続するために専用のスルーホールが必要となり、作業コストの大幅アップやプリント配線板の大型化を伴なうという欠点があった。
【0006】
本発明は、上記課題を解決するためになされたものであり、プリント配線板の小型化を実現するとともに製造工程における加工コストのアップを抑制し、導体パターンの電流容量を増大させることができるプリント配線板の提供を目的とするものである。
【0007】
【課題を解決するための手段】
上記課題を解決するために、請求項1の発明は、任意の形状あるいは幅を有する銅張板が形成されたプリント配線板において、前記銅張板に形成された半田付け部と、前記銅張板上に重ねて配設される銅板であって、配設される位置の銅張板の形状と同一形状、あるいは相似形状であって銅張板よりも小さい形状に形成された銅板設けられ前記銅板の厚さは、銅板の幅をパラメータにして、1つの銅板の中で幅が狭く形成されている部分では厚く、幅が広く形成されている部分では薄く形成されており、前記銅板の両端部は前記銅張板に形成された対応する位置の前記半田付け部にそれぞれ半田付けによって表面実装され、前記銅板の両端部分には面積拡大部が形成されていることを特徴とするものである。
【0008】
ここで、銅板が銅張板上に重ねて配設されるとは、銅板と銅張板との形状が全く同一であり銅張板の上に銅板がぴったり重なり合うこと、あるいは銅板と銅張板との形状は全く同一ではないが銅張板の領域内に銅板が配設され銅張板の外部に銅板がはみ出していないことをいう。また、銅板の形状が配設される位置の銅張板と略同一形状に形成されるとは、両者の形状および大きさが全く同一に形成されている場合の他、相似形状に形成されているものも含む。
銅張板には信号銅張板、電源銅張板、アース銅張板が含まれ(以下、これらの銅張板を導体パターンともいう)、導体パターン上に導電性材料の銅板を重ねて配設することにより電流容量を増大させ、導体パターン幅の増加を抑える。重ねて配設する銅板の形状を配設される位置の導体パターンの形状と略同一にすることにより、導体パターンと銅板に流れる電流の経路を同様にすることができ、ノイズ放射特性の向上を図ることができる。
【0009】
また、各導体パターンを流れる電流量に応じて導体パターンに重ねて配設する銅板の厚さを変化させることができるので、必要最小限のパターン厚(導体パターンに銅板を重ねた厚さ)に設定することができる。
【0010】
また、銅張板に半田付けされる銅板の両端部近傍(銅板の両端部分)の面積を拡大して形成することにより、銅張板と銅板との接触抵抗値を低減させる。また、銅板の両端部分以外(銅板の中央部分)の面積を銅板の両端部分の面積よりも小さく形成することにより、隣接する導体パターンとの絶縁距離を大きく確保する。
【0011】
【発明の実施の形態】
以下、本発明に係るプリント配線板の実施の形態を添付図面に基づいて説明する。
【0012】
図1は、プリント配線板1の一形態を示す上面図であり、図2は、図1のE−E線における断面図である。ガラスエポキシ材等からなる絶縁基板2の面上には、銅箔からなる導体パターン3が張り付けられパターンエッチングされている。ここで、導体パターン3には信号銅張板、電源銅張板、アース銅張板等が含まれ、それぞれ設計された回路を形成して任意の形態で絶縁基板上にパターンエッチングされている。それぞれの銅張板は必要となる電流容量に応じてパターンエッチング可能な範囲で張り付ける銅箔の厚さを変化させてもよいし、あるいは全ての銅張板の厚さを一定にしてもよい。
【0013】
導体パターン3上には導電性材料からなる銅板5が半田付けによって表面実装されている。銅板5はその両端部が導体パターン3上に形成された半田付け部6に半田付けされている。図2における銅板5の両端部には半田付け部6に盛られた半田4が示されている。また、導体パターン3上には電子部品の半田付け部7とその半田付け部7の中央部に電子部品取付け用のスルーホール8が形成されている。図2に示すように電子部品9は、電子部品のリード線10がスルーホール8に通されリード線10の端部が半田付け部7に半田付け(半田4')されて取り付けられている。尚、この形態では電子部品9を、絶縁基板2の導体パターン3および銅板5が設けられる面とは反対側の面に設ける場合について説明したが、この形態に限定されるものではなく導体パターン3等と同一面上に設ける場合であってもよい。
【0014】
図3は、導体パターン3上に表面実装される銅板5の一形態を示す斜視図である。銅板5は板状の銅を任意のパターン形状に打ち抜き加工したものであり、所定の厚さtを有している。また、銅板5の形状は銅板5が配設される位置の導体パターン3の形状(後述する)と同一に形成されている。そして、銅板5は導体パターン3上に配設されたとき銅板5の両端部11、12が半田付け部6に半田付けされる。銅板5の厚さtは表面実装される位置の導体パターン3によって、即ち、導体パターン3が構成する回路に流れる電流の大きさに応じて変化し、大きな電流の流れる回路では厚さtの厚い銅板5が使用される。回路を流れる電流の大きさに応じて銅板5の厚さtを変化させ、銅板5の実装された導体パターン3部、即ち、導体の必要となる電流容量を得ている。
【0015】
図4は、導体パターン3上に表面実装される銅板5の別の一形態を示す斜視図である。図3に示す銅板5の形態では、全体において銅板5の厚さtが一様である場合について示したがこの形態に限定されるものではない。銅板5の厚さは所定の電流容量を確保するために変化させているので、銅板5を実装する導体パターン3部を流れる電流の大きさに加えて導体パターン3の幅をパラメータにして銅板5の厚さを設定してもよい。即ち、銅板5(配設される位置の導体パターン3の形状と同一に形成される)は、図4に示すように幅Wが狭く形成されている部分13の銅板5の厚さpを銅板5の幅W'、W"が広く形成されている部分14、15の厚さp'、p"よりも厚く形成するものであってもよい。このような形状にする場合であっても導体の必要となる電流容量を得ることができる。
【0016】
図5は、銅板5が実装されていない状態の導体パターン3の一形態を示す図である。導体パターン3は、導体パターン3に接続される銅板5あるいは電子部品9との接続抵抗を低減させるために、銅板5および電子部品9が接続される(半田付けされる)部分20、21の面積が大きく形成されている。また、導体パターン3は、銅板5等が接続されない部分22の幅(面積)が銅板5等が接続される部分20、21の幅(面積)よりも狭いくびれ形状に形成されている。このように導体パターン3をくびれ形状にすることにより、他の導体パターン3'、3"との絶縁距離h、h'(図1参照)を十分に確保することができるとともに絶縁基板2上の部品等の実装密度を高めることができる。
【0017】
また、銅板5は導体パターン3に実装したときに導体パターン3上に重なって配設されるように、銅板5が配設される位置の導体パターン3の形状と同一形状に形成されている。即ち、導体パターン3に半田付けされる銅板5の両端の部分14、15では面積が大きく、導体パターン3のくびれ部分22上に配設される部分13では幅が狭く(面積が小さく)形成されている(図3参照)。
このように、銅板5を導体パターン3と同一形状に形成して重ねて配設することにより、導体パターンと銅板に流れる電流の経路を同様にすることができ、ノイズ放射特性の向上を図ることができる。
【0018】
尚、銅板5は、導体パターン3上に表面実装したときに導体パターン3の領域内に重ねて配設されればよい。従って、銅板5には、銅板が配設される位置の銅張板と形状および大きさが全く同一のものだけでなく、略同一形状のもの、例えば銅板と導体パターンの形状が相似形状のもの、銅板の一部の幅あるいは長さが導体パターンの形状よりも狭いあるいは短いものも含まれる。
【0019】
銅板5は上述したように、その両端部11、12が半田付けによって導体パターン3上に固定されているので、容易に銅板5の取付けおよび取外しが可能である。従って、設計変更等により回路を流れる電流量が変化した場合でも、それぞれの回路を流れる電流の大きさに応じて導体の必要な電流容量を得るために所定の厚さの銅板5を選択して取り付けることができる。
【0020】
具体的には、隣接して配置される部品間や近距離に配置される部品間に形成された導体パターンの電流容量が、設計変更等により不足した場合に、それらの部品間の導体パターン上に所定の厚さの銅板を表面実装させることにより、使用条件(通常使用状態における導体の温度上昇の抑制)を満足させる導体の電流容量を確保することができる。
【0021】
また、銅板5を取り外した場合にも絶縁基板2上には導体パターン3が形成されているので、流れる電流が小さい導体パターン(例えば、小信号用の回路)には銅板5を実装しなくてもよく、必要に応じて銅板5を着脱することができる。
【0022】
【発明の効果】
以上のことから、本発明に係るプリント配線板によれば、所定の厚さを有する銅板を重ねて配設する位置の銅張板と同一形状に形成し、銅板の両端部を半田付けのみによって銅張板上に固定しているので、特別の加工作業(バーリング加工等)を必要とせず、製造コストの増加を抑えることができるとともに、導体部(銅板と導体パターン)を流れる電流の経路を同様にすることができるので、ノイズ放射特性の向上を図ることができる。
【0023】
また、銅板を半田付けのみによって銅張板上に固定しているので、銅板の着脱を容易に行なうことができる。従って、回路を流れる電流量に応じて所定の厚さの銅板を容易に取付けることができ、作業性の向上を図ることができるとともに導体の必要な電流容量を確保することができる。
更に、銅板を銅張板上に表面実装しているので、絶縁基板に銅板接続用の専用のスルーホールを設ける必要がなく、絶縁基板上に配置する部品等の実装密度を高くすることができる。
【図面の簡単な説明】
【図1】本発明に係るプリント配線板の一形態を示す上面図である。
【図2】図1のE−E線における断面図である。
【図3】本発明に係るプリント配線板の、導体パターン上に表面実装される銅板の一形態を示す斜視図である。
