JP3925419B2 - レーダ装置 - Google Patents
レーダ装置 Download PDFInfo
- Publication number
- JP3925419B2 JP3925419B2 JP2003026472A JP2003026472A JP3925419B2 JP 3925419 B2 JP3925419 B2 JP 3925419B2 JP 2003026472 A JP2003026472 A JP 2003026472A JP 2003026472 A JP2003026472 A JP 2003026472A JP 3925419 B2 JP3925419 B2 JP 3925419B2
- Authority
- JP
- Japan
- Prior art keywords
- bit
- fourier transform
- frequency
- transform data
- stored
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Radar Systems Or Details Thereof (AREA)
Description
【発明の属する技術分野】
本発明は、レーダ装置に関するものである。
【0002】
【従来の技術】
従来、自動車に搭載され、前方の物体までの距離、相対速度、物体の方位を検出するFM−CW(Frequency Modulation−Continuous Wave)レーダ装置において、固定ビームを機械的に走査するビーム走査機構部を有することなく、ビーム走査をディジタル信号処理によって実現したものがある(例えば、特許文献1参照。)。この特許文献1に開示されているレーダ装置では、FM−CWレーダに対してディジタルビームフォーミング(以下、DBFと呼ぶ)技術を適用することでビーム走査を実現している。このDBFとは、複数設けられたアレイアンテナの各々の受信信号をディジタル信号に変換し、その信号に対して高速フーリエ変換処理(以下、FFT処理と呼ぶ)を施す。そして、FFT処理されたデータを用いて、物体までの距離、相対速度、物体の方位を算出するものである。
【0003】
【特許文献1】
特開平11−133142号公報
【0004】
【発明が解決しようとする課題】
上述したDBFでは、各アレイアンテナに対応する受信チャンネル毎のディジタル信号に対し、周波数増加区間(UP区間)と周波数減少区間(DOWN区間)毎に各々512ポイントのFFT処理を行い、その処理結果を記憶装置に一時的に記憶している。このFFT処理では、512のポイントの各々について同相成分iと直交成分qを求めるため、1区間で512組の(i、q)データが生成され、さらに、UP区間とDOWN区間とを合わせた1024組の(i、q)データが1チャンネルにつき生成される。また、物体までの方位を算出するために8チャンネル分の(i、q)データを生成し、これらを全て記憶装置に記憶する必要がある。
【0005】
このように、従来のレーダ装置に用いられる記憶装置は、膨大な(i、q)データを記憶する必要があるため、大容量の記憶装置を備える必要があった。そのため、安価なレーダ装置の実現が困難であった。
【0006】
本発明は、かかる問題を鑑みてなされたもので、大容量の記憶装置を備えることなく、全ての受信チャンネルのフーリエ変換データを記憶することのできるレーダ装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
請求項1に記載のレーダ装置は、基本信号に周波数変調を掛けた送信信号を生成し、この生成した送信信号を送信波として放射し、その反射波を受信信号として検出するレーダ手段と、送信信号と受信信号とを混合してビート信号を生成するビート信号生成手段と、ビート信号に対してフーリエ変換処理を実行し、ビート信号に含まれる周波数毎のフーリエ変換データを所定ビット数からなるビット列として生成するフーリエ変換手段と、フーリエ変換データに対応する周波数に応じて、ビット列の中で記憶対象とすべき所定ビット数よりも少ないビット範囲を指定するビット範囲指定手段と、ビット範囲指定手段によって指定されたビット範囲のビット列で示されるフーリエ変換データを記憶する記憶部と、記憶部に記憶されたフーリエ変換データに基づいて反射物体までの距離及び反射物体との相対速度を算出する算出処理とを実行する処理手段とを備えることを特徴とする。
【0008】
このように、本発明のレーダ装置は、所定ビット数からなるビット列で示されるフーリエ変換データを記憶部に記憶する際、そのデータに対応する周波数に応じてフーリエ変換データを示すビット列のビット数よりも少ないビット範囲を指定する。すなわち、レーダ手段の仕様(例えば、検出可能な反射波の最大反射強度や検出方式)やレーダ手段の検出する対象(例えば、車両)が決定すれば、ビート信号に含まれる周波数帯域やその周波数帯域におけるパワースペクトルの受信パワーのとり得る範囲が理論上計算できる。また、受信パワーの大きさは、フーリエ変換データから算出されるものであるため、このフーリエ変換データのとり得る値の範囲を予め把握することができる。その結果、反射物体までの距離や相対速度の正確な算出に必要なフーリエ変換データのビット範囲を指定することができる。
【0009】
これにより、反射物体までの距離や相対速度の正確な算出に必要なビット範囲に、記憶すべきフーリエ変換データのビット範囲が指定されるため、過度に高精度なフーリエ変換データを記憶手段に記憶する必要がなくなる。その結果、記憶手段の記憶容量を抑えることができるため、大容量の記憶手段を備えることなく、全てのフーリエ変換データを記憶することができる。
【0010】
請求項2に記載のレーダ装置では、レーダ手段は、反射波を受信信号として検出する複数の受信部を備え、処理手段は、各受信部の検出した受信信号から生成したビート信号の位相差に基づいて反射物体の方位を算出することを特徴とする。
【0011】
このように、複数の受信部の受信した信号の位相差から反射物体の方位を算出する場合であっても、記憶すべきフーリエ変換データのビット範囲が指定されるため、記憶部の容量を抑えつつ、全ての受信チャンネルのフーリエ変換データを記憶部に記憶することができる。その結果、記憶部に記憶したフーリエ変換データから各受信チャンネル毎の位相差を算出することが可能となるため、反射物体の方位を算出することができる。
【0012】
請求項3に記載のレーダ装置によれば、ビット範囲指定手段は、周波数が高くなるにつれて、記憶部への記憶対象とするビット範囲を上位ビットから下位ビットへ向けてシフトすることを特徴とする。
【0013】
すなわち、反射物体までの距離が長くなる、あるいは、相対速度が高くなるにつれて、ビート信号の周波数は高くなるとともに、その周波数におけるパワースペクトルの受信パワーのとり得る値が小さくなる傾向にある。そのため、パワースペクトルの受信パワーを算出する元となるフーリエ変換データの値も小さくなることから、ビット列で表現されるフーリエ変換データは、下位のビット範囲に値をもつようになる。
【0014】
そこで、フーリエ変換データのとり得る値に対応させるため、ビート信号の周波数が高くなる場合には、記憶部へ記憶するビット範囲を上位ビットから下位ビットへ向けてシフトする。これにより、記憶されるフーリエ変換データは、各周波数領域においてパワースペクトルの受信パワーのとり得る値をカバーするものとなる。
【0015】
請求項4に記載のレーダ装置では、フーリエ変換手段は、実数部及び虚数部の2つのビット列からなるフーリエ変換データを生成し、記憶部は、実数部及び虚数部の2つのビット列を記憶することを特徴とする。このように、実数部及び虚数部からなるフーリエ変換データを記憶部に記憶することで、両者から導かれる受信パワーや位相に基づいて、反射物体までの距離や相対速度、及び反射物体の方位を算出することができる。
【0016】
請求項5に記載のレーダ装置によれば、ビット範囲指定手段は、ビート信号に含まれ得る周波数帯域を複数の領域に分割し、この分割された周波数領域毎に記憶部への記憶対象とすべきビット範囲を予め指定し、フーリエ変換データに対応する周波数の属する周波数領域のビット範囲を記憶部への記憶対象とするビット範囲に指定することを特徴とする。これにより、フーリエ変換データに対応する周波数の値から、記憶部へ記憶するビット範囲を容易に指定することができる。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態におけるレーダ装置に関して、図面に基づいて説明する。
【0018】
図1は、本実施形態におけるレーダ装置の全体構成を表すブロック図である。レーダ装置1は、自動車前方の車両等を検出するために用いられるものであり、同図に示すように、送受信部10と信号処理部20とによって構成される。送受信部10は自動車の前面に取り付けられ、信号処理部20は車室内又は車室近傍の所定位置に取り付けられる。
【0019】
送受信部10は、発振器11、送信アンテナ12、受信アンテナ13、及び混合器14によって構成される。発振器11は、例えば、電圧の大きさを制御することによって発振周波数を変更できる電圧制御発振器等が用いられ、波形発生器21の発生する信号に対して、所定の周波数を中心として、ある周波数幅で発振周波数を変調する。
【0020】
送信アンテナ12は、所定の周波数に変調された送信波を送信し、受信アンテナ13は、送信アンテナ12から放射された送信波に対する反射波を受信する。混合器14は、発振器11によって生成される送信信号と、受信アンテナ103によって受信される受信信号とを混合して、1つの信号(以下、ビート信号を呼ぶ)にする機器である。
【0021】
ここで、レーダ装置1の測定原理について、図を用いて説明する。図2(a)は、送信波fsを放射したときに、この送信波fsの反射波である受信波frを受信した場合の例である。同図(a)に示すように、送信アンテナ12から放射される送信波fsは、周波数f0を中心として変調幅ΔFの範囲内で周波数を変調しながら、1/fm毎に繰り返し放射される。
【0022】
一方、この送信波fsの反射波を受信アンテナ13で受信したのが受信波frであり、この受信波frは、送信波fsに対して時間遅れtdと周波数シフトが発生する。本実施形態におけるレーダ装置1では、この時間遅れtdと周波数シフトから、反射物体までの距離と相対速度を導いている。
【0023】
すなわち、反射物体との相対速度が零である場合、放射された送信波に対する反射波は、反射物体までの距離に応じた時間遅れtdを受ける。一方、周波数シフトは、いわゆるドップラ効果によって発生するものである。すなわち、自車両と反射物体が相対的に移動しているとき、自車両から放射される送信波fsは、反射物体側では相対速度の大きさに対応して、その周波数のシフト量も大きくなる。従って、この周波数のシフト量から相対速度を導くことができる。
【0024】
図2(b)は、混合器14によって送信波fsと受信波frとが混合されたビート信号を示している。同図に示すように、ビート周波数fbuは、送信波fsと受信波frの各々上昇部における周波数のシフト量を示し、また、ビート周波数fbdは、送信波fsと受信波frの各々下降部における周波数のシフト量を示している。
【0025】
この2つのビート周波数fbu及びfbdを用いることで、次式に示すように、距離の長さに相当する周波数fb、及び相対速度の大きさに相当する周波数fdを求めることができる。なお、次式中のABSは絶対値を示している。
【0026】
【数1】
距離に相当する周波数fb=[ABS(fbu)+ABS(fbd)]/2
【0027】
【数2】
相対速度に相当する周波数fd=[ABS(fbu)−ABS(fbd)]/2
さらに、これら周波数fb及びfdを次式に代入することで、反射物体までの距離及び相対速度が算出される。なお、次式中のCは光速を示している。
【0028】
【数3】
距離=C/(4×ΔF×fm)×fb
【0029】
【数4】
相対速度=(C/2×f0)×fd
また、レーダ装置1において、自車両に対する反射物体の方位は、次の原理により測定される。図3に示すように、本実施形態では、送信アンテナ12から放射された送信波の反射波を複数(本実施形態では、8つ備えるとする)の受信アンテナ13によって受信する。そして、各々の受信アンテナ13で受信した受信波から、反射物体100の自車両に対する方位を求める。
【0030】
例えば、複数の受信アンテナ13が自車両の幅方向に配置され、自車両の真正面に存在する反射物体から反射された反射波を受信した場合には、複数の受信アンテナ13において、受信波の到着時間の時間差は殆ど生じない。その結果、A/D変換器22に入力されるビート信号においても、同じ時間に受信波を受信したため位相差は殆ど生じない。
【0031】
しかし、図3に示すように、自車両の長さ方向に対して角度(dir)の方向に位置する反射物体100から反射された反射波を受信した場合には、複数の受信アンテナ13の受信する受信波の到着時間には時間差が生じ、この時間差は、A/D変換器22に入力されるビート信号の位相差となって現れる。従って、この位相差の大きさから、自車両に対する反射物体の方位を求めることができる。
【0032】
次に、信号処理部20の構成について説明する。信号処理部20は、図1に示すように、三角波状の信号を発生する波形発生器21、混合器14からのビート信号をディジタルデータ(以下、ディジタルビート信号と呼ぶ)に変換するA/D変換器22、FFT23、及びマイクロコンピュータ30によって構成される。
【0033】
A/D変換器22は、8つの受信アンテナ13に対応するチャンネル(CH)別に三角波の上昇部と下降部の各区間において、それぞれ512ポイントのサンプリングを行ってディジタルビート信号を生成する。
【0034】
FFT23は、マイクロコンピュータ26のRAM33に記憶されるディジタルビート信号に基づいて高速フーリエ変換の演算を実行する装置であり、演算結果であるフーリエ変換データは、マイクロコンピュータ26に送られる。このフーリエ変換データは、実数部成分(Re)と虚数部成分(Im)とからなる、各々32ビットの整数型で表現されるものである。
【0035】
マイクロコンピュータ30は、周知のCPU31を中心に、ROM32、RAM33等によって構成される。このマイクロコンピュータ30は、波形発生器21を動作させると共に、A/D変換器22によって変換されたディジタルビート信号を受信し、RAM33に記憶する。なお、このディジタルビート信号は、16ビットの整数型で記憶される。
【0036】
また、マイクロコンピュータ30は、FFT23から送信される演算結果をRAM33に記憶するとともに、このRAM33に記憶された演算結果に基づいて、車両等の障害物までの距離、相対速度、及び方位等の算出処理を実行する。なお、マイクロコンピュータ30は、FFT23から送信されるフーリエ変換データをRAM33に記憶する際、32ビットからなるビット列のうち、16ビット分のビット列のみを記憶する。
【0037】
すなわち、前方車両までの方位を算出するためには、上述したように8CH分のビート信号のフーリエ変換データを用いる必要があるため、8CH全ての実数部成分(Re)と虚数部成分(Im)とからなるフーリエ変換データをRAM33に記憶しなければならない。さらに、フーリエ変換データは、高精度な32ビットの整数型で示されるため、8CH全てのフーリエ変換データを記憶するには、大容量のRAMを備える必要がある。
【0038】
本実施形態では、大容量のRAMを備えることなく、8CH全てのフーリエ変換データをRAMに記憶することを目的としている。そこで、この目的を達成するために、フーリエ変換データをRAM33に記憶する際、32ビットのビット列のうち16ビット分のビット列のみを記憶する。
【0039】
具体的には、ビート信号の周波数に応じて、それぞれ32ビットで表されるフーリエ変換データの実数部成分(Re)と虚数部成分(Im)について、16ビット分のビット範囲を指定したうえでRAM33に記憶する。
【0040】
例えば、レーダ装置1を車両に搭載して、前方車両(例えば、乗用車や貨物車等)を検出対象とする場合、検出対象が限定されるため、レーダ装置1の検出する車両からの反射波の最大強度(言い換えれば、レーダ手段が反射波を受信したときに得る最大電力)が予め把握できる。
【0041】
図6は、周波数−パワースペクトルの特性を示す図であり、縦軸のPower(db)は反射波の強度の大きさ(受信パワー)に対応するものである。従って、受信パワーの最大値が予め把握できる場合、同図中の直線▲1▼のような、パワースペクトルの最大受信パワーのラインを引くことができる。
【0042】
また、車間距離警報(前方車両との車間距離が所定距離以下のときに警報を発生する)や車間距離制御(前方車両との車間距離を一定に保って走行する制御)にレーダ装置1を適用する場合には、レーダ装置1の検出すべき前方車両までの距離の長さの上限(例えば、150m等)が決定される。そのため、レーダ装置1の検出する車両までの距離の変化(例えば、0〜150m等)に伴う受信パワーの変化特性が理論上計算できる。そのため、図6中の曲線▲2▼のように、レーダ装置1の検出する車両までの距離の変化に伴って変化する受信パワーを示すことができる。
【0043】
さらに、レーダ装置1の検出対象が車両である場合には、レーダ装置1の検出する前方車両との相対速度の上限(例えば、時速180キロ等)が決定されるため、ドップラ効果による送信波に対する反射波の最大シフト量が理論上計算できる。そのため、図6中の曲線▲3▼のように、相対速度が時速180キロの場合に検出される受信パワーの変化を示すことができる。
【0044】
このように、レーダ装置1の検出する対象や検出方式が予め決定される場合、周波数−パワースペクトルの変化特性が理論上計算できるため、フーリエ変換データとしてとり得る実数部成分(Re)及び虚数部成分(Im)の値の範囲は、この変化特性から導くことができる。
【0045】
そして、図6に示すように、本実施形態のレーダ装置1の検出すべき反射強度の範囲を受信パワーで約100(db)とした。その理由は以下の通りである。
【0046】
受信パワーは、実数部成分(Re)と虚数部成分(Im)とからなるフーリエ変換データから次式により求められる。
【0047】
【数5】
Power(db)=20×{log10(Re2+Im2)1/2}=10×log10(Re2+Im2)
このとき、上式中の常用対数の(Re2+Im2)が2倍になると、Power(db)は約6倍となる。従って、1ビットで6(db)を表現することができ、16ビットでは約96(db)を表現することが可能となる。従って、16ビットのビット列で、約100(db)の範囲の受信パワーをほぼカバーすることができる。
【0048】
このように、32ビットで表現されるフーリエ変換データのうちの16ビットのビット列によって、レーダ装置1の検出すべき反射強度に対応するパワースペクトルの受信パワーの範囲をカバーすることができる。
【0049】
なお、ビート信号の周波数が増加するにつれて、パワースペクトルの受信パワーのとり得る範囲が減少するため、32ビットのフーリエ変換データのうち、記憶対象とする16ビットのビット範囲を上位ビットから下位ビットに向けてシフトさせる。
【0050】
先ず、本実施形態では、図6に示すように、レーダ装置1の検出可能な周波数領域を複数の領域(A〜C)に分割する。そして、32ビット整数型で示されるフーリエ変換データに対し、図7に示すように、A〜Cの各周波数領域に対応してRAMに記憶するビット範囲を設定する。なお、図6に示すように、周波数が高くなるにつれて、パワースペクトルの受信パワーが減少するため、図7に示すように、ビット範囲を上位ビットから下位ビットにシフトさせる。これにより、RAM33に記憶されるフーリエ変換データは、各周波数領域においてパワースペクトルの受信パワーのとり得る値をカバーするものとなる。
【0051】
次に、本実施形態の特徴部分に係わる、信号処理部20において実行される距離、相対速度、及び方位の算出処理について、図5に示すフローチャートを用いて説明する。まず、ステップ10では、8つの受信アンテナ13に対応するチャンネル(CH)別のディジタルビート信号のうち、第1CHの上昇部におけるディジタルビート信号(16ビット整数型)を読み込む。
【0052】
ステップS20では、第1CHの上昇部について、512ポイントのフーリエ変換を行う。これによって、512の周波数ポイントについて、それぞれ実数部成分(Re)と虚数部成分(Im)とによって示されるフーリエ変換データが求められる。このフーリエ変換データは、実数部成分(Re)及び虚数部成分(Im)共に32ビットの整数型で示される。
【0053】
ステップS30では、この実数部成分(Re)及び虚数部成分(Im)に対応する周波数が図6に示した周波数領域(A〜C)のどの領域に属するかを判定する。ステップS40では、ステップS30において判定されたビット範囲のフーリエ変換データをRAM33に記憶する。ステップS50では、上昇部区間及び下降部区間共に全てのポイントについて終了したか否かを判定する。ここで、肯定判定される場合には、ステップS60へ処理を進め、否定判定される場合には、ステップS20へ処理を移行し、上述した処理を繰り返し実行する。
【0054】
ステップS60では、8CH全て終了したか否かを判定し、全てのCHについて終了した場合には、ステップS70へ処理を進め、RAM33に記憶させた8CH全てのフーリエ変換データに基づいて距離、相対速度、方位の算出を行う。一方、全てのCHについて終了していない場合には、ステップS20へ処理を移行し、上述した処理を繰り返し実行する。
【0055】
ステップS70では、実数部成分(Re)及び虚数部成分(Im)からなるフーリエ変換データの複素ベクトルの絶対値、即ち、その複素ベクトルが示す周波数成分の振幅に基づき、周波数スペクトル上でピークとなる全ての周波数成分を検出して、その周波数をピーク周波数として特定する。そして、上昇部区間と下降部区間の各ピーク周波数に対する組み合わせを判定する。
【0056】
なお、フーリエ変換データは、32ビットのうちの16ビット分のビット範囲を抜き出したものであるため、振幅を求める際に補正する必要がある。この補正については、フーリエ変換データに対応する周波数に基づき、32ビットのうち、どの上位ビットから下位ビットまでを抜き出したかを判定することができる。従って、その周波数の値から実数部成分(Re)及び虚数部成分(Im)を補正したうえで、その周波数の振幅を求める。
【0057】
例えば、図4(a)に示す上昇部区間に3つのピーク周波数、図4(b)に示す下降部区間に3つのピーク周波数が存在すると仮定する。このとき、上昇部区間の3つのピーク周波数に対して周波数の低い順に1,2,3の番号をつけ、下降部区間の3つのピーク周波数に対して周波数の低い順にa、b、cの符号を付ける。そして、周波数の低い順にピーク周波数の組み合わせを決定し、この組み合わせのピーク周波数から、上述した原理により距離を算出する。
【0058】
なお、このピーク周波数の組み合わせでは、ピーク周波数の低い順に組み合わせを決定しているが、振幅の大きさを考慮してもよい。すなわち、周波数と振幅とを判定して組み合わせを決定することで、組み合わせの精度を向上することができる。一方、方位については、8CH分の実数部成分(Re)及び虚数部成分(Im)から位相を求め、その各CH間の位相差から方位を算出する。
【0059】
このように、本実施形態におけるレーダ装置は、32ビットからなるビット列で示されるフーリエ変換データをRAM33に記憶する際、そのデータに対応する周波数に応じて記憶対象とする16ビット分のビット範囲を指定する。
【0060】
これにより、反射物体までの距離、相対速度、方位等の正確な算出に必要なビット範囲に、記憶すべきフーリエ変換データのビット範囲が指定されるため、過度に高精度なフーリエ変換データをRAM33に記憶することがなくなる。その結果、RAM33の記憶容量を抑えることができるため、大容量のRAMを備えることなく、全てのフーリエ変換データを記憶することができる。
【0061】
(変形例)
本実施形態では、レーダ装置1の検出可能な周波数帯域を複数の領域に分割し、その分割された周波数領域毎に、RAM33に記憶するビット範囲を設定しているが、フーリエ変換データに対応する周波数とビット範囲との対応関係を示すマップ等を予め用意し、そのマップに周波数を当てはめてビット範囲を導くようにしてもよい。
【図面の簡単な説明】
【図1】本発明の実施形態に係わる、レーダ装置1の全体構成を表すブロック図である。
【図2】(a)は、送信波fsを放射したときに、この送信波fsの反射波である受信波frを受信した場合の受信信号の一例を示した図であり、(b)は、混合器14によって送信波fsと受信波frとが混合された信号の一例を示した図である。
【図3】本発明の実施形態に係わる、レーダ装置1において反射物体の自車両に対する方位の測定原理を説明する図である。
【図4】(a)は、上昇部区間における3つのパワースペクトルの例を示した図であり、(b)は、下降部区間における3つのパワースペクトルの例を示した図である。
【図5】本発明の実施形態に係わる、信号処理部20において実行される距離、相対速度、及び方位の算出処理の流れを示すフローチャートである。
【図6】本発明の実施形態に係わる、レーダ装置1の検出するパワースペクトルの範囲を示した図である。
【図7】本発明の実施形態に係わる、周波数領域毎に記憶するビット範囲の設定例を示した図である。
【符号の説明】
1 レーダ装置
10 送受信部
20 信号処理部
23 FFT
30 マイクロコンピュータ
33 RAM
Claims (5)
- 基本信号に周波数変調を掛けた送信信号を生成し、この生成した送信信号を送信波として放射し、その反射波を受信信号として検出するレーダ手段と、
前記送信信号と前記受信信号とを混合してビート信号を生成するビート信号生成手段と、
前記ビート信号に対してフーリエ変換処理を実行し、前記ビート信号に含まれる周波数毎のフーリエ変換データを所定ビット数からなるビット列として生成するフーリエ変換手段と、
前記フーリエ変換データに対応する周波数に応じて、前記ビット列の中で記憶対象とすべき前記所定ビット数よりも少ないビット範囲を指定するビット範囲指定手段と、
前記ビット範囲指定手段によって指定されたビット範囲のビット列で示される前記フーリエ変換データを記憶する記憶部と、
前記記憶部に記憶されたフーリエ変換データに基づいて反射物体までの距離及び前記反射物体との相対速度を算出する算出処理とを実行する処理手段とを備えることを特徴とするレーダ装置。 - 前記レーダ手段は、前記反射波を受信信号として検出する複数の受信部を備え、
前記処理手段は、前記各受信部の検出した受信信号から生成したビート信号の位相差に基づいて前記反射物体の方位を算出することを特徴とする請求項1記載のレーダ装置。 - 前記ビット範囲指定手段は、前記周波数が高くなるにつれて、前記記憶部への記憶対象とするビット範囲を上位ビットから下位ビットへ向けてシフトすることを特徴とする請求項1又は2記載のレーダ装置。
- 前記フーリエ変換手段は、実数部及び虚数部の2つのビット列からなるフーリエ変換データを生成し、
前記記憶部は、前記実数部及び虚数部の2つのビット列を記憶することを特徴とする請求項1〜3のいずれかに記載のレーダ装置。 - 前記ビット範囲指定手段は、前記ビート信号に含まれ得る周波数帯域を複数の領域に分割し、この分割された周波数領域毎に前記記憶部への記憶対象とすべきビット範囲を予め指定し、前記フーリエ変換データに対応する周波数の属する周波数領域のビット範囲を前記記憶部への記憶対象とするビット範囲に指定することを特徴とする請求項1〜4のいずれかに記載のレーダ装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003026472A JP3925419B2 (ja) | 2003-02-03 | 2003-02-03 | レーダ装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003026472A JP3925419B2 (ja) | 2003-02-03 | 2003-02-03 | レーダ装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004239644A JP2004239644A (ja) | 2004-08-26 |
JP3925419B2 true JP3925419B2 (ja) | 2007-06-06 |
Family
ID=32954469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003026472A Expired - Lifetime JP3925419B2 (ja) | 2003-02-03 | 2003-02-03 | レーダ装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3925419B2 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008292343A (ja) * | 2007-05-25 | 2008-12-04 | Nec Engineering Ltd | Fm−cwレーダー |
DE102014116448A1 (de) | 2014-11-11 | 2016-05-12 | Infineon Technologies Ag | Verfahren und Vorrichtung zur Verarbeitung von Radarsignalen |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08160122A (ja) * | 1994-12-02 | 1996-06-21 | Mitsubishi Electric Corp | Fmcwレーダ |
JP3525425B2 (ja) * | 1997-10-31 | 2004-05-10 | トヨタ自動車株式会社 | Fm−cwレーダ |
JP2000147101A (ja) * | 1998-11-04 | 2000-05-26 | Toyota Motor Corp | レーダ信号処理方法 |
JP2000304848A (ja) * | 1999-04-19 | 2000-11-02 | Japan Radio Co Ltd | 表示輝度処理装置 |
WO2001013141A2 (en) * | 1999-08-12 | 2001-02-22 | Automotive Systems Laboratory, Inc. | Neural network radar processor |
JP3663623B2 (ja) * | 2000-06-29 | 2005-06-22 | トヨタ自動車株式会社 | レーダ装置 |
JP2002257928A (ja) * | 2001-03-06 | 2002-09-11 | Murata Mfg Co Ltd | レーダ |
-
2003
- 2003-02-03 JP JP2003026472A patent/JP3925419B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004239644A (ja) | 2004-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3491418B2 (ja) | Fmcwレーダ装置 | |
JP4232570B2 (ja) | 車両用レーダ装置 | |
JP3788452B2 (ja) | Fmcwレーダ装置 | |
JP3480486B2 (ja) | Fm−cwレーダ装置 | |
JP3045977B2 (ja) | Fm−cwレーダ装置 | |
JP3753652B2 (ja) | Fm−cwレーダのミスペアリング判定及び信号処理方法 | |
JP2018059813A (ja) | レーダ装置および物標検出方法 | |
US20030128156A1 (en) | FM-CW radar processing device | |
JPH08508573A (ja) | Fmcwレーダシステム | |
WO2005109033A1 (ja) | レーダ | |
US6798373B2 (en) | FM-CW radar system | |
JP2004340755A (ja) | 車両用レーダ装置 | |
US9285467B2 (en) | Radar apparatus, vehicle control system, and signal processing method | |
JP2000075028A (ja) | 車載dbfレーダ装置 | |
JPH1138121A (ja) | 車載用レーダ装置 | |
JP3518363B2 (ja) | Fmcwレーダ装置及び記録媒体並びに車両制御装置 | |
JP5462452B2 (ja) | 信号処理装置、及びレーダ装置 | |
JP2000147102A (ja) | Fmcwレ―ダ装置及び記録媒体 | |
JP6962253B2 (ja) | 電波センサ、ずれ測定方法およびずれ測定プログラム | |
JP3505441B2 (ja) | Fft信号処理でのピーク周波数算出方法 | |
JP3720662B2 (ja) | 車載用レーダ装置 | |
JP3060790B2 (ja) | 間欠周波数変調レーダ装置 | |
JP3925419B2 (ja) | レーダ装置 | |
Kravchenko et al. | An extended simulink model of single-chip automotive FMCW radar | |
JPH11271434A (ja) | 位相モノパルスレーダ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050323 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070117 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070219 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3925419 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100309 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110309 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120309 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120309 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130309 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140309 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |