JP3924596B2 - 負の減衰特性を有する磁性バネ振動機構 - Google Patents

負の減衰特性を有する磁性バネ振動機構 Download PDF

Info

Publication number
JP3924596B2
JP3924596B2 JP02766897A JP2766897A JP3924596B2 JP 3924596 B2 JP3924596 B2 JP 3924596B2 JP 02766897 A JP02766897 A JP 02766897A JP 2766897 A JP2766897 A JP 2766897A JP 3924596 B2 JP3924596 B2 JP 3924596B2
Authority
JP
Japan
Prior art keywords
vibration
permanent magnets
magnetic spring
magnetic
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02766897A
Other languages
English (en)
Other versions
JPH10220524A (ja
Inventor
悦則 藤田
豊 坂本
誠司 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delta Tooling Co Ltd
Original Assignee
Delta Tooling Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Tooling Co Ltd filed Critical Delta Tooling Co Ltd
Priority to JP02766897A priority Critical patent/JP3924596B2/ja
Publication of JPH10220524A publication Critical patent/JPH10220524A/ja
Application granted granted Critical
Publication of JP3924596B2 publication Critical patent/JP3924596B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Seats For Vehicles (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数の永久磁石を有する磁性バネ振動機構に関し、更に詳しくは、複数の永久磁石の反発力を利用することにより減衰機能構造を持たないが安定である負の減衰特性を有する磁性バネ振動機構に関する。
【0002】
【従来の技術】
従来、負の減衰特性を有する構造系は存在するが、永久磁石を利用して負の減衰特性を示すものはなかった。
また、自動車用シートあるいは救急車用ベッドには、車体フロアから伝わる振動を抑制する除振ユニットが取り付けられており、この除振ユニットには例えば金属バネ、エアサスペンション、エアダンパ等が使用されている。最近では、自動車用シートにアクチュエータを取り付け、振動をアクティブ制御することにより着座感を向上したアクティブサスペンションシートも提案されている。
【0003】
【発明が解決しようとする課題】
しかしながら、金属バネ、エアサスペンション、エアダンパ等を使用した除振ユニットは、車体フロアから伝わる振動のうち4〜20Hzの振動の周波数を低下させて着座感あるいは使用感をさらに向上させることはできなかった。
また、上記アクティブサスペンションシートは重たく高価であるばかりでなく、アクチュエータを常に作動させておく必要があり、アクチュエータをOFFにすると振動がアクチュエータを介して乗員に直接伝わり、着座感が損なわれるという問題があった。
【0004】
本発明は、従来技術の有するこのような問題点に鑑みてなされたものであり、同一磁極が対向する複数の永久磁石の反発力を利用して減衰機能構造を持たないが安定である磁性バネ振動機構を提供することにより、安価で簡素な構成の動特性制御系あるいは高能率機関を実現することを目的としている。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明のうちで請求項1に記載の発明は、基台と、該基台にリンク機構を介して相対移動自在に取り付けられた頂板と、上記基台にラチェット機構を介して回転自在に取り付けられた回転体と、該回転体の円周方向に所定の間隔で固着された複数の第1永久磁石と、上記頂板の円周方向に所定の間隔で固着され上記第1永久磁石と同一磁極が対向する上記第1永久磁石と同数の第2永久磁石とを備え、外力により上記ラチェット機構を介して上記回転体を回転させることにより上記第1及び第2永久磁石の対向面積を変化させ、上記第1及び第2永久磁石の平衡位置からの入力側の反発力より出力側の反発力を大きくしたことを特徴とする負の減衰特性を有する磁性バネ振動機構である。
【0006】
また、請求項2に記載の発明は、上記第1及び第2永久磁石の最接近位置で最大反発力を発生するようにしたことを特徴とする。
【0007】
さらに、請求項3に記載の発明は、上記第1及び第2永久磁石の相対位置を決定する位置決め手段の一部を上記回転体に取り付けたことを特徴とする。
【0008】
また、請求項4に記載の発明は、上記位置決め手段を複数の永久磁石で構成したことを特徴とする。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。
互いに離間し同磁極を対向させた少なくとも二つの永久磁石を有する磁性バネ構造体の場合、離間した永久磁石同士は非接触のため、構造体自体の摩擦損失等を無視すると、その静特性は入力時(行き)と同一ライン上を非線形で出力され(帰り)、さらに、非接触対偶特有の自由度、浮上制御系の不安定度を利用することにより、小さな入力で静磁界(磁石の配置)を変化させることで負の減衰を生じやすい。
【0010】
本発明はこの事実に着目してなされたものであり、二つの永久磁石間の幾何学的寸法を運動行程内機構あるいは外力により入力側(行き)と出力側(帰り)で変化させ、その運動系内で反発力に変換させることにより、二つの永久磁石の平衡位置からの入力側の反発力より出力側の反発力を大きくしている。
【0011】
以下、その基本原理について説明する。
図1は、入力側と出力側における二つの永久磁石2,4の平衡位置を示した模式図で、図2は、いずれか一方の永久磁石に加えられた荷重と、二つの永久磁石の平衡位置からの変位量との関係を示した磁性バネ構造体の基本特性を示している。
【0012】
図1に示されるように、永久磁石2に対する永久磁石4の入力側の平衡位置とバネ定数をそれぞれx0,k1とし、出力側の平衡位置とバネ定数をそれぞれx1,k2とすると、x0〜x1の間で面積変換が行われ、各平衡位置では次の関係が成立する。
−k1/x0+mg=0
−k2/x1+mg=0
2>k1
【0013】
従って、その静特性は、図2に示されるように負の減衰特性を示し、位置x1と位置x0におけるポテンシャルの差が発振のポテンシャルエネルギと考えることができる。
【0014】
また、図1のモデルを製作し、荷重と変位量との関係を、荷重を加える時間を変えて実測したところ、図3に示されるようなグラフが得られた。これは、二つの永久磁石2,4が最近接位置に近づくと、大きな反発力が作用すること、また、平衡位置からの変位量が微小に変化すると摩擦損失が磁性バネのダンパー効果により発生し、そのことにより減衰項が現れたものと解釈される。
【0015】
図3において、(a)は一定荷重を加えた場合のグラフで、(a)、(b)、(c)の順で荷重を加えた時間が短くなっている。すなわち、荷重の加え方により静特性が異なり、荷重を加える時間が長いほど力積が大きい。
【0016】
また、希土類磁石は、磁化の強さが磁界に依存しない。つまり、内部磁気モーメントが磁界による影響を受けにくいので、減磁曲線上で磁化の強さはほとんど変化せず、ほぼその飽和磁化の強さの値を保っている。従って、希土類磁石では、端面上に磁荷が均一に分布していると仮定したチャージモデルを用いて、入出力が考えられる。
【0017】
図4はその考え方を示しており、磁石を最小単位の磁石の集合と定義し、各単位磁石間の力の関係を三つに分類して計算したものである。
(a)吸引(r,mとも同一なので、2タイプを1つで定義する)
(1)=(m2/r2)dx1dy1dx2dy2
x (1)=f(1)cosθ
z (1)=f(1)sinθ
(b)反発
x (2)=f(2)cosθ
z (2)=f(2)sinθ
(c)反発
x (3)=f(3)cosθ
z (3)=f(3)sinθ
従って、
−fx=2fx (1)−fx (2)−fx (3)
−fz=2fz (1)−fz (2)−fz (3)
ここで、クーロンの法則は次のように表されるので、
Figure 0003924596
上記−fx,−fzを磁石の寸法の範囲で積分して力を求めることができる。
【0018】
これを図5に示されるように、対向する磁石を各磁気ギャップ毎に完全にラップした状態(x軸移動量=0mm)から完全にずれた状態(x軸移動量=50mm)まで移動させて計算したのが図6のグラフである。ただし、「内部磁気モーメントは一定」と定義してあるが、磁気ギャップが小さいときは磁石の周辺で乱れが生じるので、補正している。
【0019】
上記計算結果は実測値とも略一致しており、図2のポイントaからbに移動させる力がx方向荷重で、出力はz方向荷重で表されており、不安定系故の入力<出力の関係が静的に明確になっている。
【0020】
また、図7は、図5に示される磁石の離間距離を3mmに保持し、完全にずれた状態から完全にラップした状態まで移動させ、さらにこの状態から完全にずれた状態まで移動した時の関係を表したグラフである。このグラフは、x方向荷重の絶対値は同じで出力方向が逆になって出てくる特性で、完全ラップ状態に近づく場合は抵抗つまり減衰となり、完全ラップ状態から完全にずれた状態に移行する場合は加速されることを示している。この特性を非接触ダンパに活用することで、従来のダンパでは達成できなかった人が認知できる低・中・高周波領域(0〜50Hz)の振動エネルギの低減つまり振動伝達率の改善が可能になった。
【0021】
また、図8に示されるように、対向する磁石の回転角度を変化させると、図9に示されるようなグラフが得られた。当然のことながら、対向面積が減少すると最大荷重が減少し、所定の入力を加えることによる面積変換を介して出力を変化させることが可能なことを示している。
【0022】
図10は、永久磁石としてネオジム系磁石を採用した場合の磁石間距離と荷重との関係を示すグラフであり、反発力は質量増加とともに増加する。ここで、反発力Fは、
F∝Br2×(幾何学的寸法) Br:磁化の強さ
で表され、幾何学的寸法とは、対向する磁石の離間距離、対向面積、磁束密度、磁界の強さ等により決定される寸法を意味する。磁石材料が同一の場合、磁化の強さ(Br)は一定であるので、幾何学的寸法を変化させることにより磁石の反発力を変えることができる。
【0023】
図11乃至図14は、同一(反発)磁極が対向する複数の永久磁石の対向面積を変えることにより幾何学的寸法を変化させるようにした具体的な磁性バネ構造体Mを示しており、基台5と、左右一対のXリンク6,6を介して基台5に上下動自在に取り付けられた頂板7とを有している。
【0024】
基台5には、各Xリンク6を構成する2本のリンク6a,6bのうちリンク6a,6aの下端が枢着された回動軸8,8と、互いに平行に延在するU字状チャネル10,10とが固定されている。U字状チャネル10,10には、逆U字状チャネル12,12が摺動自在に取り付けられており、リンク6b,6bの下端が枢着された第1リンク支承部材14,14と、ピン16が中央に植設されたU字状部材18とが一体的に逆U字状チャネル12,12に接合されている。
【0025】
基台5の中央には固定ディスク54が取り付けられており、この固定ディスク54に対しラチェットホイール56が回動自在に取り付けられている。ラチェットホイール56の外周面には24個の歯56aが形成され、歯56aの内側のラチェットホイール56上面には12個の直方体状の第1永久磁石58が円周方向に所定の間隔で配設されている。また、U字状部材18の両側にはブラケット60,60を介して爪片62,62が揺動自在に取り付けられており、各爪片62,62はラチェットホイール56の歯56aのいずれか一つと噛合している。
【0026】
図15に示されるように、固定ディスク54の周囲にはN極とS極が7.5度間隔で交互に並ぶように48個の第1棒磁石64が固定される一方、第1棒磁石64のN極とS極にそれぞれS極とN極が対応するように48個の第2棒磁石66がラチェットホイール56の下面に固定されており、ラチェットホイール56に取り付けられた第1永久磁石58の位置決めを行っている。
【0027】
一方、頂板7には、リンク6a,6bの上端が枢着された回動軸32,32と、互いに平行に延在する逆U字状チャネル34,34とが固定されている。逆U字状チャネル34,34の各々には、U字状チャネル36,36が摺動自在に取り付けられており、リンク6a,6bの上端がそれぞれ枢着された第2リンク支承部材38,38と、平板状部材40,40とが一体的にU字状チャネル36,36も接合されている。
【0028】
また、頂板7の下面中央には、固定ブロック44を介してディスク68が固定されており、第1永久磁石58と同一磁極が対向するように12個の直方体状の第2永久磁石70がディスク68の下面に円周方向に所定の間隔で配設されている。
【0029】
なお、図11は第1永久磁石58と第2永久磁石70とが最も離間した状態を示しており、図12は第1永久磁石58と第2永久磁石70とが最も接近した状態を示している。
【0030】
上記構成において、図11の状態で基台5にある入力が加えられ、第1及び第2永久磁石58,70の反発力に抗して、第1及び第2永久磁石58,70が互いに接近すると、左右一対のXリンク6,6が側方に開き、逆U字状チャネル12,12がU字状チャネル10,10に対し摺動するとともに、U字状チャネル36,36が逆U字状チャネル34,34に対し摺動する。その結果、第1リンク支承部材14を介してU字状部材18と爪片62,62とが一体的に摺動し、第1及び第2棒磁石64,66の吸引力に抗して爪片62,62の一つがラチェットホイール56を徐々に回転させる。
【0031】
第1永久磁石58はラチェットホイール56に固着されているので、ラチェットホイール56とともに図16の矢印方向に回転し、第1及び第2永久磁石58,70の対向面積が徐々に増大し、その反発力も同時に増大する。第1及び第2永久磁石58,70が最も接近した図12の位置で第1及び第2棒磁石64,66は同一磁極が対向し、互いに反発するので、この位置を通過後、第2棒磁石66の各々は対向する同一磁極と隣接する反対磁極を有する第1棒磁石64に吸引され、ラチェットホイール56が図11の最離間位置より15度回転した位置に位置決めされる。
【0032】
この時、第1及び第2永久磁石58,70の全体が完全に対向し、その反発力が最大値に達し、頂板7は上方に向かって押し上げられる。
【0033】
最離間位置に向かう過程では、最接近位置に向かう過程で作用していた爪片62の反対側に位置する爪片62がラチェットホイール56の歯56aの一つと噛合し、爪片62が摺動するにつれてラチェットホイール56を徐々に回転させる。
【0034】
最離間位置を通過するとラチェットホイール56は更に15度回転して、図16の状態となり、以後上記動作が繰り返されるので、本発明にかかる磁性バネ構造体Mは自励振動系を構成している。
【0035】
図17は平衡点からの橈み量と反発力との関係を示す減衰特性曲線で、この曲線からわかるように、平衡位置からの橈み量が増加する時のバネ定数より橈み量が減少する時のバネ定数が大きい負の減衰特性を示している。
【0036】
これは、摩擦及びこれに起因する発熱、あるいは、磁石自体にマイナーループあるいは電磁誘導があることから、必ずロスが発生するが、フェライト系磁石等に比べネオジム系磁石は、小さな質量で大きなポテンシャルの場(磁場)を提供することができ、ロスを超える面積変換を行うことによりポテンシャルの場のエネルギ変換が行われたと解釈することができる。
【0037】
次に、上記磁性バネ構造体Mの動特性を図18に示される簡略化した基本モデルを状態方程式で説明する。
図18の入力Fが、永久磁石の面積変換等の幾何学的寸法変化によってもたらされた力である。図18において、バネ定数をk、減衰係数をr、質量mに入力される調和振動をF(t)とすると、その状態方程式は、
【数1】
Figure 0003924596
と表される。
【0038】
ここで、平衡位置をx0、平衡位置からの変位をyとすると、
【数2】
Figure 0003924596
【0039】
ここで、k/x0 2=k′とおくと、
【数3】
Figure 0003924596
【0040】
調和振動をF(t)=Fei ω tとおき、y=xei ω tとおくと、
【数4】
Figure 0003924596
ここで、φは位相遅れを示す。
【数5】
Figure 0003924596
従って、共振周波数ω0は、
【数6】
Figure 0003924596
【0041】
ここで、式(2)はさらに、次のように表すこともできる。
【数7】
Figure 0003924596
yをxとおいて、3次の項まで考慮すると、
【数8】
Figure 0003924596
【0042】
式(3)には、2次の項に−bx2という減衰項が表れているが、式(3)をさらに簡単なイメージに置き換えると、
【数9】
Figure 0003924596
【0043】
ここで、x=x0cosωtとおくと、
【数10】
Figure 0003924596
【0044】
つまり、微小振動領域では、周期的な外力に対して、絶えず一定の反発力((b/2)x0 2)が加わっていて、その力で周期的外力を減衰させることになる。
【0045】
そこで、図19の装置を使用して、磁石単体の動特性を調べたところ図20及び図21に示されるような結果が得られた。
【0046】
図19の装置は、二つの永久磁石2,4を互いに対向せしめ、面積変換することなくXリンク10を介してその離間距離を変更するようにした装置である。
【0047】
また、図20及び図21において、横軸は周波数(Hz)を示し、縦軸は振動伝達率(G/G)を示している。また、図20において、(a),(b),(c),(d),(e),(f)はそれぞれ、50×50×10mm,50×50×15mm,50×50×20mm,75×75×15mm,75×75×20mm,75×75×25mmの磁石を使用して、同じ負荷30kgを加えているのに対し、図21においては、50×50×20mmの同じ磁石を使用して、53kgと80kgの異なる負荷を加えたものである。
【0048】
図20及び図21は磁性バネの非線形特性を示したもので、両図から、同じ負荷の場合は、磁石サイズが大きいほど共振点は低周波域へ移行し、磁石サイズが同じ場合には、負荷が変わっても共振点は変化せず、負荷の軽重で共振点における振動伝達率に大小が生ずることがわかる。
【0049】
また、図22は比較例としての、従来の乗用車シートの動特性を示すグラフであり、振動伝達率が全体として高く、負荷の変動にともない共振点及び振動伝達率はともに変動している。
【0050】
ところで、上記式(1)において、対向する永久磁石間の幾何学的寸法を運動行程内機構あるいは外力により変化させると、バネ定数kは、図23に示されるように、時間とともに変化する長方形波k(t)であって、周期T=2π/ωにおいて、+k'と−k'の値を1/2周期毎に交互にとる。従って、式(1)は次のように表される。
【数11】
Figure 0003924596
(i)0<t<π/ωにおいて、
【数12】
Figure 0003924596
(ii)π/ω≦t<2π/ωにおいて、
【数13】
Figure 0003924596
【0051】
ここで、0<t<π/ωの時の平衡位置をx0、平衡位置からの変位をy1とすると、
【数14】
Figure 0003924596
【0052】
ここで、(n−k')/x0 2=k1′とおくと、
【数15】
Figure 0003924596
【0053】
調和振動をF(t)=Fei ω tとおき、y1=xei ω tとおくと、
【数16】
Figure 0003924596
ここで、φは位相遅れを示す。
【数17】
Figure 0003924596
従って、共振周波数ω0は、
【数18】
Figure 0003924596
【0054】
同様に、π/ω≦t<2π/ωの時、
【数19】
Figure 0003924596
従って、y1<y2で、発散することとなる。
【0055】
一般に、自励振動系は負の粘性減衰を有するバネ−質量系と置き換えることができ、振動中に外部から振動エネルギが導入されるが、実際に発生する振動は、質点に空気抵抗や各種の抵抗が発生し、エネルギを消失する。
【0056】
しかしながら、本発明の負の減衰特性を有する磁性バネに外力として振動エネルギが導入されると、上記したように、y1<y2で発散し、発散し続けると振幅が次第に増大し系が破壊されるか、あるいは、変位の増大とともに大きくなる減衰項を上記状態方程式に追加することにより、正の減衰が作用し負の減衰と釣り合った状態で定常的な振動を行うようになる。すなわち、バネ定数k(t)と同様、減衰係数も可変で、式(1)はさらに次のように書き直すこともできる。
【数20】
Figure 0003924596
【0057】
本発明の磁性バネを有する振動系は、持続振動、発散振動を誘発するエネルギ変化・変換系が振動系内部に存在しており、上記状態方程式に正の減衰項を機構的に加えることにより、さらに次の状態方程式を得ることができる。
【数21】
Figure 0003924596
【0058】
この状態方程式は、r≠0の時、xが増大すると左辺3項が大きくなり、かつ、バネ項の減衰項により正の減衰が働く。従って、永久磁石による内部励振特性として、変位が小さい時は負の減衰で、変位の増大とともに正の減衰が働き、正と負の減衰がつりあう振幅で振動が定常的になる。
【0059】
また、振動系の質量、減衰係数、バネ定数のうち一つ以上について、その大きさが時間とともに変化する場合、これによって生じる振動を係数励振振動と呼ばれているが、上記式(4),(5),(6)は励振源自体が振動する係数励振振動となっており、系内の非振動的エネルギが系内部で振動的な励振に変換されて振動を発生させる。
【0060】
通常は供給エネルギは動力エネルギの一部が変換したものであるから、動力エネルギに上限があると供給エネルギにも限りがあり、これが消費エネルギに等しくなった時点で振幅が抑えられる。永久磁石によるポテンシャルエネルギは、その系の動力エネルギとは独立しており、消費エネルギとの格差を広げることができるが、永久磁石の質量当たりの最大エネルギ積が増大すれば、さらにこの格差を大幅に広げることも可能で、1サイクル中で、負の減衰による供給エネルギを減衰による消費エネルギよりも大きくすることにより、振動エネルギは増大する。
【0061】
前述したように、式(1)において、減衰係数r及びバネ定数(係数)kは自由に制御することが可能で、例えば図1の模式図において、永久磁石4が最下端にある時、永久磁石2との対向面積を最大とすることで振幅を減衰でき、磁力ブレーキ、動吸振器等に応用することができる。また、最下端から最上端に向かって永久磁石4が離れ出してから対向面積を最大にすることで反発力を増大することができるので、発電機やアンプ等に応用することもできる。
【0062】
また、上記状態方程式の解から分かるように、本発明の係数励振振動系は、負荷の変動によって固有振動数が変化しても、励振振動数を移動させることで振幅の変動を少なくすることができる。すなわち、励振振動数を可変とし、手動又は自動的に共振振動数を追尾させて、常に周波数特性の共振振動数が低下するところで動作させることが可能で、自動車用シートの除振装置として使用することにより、振動絶縁性が向上でき、その個別性能を改善することができる。例えば、共振点を4Hz以下に下げることもできる。また、負の減衰を利用することによる低周波の改善と永久磁石の持つ非線形特性を特化させることによる体重差の吸収が可能となる。
【0063】
ここで、ウレタンとファイバを組み合わせたパッドあるいは本発明の磁性バネ構造体を採用したベッド型除振ユニットを使用して振動実験を行ったところ、図24に示されるような結果が得られた。
【0064】
図24のグラフからわかるように、パッドとともに本発明の磁性バネ構造体を採用したものは、パッドのみを採用したものに比べ、共振周波数が半分以下の3Hzまで減少し、除振ユニットとして極めて有効であることが認められた。さらに、セミアクティブ制御を行うことにより、共振点における振動伝達率を1/3程度に減少することができた。
【0065】
さらに、図25のマグレブ(magnetic levitation:磁気浮上)ユニットの動特性を調べたところ、図26のような結果が得られた。
【0066】
図25のマグレブユニットは、基台74の上に複数の揺動レバー76を介してシート78を揺動自在に支承し、基台74の上面に二つの永久磁石80,82を所定距離離間せしめて固定する一方、この永久磁石80,82に対し同磁極が対向する永久磁極84をシート78の下面に固定している。なお、永久磁極80,82,84としては、75×75×25mmのものを使用した。
【0067】
このマグレブユニットに53kg,75kg,80kgの異なる負荷を加えたが、図26に示されるように、負荷の変動による振動伝達率の差を小さく抑えることができるとともに、共振点を略一致させることができた。
【0068】
また、乗用車用シート、サスペンションシートA、サスペンションシートB、及び、本発明にかかるマグレブユニットの乗り心地評価を調べたところ、図27のような結果が得られた。なお、マグレブユニットの負荷は53kgとし、75×75×25mmの永久磁石を使用した。また、図中、「固定」はシートをサスペンションに固定しただけの状態を示すとともに、ウレタン、ゲル、スチレンはユニットの上に取り付けたクッション材を示している。
【0069】
ここで、乗り心地評価定数として、”SAE paper 820309”に記載され次式で表される乗り心地指数R(Ride Number)を使用した。
R=K/(A・B・fn)
変数A,B,fnはシートの伝達関数(T.F.)から求められ、それぞれ次の値を示している。
A: T.F.の最大値
B: 10HzにおけるT.F.値
fn:共振周波数あるいはAが現れた周波数
K: 全く異なったシートを表現する乗り心地係数(多様なシートを使用し たので、K値は"1”と定めた)
ISO乗り心地評価は小さい数値で乗り心地が良いことを表すのに対し、上記乗り心地指数Rはその数値が大きいほど良い乗り心地を意味している。
【0070】
図27からわかるように、乗り心地評価をしたシートのうち、乗用車用シートは0.2〜0.3(オールウレタン系)、0.3〜0.5(バネ系)、体重調整を行ったサスペンションシートは0.5〜0.7の値を示し、本発明のマグレブユニットの乗り心地は他のシートより良く、53kgの負荷に対して0.75〜1.60の乗り心地評価定数が得られた。
【0071】
また、図28は負荷を変えた場合のマグレブユニットの乗り心地評価定数を示しており、この図からわかるように、どの負荷に対しても0.7以上の乗り心地評価定数が得られ、本発明にかかるマグレブユニットの乗り心地の良さを示している。
【0072】
また、図29は、乗用車用シート、サスペンションシートA、サスペンションシートB、及び、本発明にかかるマグレブユニットの動特性を示しており,図中、(a)は乗用車用シート、(b),(c)はサスペンションシートAにそれぞれ53kg及び75kgの負荷を加えたもの、(d),(e)はサスペンションシートBにそれぞれ45kg及び75kgの負荷を加えたもの、(f),(g)は本発明にかかるマグレブユニットにおいてクッション材を変えたもの、(h)は本発明にかかるマグレブユニットをセミアクティブ制御したものをそれぞれ示している。
【0073】
図29からわかるように、マグレブユニットの共振点は2〜3Hzの間にあり、低・高周波領域の振動伝達率も小さいことがわかる。さらに、セミアクティブ制御を行うことにより、共振点をさらに減少させることができるとともに、その振動伝達率を広範囲の周波数領域において低減できることが確認できた。
【0074】
また、本発明の非線形振動系あるいは係数励振振動系に衝突振動を活用することもできる。
衝突は、摩擦とともに代表的な機械系の非線形現象であり、衝突を生ずると物体の変形抵抗のように急に運動を妨げるものが作用するので、急速に減速して非常に大きな加速度を生ずる。磁性バネも衝突と同一の現象(疑似)を起こしている。
【0075】
物体がある運動エネルギを持って衝突すると接触部の変形、すなわち、塑性変形仕事、接触表面の摩擦仕事、物体内部への弾性波動、外部への音響エネルギとして散逸し、残りが弾性エネルギに変換し、運動エネルギに再変換される。前述したように、磁性バネの場合、非接触のため大きな損失がなく、その静特性として同一ライン上を非線形で帰り、負の減衰を生じさせやすい。
【0076】
例えば、マグレブユニットでストッパに当たらない場合は、加速度に変換され+αの反発力で自励させたり、非接触故の低減衰振動ながら、人体に悪影響を与えない振動特性を示す。さらに、金属バネとの組合せにより、加速度が減衰を越える場合ハードバネによる完全弾性衝突を誘発させ自励させて、2次共振を防ぐこともできる。エネルギ損失分は磁場のポテンシャルエネルギの変換によって補うこともできる。
【0077】
また、一般的な防振の基本原理として、質量効果、振動絶縁、振動減衰、振動干渉、伝播の指向性を考慮する必要があり、弾性支持すると、上下動や横揺れを惹起するので、防振基礎を重たくかつ大きくし、支持スパンを長くとればよい。また、粘性ダンパ、摩擦ダンパの併用で減衰を与えると、衝撃によって与えられたエネルギをダンパ等で次の衝撃までに速やかに消散して振れを減衰させることができる。
【0078】
さらに、摩擦減衰を抑えるために、ストッパを弾性支持することにより対向衝撃を利用して防振とエネルギ変換を行い、磁性バネの反発力不足を補うこともできる。
【0079】
図30は、ストッパを弾性支持した場合のモデルを示しており、弾性支持部材のバネ定数kを所定の加速度あるいは振幅を吸収可能で、かつ、可変とし、バネ定数kを適宜調節して共振点を調節できるようにしたものである。
【0080】
この構成は、所定値以下の加速度あるいは振幅がストッパに加わると、弾性支持部材が弾性変形することにより摩擦減衰を抑制し、その対向衝撃を利用して磁性バネの反発力不足を補償するとともに、除振性能を向上させることができる。
【0081】
【発明の効果】
本発明は、以上説明したように構成されているので、以下に記載されるような効果を奏する。
本発明のうちで請求項1に記載の発明によれば、外力によりラチェット機構を介して回転体を回転させることにより同一磁極が対向する複数の永久磁石の対向面積を変化させ、永久磁石の平衡位置からの入力側の反発力より出力側の反発力を大きくしたので、パッシブコントロール、セミアクティブコントロール、アクティブコントロールのいずれも同一構想で対処できる。
【0082】
また、請求項2に記載の発明によれば、対向する永久磁石の最接近位置で最大反発力を発生するようにしたので、ポテンシャルの場としての磁場を有効利用することができ、廉価な磁力ブレーキ、動吸振器、発電機、アンプ等が実現できる。
【0083】
さらに、請求項3に記載の発明によれば、対向する永久磁石の相対位置を決定する位置決め手段の一部を回転体に取り付けたので、対向面積の変換を容易に行うことができる。
【0084】
また、請求項4に記載の発明によれば、位置決め手段を複数の永久磁石で構成したので、簡素な構成で確実に面積変換を行うことができる。
【図面の簡単な説明】
【図1】 本発明にかかる磁性バネ振動機構において、二つの永久磁石の入力側と出力側の平衡位置を示した模式図である。
【図2】 図1の磁性バネ振動機構において、加えられた荷重と永久磁石の平衡位置からの変位量との関係を示す基本特性のグラフである。
【図3】 実測された荷重と変位量との関係を示すグラフである。
【図4】 永久磁石の端面上に磁荷が均一に分布していると仮定したチャージモデルにおける入出力の考え方を示す模式図であり、(a)は吸引を、(b)は反発を、(c)は(b)とは異なる部位の反発をそれぞれ示している。
【図5】 同磁極を対向させた永久磁石において、一方を他方に対し移動させた(対向面積を変えた)場合の模式図である。
【図6】 図5に基づいて計算した場合のX軸移動量に対するX軸及びZ軸方向の荷重を示すグラフである。
【図7】 図5の永久磁石の離間距離を一定に保持し、一方を他方に対し完全にずれた状態から完全にラップした状態まで移動し、さらにこの状態から完全にずれた状態まで移動させた時の変位量と荷重との関係を示すグラフである。
【図8】 同磁極を対向させた永久磁石において、一方を他方に対し回転させた(対向面積を変えた)場合の模式図である。
【図9】 図8に基づいて永久磁石を回転させた場合の対向面積に対する最大荷重を示すグラフである。
【図10】 永久磁石としてネオジム系磁石を採用した場合の磁石間距離と荷重との関係を示すグラフである。
【図11】 本発明にかかる磁性バネ振動機構の斜視図であり、対向する永久磁石が最も離間した状態を示している。
【図12】 本発明にかかる磁性バネ振動機構の斜視図であり、対向する永久磁石が最も接近した状態を示している。
【図13】 図11及び図12の磁性バネ振動機構の分解斜視図である。
【図14】 図11及び図12の磁性バネ振動機構の要部斜視図である。
【図15】 図11及び図12の磁性バネ振動機構に設けられたラチェットホイールの位置決め手段の拡大斜視図である。
【図16】 図11の状態における永久磁石の対向面積を示す平面図である。
【図17】 図11及び図12の磁性バネ振動機構において、加えられた荷重と永久磁石の平衡位置からのたわみ量との関係を示すグラフである。
【図18】 磁性バネの特性を説明するための基本モデルである。
【図19】 面積変換しない場合の磁性バネの静・動特性を得るために使用された装置の正面図である。
【図20】 図19の装置を使用して得られた磁性バネの動特性を示しており、(a)は50×50×10mmの磁石を使用した場合の、(b)は50×50×15mmの磁石を使用した場合の、(c)は50×50×20mmの磁石を使用した場合の、(d)は75×75×15mmの磁石を使用した場合の、(e)は75×75×20mmの磁石を使用した場合の、(f)は75×75×25mmの磁石を使用した場合のグラフである。
【図21】 図19の装置を使用して得られた磁性バネの動特性を示しており、同じ磁石を使用して負荷を変えた場合のグラフである。
【図22】 比較例としての従来の乗用車用シートの動特性を示すグラフである。
【図23】 本発明の磁性バネ構造体におけるバネ定数及び係数の時間に対する変化を示すグラフである。
【図24】 パッドのみを使用した場合、パッドと磁性バネを使用した場合、及び、さらにセミアクティブ制御した場合のベッド型除振ユニットの動特性を示すグラフである。
【図25】 磁性バネの動特性を測定するために使用されたマグレブユニットの正面図である。
【図26】 図25のマグレブユニットを使用して測定されたマグレブユニットの動特性を示すグラフである。
【図27】 マグレブユニットを含む種々のシートを使用して測定された乗り心地評価定数を示すグラフである。
【図28】 負荷及びクッション材を変えて測定されたマグレブユニットの乗り心地評価定数を示すグラフである。
【図29】 マグレブユニットを含む種々のシートを使用して測定された動特性を示すグラフである。
【図30】 ストッパ及び弾性支持部材を磁性バネに組み込んだモデルの模式図である。
【符号の説明】
2,4,58,70 永久磁石
5 基台
6 Xリンク
7 頂板
18 U字状部材
56 ラチェットホイール
62 爪片
64 第1棒磁石
66 第2棒磁石

Claims (4)

  1. 基台と、該基台にリンク機構を介して相対移動自在に取り付けられた頂板と、上記基台にラチェット機構を介して回転自在に取り付けられた回転体と、該回転体の円周方向に所定の間隔で固着された複数の第1永久磁石と、上記頂板の円周方向に所定の間隔で固着され上記第1永久磁石と同一磁極が対向する上記第1永久磁石と同数の第2永久磁石とを備え、外力により上記ラチェット機構を介して上記回転体を回転させることにより上記第1及び第2永久磁石の対向面積を変化させ、上記第1及び第2永久磁石の平衡位置からの入力側の反発力より出力側の反発力を大きくしたことを特徴とする負の減衰特性を有する磁性バネ振動機構。
  2. 上記第1及び第2永久磁石の最接近位置で最大反発力を発生するようにした請求項1に記載の負の減衰特性を有する磁性バネ振動機構。
  3. 上記第1及び第2永久磁石の相対位置を決定する位置決め手段の一部を上記回転体に取り付けた請求項1に記載の負の減衰特性を有する磁性バネ振動機構。
  4. 上記位置決め手段を複数の永久磁石で構成した請求項3に記載の負の減衰特性を有する磁性バネ振動機構。
JP02766897A 1997-02-12 1997-02-12 負の減衰特性を有する磁性バネ振動機構 Expired - Lifetime JP3924596B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02766897A JP3924596B2 (ja) 1997-02-12 1997-02-12 負の減衰特性を有する磁性バネ振動機構

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02766897A JP3924596B2 (ja) 1997-02-12 1997-02-12 負の減衰特性を有する磁性バネ振動機構

Publications (2)

Publication Number Publication Date
JPH10220524A JPH10220524A (ja) 1998-08-21
JP3924596B2 true JP3924596B2 (ja) 2007-06-06

Family

ID=12227339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02766897A Expired - Lifetime JP3924596B2 (ja) 1997-02-12 1997-02-12 負の減衰特性を有する磁性バネ振動機構

Country Status (1)

Country Link
JP (1) JP3924596B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030024505A (ko) * 2001-09-18 2003-03-26 기아자동차주식회사 자력을 이용한 회전시트
JP4603396B2 (ja) * 2005-03-15 2010-12-22 株式会社デルタツーリング シートサスペンション制御機構
US9821681B2 (en) * 2016-01-25 2017-11-21 Ford Global Technologies, Llc Vehicle seat position sensing

Also Published As

Publication number Publication date
JPH10220524A (ja) 1998-08-21

Similar Documents

Publication Publication Date Title
US6035980A (en) Magnetic spring having damping characteristics and vibration mechanism having same
TW587135B (en) Vibration damper using magnetic circuit
KR100331934B1 (ko) 자기스프링을구비한진동기구
JP2000234649A (ja) サスペンションユニット
EP1055838B1 (en) Vibration mechanism
US6585240B1 (en) Vibration relief apparatus and magnetic damper mechanism therefor
JP2001349374A (ja) 磁気バネ構造及び該磁気バネ構造を用いた除振機構
EP0878639A2 (en) Energy extracting mechanism having a magnetic spring
JP2003530522A (ja) 電子的且つ電磁的作動を用いた振動減衰装置
JPH1086724A (ja) 磁気浮上式サスペンションユニット
JP3924596B2 (ja) 負の減衰特性を有する磁性バネ振動機構
JP3924597B2 (ja) 負の減衰特性を有する磁性バネ振動機構
JPH1086726A (ja) 磁気浮上式サスペンションユニット
JP3890383B2 (ja) 減衰特性を有する磁性バネ
JP3747112B2 (ja) 減衰特性を有する磁気バネ
JP3903163B2 (ja) 磁気浮上式サスペンションユニット
JPH1086725A (ja) 磁気浮上式サスペンションユニット
Hoque et al. A 3-DOF modular vibration isolation system using zero-power magnetic suspension with adjustable negative stiffness
JPH1067267A (ja) 磁気浮上式サスペンションユニット
JPH0960688A (ja) 構造物用振動減衰ダンパー
Li et al. A tunable'negative'stiffness system for vibration control
Tao A novel kind of proportional electromagnetic dynamic vibration absorber
Fujita et al. Vibration characteristics of vertical suspension using magneto-spring
Kitayama et al. Development of a two degrees-of-freedom linear oscillatory actuator for vibration control
Easu et al. Influence of magnetic field strength of hybrid magnet on vibration isolation of quarter car model

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term