【図4】図3とは別の銅板の一形態を示す斜視図である。
【図5】本発明に係るプリント配線板の、銅板が実装されていない状態の導体パターンの一形態を示す図である。
【符号の説明】
1 プリント配線板
2 絶縁基板
3、3'、3" 導体パターン
4、4' 半田
5 銅板
6、7 半田付け部
8 スルーホール
9 電子部品
h、h' 絶縁距離
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a printed wiring board, and more particularly to a printed wiring board on which a plurality of types of copper-clad boards having different current capacities to be supplied are formed.
[0002]
[Prior art]
On the printed wiring board, in addition to the signal pattern, a power supply pattern and a ground pattern are formed, and the amounts of current flowing through these conductor patterns are different. Each conductor pattern is formed according to the current capacity to be used, and is designed so that the temperature rise of the conductor pattern is 10 ° C. or less in a normal use state. As a means for satisfying this use condition, a method of changing the width of the conductor pattern according to the amount of current flowing through the conductor pattern is used. In other words, the conductor pattern (for example, weak current signal pattern) through which a small current flows is formed with a narrow width, and the conductor pattern (for example, a power supply pattern) through which a large current flows is formed with a wide width.
[0003]
As another means that satisfies the usage conditions, a method of changing the thickness of the conductor pattern in accordance with the amount of current flowing through the conductor pattern is used. That is, the method is to form a thin conductor pattern in which a small current flows, and to increase the thickness in a conductor pattern through which a large current flows. As a means for thickening the conductor pattern, for example, a method of overlaying solder on the conductor pattern by soldering is employed. Furthermore, as another means satisfying the use conditions, a method of additionally connecting or alternative connecting a conductive material such as a copper plate or a vinyl-coated electric wire by soldering between patterns is used.
[0004]
[Problems to be solved by the invention]
However, with the recent miniaturization of electronic components, the density of components mounted on a printed wiring board has increased, and the line width and space between conductor patterns that connect each component can be finely formed. It has become necessary. Therefore, in the conventional method in which the width of the conductor pattern is changed in accordance with the amount of current flowing to satisfy the above-described use conditions, the area of the conductor pattern through which a large current flows increases, and the conductor pattern is formed finely. However, the printed wiring board cannot be miniaturized.
[0005]
In addition, the conventional method in which the thickness of the conductor pattern is changed in accordance with the amount of current flowing to satisfy the usage conditions is effective in reducing the area of the printed wiring board. There is a possibility that the solder bridges between adjacent conductor patterns to cause a pattern short, or that the conductor pattern is deformed or cut by the heat of the solder.
Furthermore, in order to satisfy the conditions of use, the conventional method of connecting or additionally connecting conductive materials such as copper plates and vinyl-coated wires by soldering between patterns requires burring to connect the copper plate and the printed wiring board. In addition, a dedicated through-hole is required to connect the vinyl-coated electric wire, resulting in a significant increase in work cost and an increase in the size of the printed wiring board.
[0006]
The present invention has been made in order to solve the above-described problems, and can achieve a reduction in the size of a printed wiring board, suppress an increase in processing cost in a manufacturing process, and increase a current capacity of a conductor pattern. The purpose is to provide a wiring board.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention of claim 1 is a printed wiring board in which a copper-clad board having an arbitrary shape or width is formed, a soldering portion formed on the copper-clad board, and the copper-clad board. a copper plate to be arranged superimposed on the plate, the shape and the same shape of the copper clad laminate position disposed, or copper plate which is formed by a similar shape to the shape smaller than the copper clad laminate is provided is, the thickness of the copper plate, and the width of the copper plate parameters, thicker in a portion where the width in one of the copper plate is formed narrower, which is thinner at the portion which is wider form, wherein Both ends of the copper plate are surface-mounted by soldering to the soldering portions at corresponding positions formed on the copper-clad plate, respectively , and area expansion portions are formed at both ends of the copper plate. To do.
[0008]
Here, the copper plate is disposed on the copper clad plate so that the shape of the copper plate and the copper clad plate is exactly the same, and the copper plate exactly overlaps the copper clad plate, or the copper plate and the copper clad plate. Although the shape is not exactly the same, the copper plate is disposed in the region of the copper-clad plate and the copper plate does not protrude outside the copper-clad plate. In addition, the shape of the copper plate is formed in substantially the same shape as the copper-clad plate at the position where the copper plate is disposed, in addition to the case where the shape and size of both are formed exactly the same, Including those that are.
Copper-clad plates include signal copper-clad plates, power supply copper-clad plates, and grounded copper-clad plates (hereinafter these copper-clad plates are also referred to as conductor patterns), and a copper plate made of a conductive material is placed on the conductor pattern. This increases the current capacity and suppresses the increase in the conductor pattern width. By making the shape of the copper plate to be overlaid substantially the same as the shape of the conductor pattern at the location where it is placed, the path of the current flowing through the conductor pattern and the copper plate can be made similar, and noise emission characteristics can be improved. Can be planned.
[0009]
In addition , since the thickness of the copper plate placed on the conductor pattern can be changed according to the amount of current flowing through each conductor pattern, the required minimum pattern thickness (thickness of the copper plate on the conductor pattern) can be achieved. Can be set.
[0010]
Further , the contact resistance value between the copper-clad plate and the copper plate is reduced by forming an enlarged area in the vicinity of both ends (both ends of the copper plate) of the copper plate soldered to the copper-clad plate. Further, by forming the area other than both end portions of the copper plate (the center portion of the copper plate) smaller than the area of both end portions of the copper plate, a large insulation distance from the adjacent conductor pattern is ensured.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a printed wiring board according to the present invention will be described below with reference to the accompanying drawings.
[0012]
FIG. 1 is a top view showing one embodiment of the printed wiring board 1, and FIG. 2 is a cross-sectional view taken along the line EE of FIG. On the surface of the insulating substrate 2 made of glass epoxy material or the like, a conductor pattern 3 made of copper foil is pasted and pattern-etched. Here, the conductor pattern 3 includes a signal copper-clad plate, a power supply copper-clad plate, a ground copper-clad plate, and the like. Each designed circuit is formed and etched on the insulating substrate in an arbitrary form. Each copper-clad plate may vary the thickness of the copper foil to be pasted within a range where pattern etching can be performed according to the required current capacity, or the thickness of all copper-clad plates may be constant. .
[0013]
A copper plate 5 made of a conductive material is surface-mounted on the conductor pattern 3 by soldering. Both ends of the copper plate 5 are soldered to soldering portions 6 formed on the conductor pattern 3. Solder 4 deposited on the soldering portion 6 is shown at both ends of the copper plate 5 in FIG. On the conductor pattern 3, an electronic component soldering portion 7 and a through hole 8 for attaching the electronic component are formed at the center of the soldering portion 7. As shown in FIG. 2, the electronic component 9 is attached by the lead wire 10 of the electronic component being passed through the through hole 8 and the end portion of the lead wire 10 being soldered (solder 4 ′) to the soldering portion 7. In this embodiment, the case where the electronic component 9 is provided on the surface of the insulating substrate 2 opposite to the surface on which the conductor pattern 3 and the copper plate 5 are provided has been described. However, the present invention is not limited to this embodiment, and the conductor pattern 3 It may be provided on the same plane as the above.
[0014]
FIG. 3 is a perspective view showing an embodiment of the copper plate 5 that is surface-mounted on the conductor pattern 3. The copper plate 5 is obtained by punching plate-like copper into an arbitrary pattern shape, and has a predetermined thickness t. The shape of the copper plate 5 is the same as the shape (described later) of the conductor pattern 3 at the position where the copper plate 5 is disposed. When the copper plate 5 is disposed on the conductor pattern 3, both end portions 11 and 12 of the copper plate 5 are soldered to the soldering portion 6. The thickness t of the copper plate 5 varies depending on the conductor pattern 3 at the surface-mounted position, that is, according to the magnitude of the current flowing through the circuit formed by the conductor pattern 3, and the thickness t is thick in the circuit through which a large current flows. A copper plate 5 is used. The thickness t of the copper plate 5 is changed in accordance with the magnitude of the current flowing through the circuit to obtain the current capacity required for the conductor pattern 3 portion on which the copper plate 5 is mounted, that is, the conductor.
[0015]
FIG. 4 is a perspective view showing another embodiment of the copper plate 5 that is surface-mounted on the conductor pattern 3. In the form of the copper plate 5 shown in FIG. 3, the case where the thickness t of the copper plate 5 is uniform is shown as a whole, but is not limited to this form. Since the thickness of the copper plate 5 is changed in order to ensure a predetermined current capacity, the copper plate 5 is defined by using the width of the conductor pattern 3 as a parameter in addition to the magnitude of the current flowing through the conductor pattern 3 portion on which the copper plate 5 is mounted. May be set. That is, the copper plate 5 (formed in the same shape as the conductor pattern 3 at the position where it is disposed) has a thickness p of the copper plate 5 of the portion 13 where the width W is formed narrow as shown in FIG. 5 may be formed to be thicker than the thicknesses p ′ and p ″ of the portions 14 and 15 where the widths W ′ and W ″ are widely formed. Even in such a shape, the current capacity required for the conductor can be obtained.
[0016]
FIG. 5 is a diagram showing an embodiment of the conductor pattern 3 in a state where the copper plate 5 is not mounted. The conductor pattern 3 has areas 20 and 21 to which the copper plate 5 and the electronic component 9 are connected (soldered) in order to reduce the connection resistance with the copper plate 5 or the electronic component 9 connected to the conductor pattern 3. Is formed large. The conductor pattern 3 is formed in a constricted shape in which the width (area) of the portion 22 to which the copper plate 5 or the like is not connected is narrower than the width (area) of the portions 20 or 21 to which the copper plate 5 or the like is connected. By making the conductor pattern 3 constricted in this way, it is possible to sufficiently secure the insulation distances h and h ′ (see FIG. 1) from the other conductor patterns 3 ′ and 3 ″, and also on the insulating substrate 2. The mounting density of components and the like can be increased.
[0017]
Further, the copper plate 5 is formed in the same shape as the conductor pattern 3 at the position where the copper plate 5 is disposed so that the copper plate 5 is disposed so as to overlap the conductor pattern 3 when mounted on the conductor pattern 3. That is, the areas 14 and 15 at both ends of the copper plate 5 to be soldered to the conductor pattern 3 have a large area, and the portion 13 disposed on the constricted part 22 of the conductor pattern 3 has a narrow width (small area). (See FIG. 3).
Thus, by forming the copper plate 5 in the same shape as the conductor pattern 3 and arranging the copper plate 5 in an overlapping manner, the path of the current flowing through the conductor pattern and the copper plate can be made the same, and the noise radiation characteristics can be improved. Can do.
[0018]
The copper plate 5 may be disposed so as to overlap the region of the conductor pattern 3 when surface-mounted on the conductor pattern 3. Therefore, the copper plate 5 has not only the same shape and size as the copper clad plate at the position where the copper plate is disposed, but also the substantially same shape, for example, the shape of the copper plate and the conductor pattern is similar. Also included are those in which the width or length of part of the copper plate is narrower or shorter than the shape of the conductor pattern.
[0019]
As described above, since both ends 11 and 12 of the copper plate 5 are fixed onto the conductor pattern 3 by soldering, the copper plate 5 can be easily attached and detached. Therefore, even when the amount of current flowing through the circuit changes due to a design change or the like, the copper plate 5 having a predetermined thickness is selected in order to obtain the necessary current capacity of the conductor according to the magnitude of the current flowing through each circuit. Can be attached.
[0020]
Specifically, when the current capacity of a conductor pattern formed between adjacently arranged parts or between parts arranged at a short distance is insufficient due to a design change, the conductor pattern between those parts By mounting the copper plate having a predetermined thickness on the surface, it is possible to secure the current capacity of the conductor that satisfies the use conditions (suppression of the temperature rise of the conductor in the normal use state).
[0021]
Further, since the conductor pattern 3 is formed on the insulating substrate 2 even when the copper plate 5 is removed, it is not necessary to mount the copper plate 5 on a conductor pattern (for example, a circuit for small signals) with a small flowing current. The copper plate 5 can be attached and detached as necessary.
[0022]
【The invention's effect】
From the above, according to the printed wiring board according to the present invention, the copper plate having a predetermined thickness is formed in the same shape as the copper-clad plate at the position where the copper plate is disposed, and both ends of the copper plate are only soldered. Since it is fixed on the copper-clad plate, no special processing work (burring processing, etc.) is required, the increase in manufacturing cost can be suppressed, and the current path flowing through the conductor (copper plate and conductor pattern) Since it can be made similar, it is possible to improve noise radiation characteristics.
[0023]
Moreover, since the copper plate is fixed on the copper clad plate only by soldering, the copper plate can be easily attached and detached. Therefore, it is possible to easily attach a copper plate having a predetermined thickness in accordance with the amount of current flowing through the circuit, so that workability can be improved and a necessary current capacity of the conductor can be ensured.
Furthermore, since the copper plate is surface-mounted on the copper-clad plate, there is no need to provide a dedicated through hole for connecting the copper plate to the insulating substrate, and the mounting density of components and the like arranged on the insulating substrate can be increased. .
[Brief description of the drawings]
FIG. 1 is a top view showing an embodiment of a printed wiring board according to the present invention.
FIG. 2 is a cross-sectional view taken along the line EE of FIG.
FIG. 3 is a perspective view showing one embodiment of a copper plate that is surface-mounted on a conductor pattern of a printed wiring board according to the present invention.
4 is a perspective view showing an embodiment of a copper plate different from FIG. 3. FIG.
FIG. 5 is a view showing an embodiment of a conductor pattern in a state where a copper plate is not mounted on a printed wiring board according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Printed wiring board 2 Insulation board 3, 3 ', 3 "Conductor pattern 4, 4' Solder 5 Copper plate 6, 7 Soldering part 8 Through hole 9 Electronic component h, h 'Insulation distance

Claims (1)

任意の形状あるいは幅を有する銅張板が形成されたプリント配線板において、
前記銅張板に形成された半田付け部と、
前記銅張板上に重ねて配設される銅板であって、配設される位置の銅張板の形状と同一形状、あるいは相似形状であって銅張板よりも小さい形状に形成された銅板設けられ
前記銅板の厚さは、銅板の幅をパラメータにして、1つの銅板の中で幅が狭く形成されている部分では厚く、幅が広く形成されている部分では薄く形成されており、
前記銅板の両端部は前記銅張板に形成された対応する位置の前記半田付け部にそれぞれ半田付けによって表面実装され
前記銅板の両端部分には面積拡大部が形成されていることを特徴とするプリント配線板。
In a printed wiring board on which a copper-clad board having an arbitrary shape or width is formed,
A soldering portion formed on the copper-clad plate;
A copper plate disposed superimposed on the copper clad laminate was formed shape and same shape of the copper-clad board position disposed, or a similar shape to the shape smaller than the copper clad laminate copper plate is provided,
The thickness of the copper plate is formed so that the width of the copper plate is a parameter, the portion formed with a narrow width in one copper plate is thick, and the portion formed with a wide width is formed thin.
Both ends of the copper plate are surface-mounted by soldering to the soldering portions at corresponding positions formed on the copper-clad plate ,
A printed wiring board, wherein an area enlargement portion is formed at both ends of the copper plate.
JP2002030790A 2002-02-07 2002-02-07 Printed wiring board Expired - Fee Related JP3928152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002030790A JP3928152B2 (en) 2002-02-07 2002-02-07 Printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002030790A JP3928152B2 (en) 2002-02-07 2002-02-07 Printed wiring board

Publications (2)

Publication Number Publication Date
JP2003234548A JP2003234548A (en) 2003-08-22
JP3928152B2 true JP3928152B2 (en) 2007-06-13

Family

ID=27774400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002030790A Expired - Fee Related JP3928152B2 (en) 2002-02-07 2002-02-07 Printed wiring board

Country Status (1)

Country Link
JP (1) JP3928152B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016582A (en) * 2006-07-05 2008-01-24 Kokusan Denki Co Ltd Printed circuit board for electronic device
JP2018129465A (en) * 2017-02-10 2018-08-16 田淵電機株式会社 Printed circuit board, and printed circuit device and manufacturing method thereof
JP6871752B2 (en) * 2017-02-10 2021-05-12 田淵電機株式会社 Printed circuit board and printed circuit equipment

Also Published As

Publication number Publication date
JP2003234548A (en) 2003-08-22

Similar Documents

Publication Publication Date Title
JP5249870B2 (en) Wiring circuit board and manufacturing method thereof
EP2086295B1 (en) Printed circuit board and method of manufacturing the same
US7542006B2 (en) Wiring board and semiconductor apparatus
JP3928152B2 (en) Printed wiring board
JP2001135899A (en) High frequency printed circuit board and manufacturing method therefor
JP4582491B2 (en) Metal substrate
JPH071821B2 (en) Wiring board
JP2006211620A (en) Filter and duplexer
JPH0747897Y2 (en) Printed board
US20040055782A1 (en) Surface-mounting type electronic circuit unit having no melting of solder attaching electric part thereto
US6545855B1 (en) Low inductance termination for electronic components
JP3906563B2 (en) Surface mount module
JP4103466B2 (en) High-frequency connector surface mounting method, high-frequency connector mounting printed circuit board, and printed circuit board
JP2007194240A (en) Printed circuit board and electronic apparatus
JP2001156416A (en) Connection structure of flexible wiring board
JP2006049496A (en) Printed wiring board
JP7123236B2 (en) circuit board
JPH1051094A (en) Printed wiring board, and its manufacture
JP2004079872A (en) Soldering structure for electronic circuit unit
JP2675135B2 (en) Structure of hybrid integrated circuit components
JP2006059928A (en) Printed circuit board
JP3004397B2 (en) Flexible printed circuit board
JP2007227780A (en) Wiring structure of semiconductor component
JP3092973U (en) Surface mount type electronic circuit unit
JPH10163587A (en) Printed board

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070222

R150 Certificate of patent or registration of utility model

Ref document number: 3928152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees