JP3923300B2 - Scanning probe microscope - Google Patents

Scanning probe microscope Download PDF

Info

Publication number
JP3923300B2
JP3923300B2 JP2001360623A JP2001360623A JP3923300B2 JP 3923300 B2 JP3923300 B2 JP 3923300B2 JP 2001360623 A JP2001360623 A JP 2001360623A JP 2001360623 A JP2001360623 A JP 2001360623A JP 3923300 B2 JP3923300 B2 JP 3923300B2
Authority
JP
Japan
Prior art keywords
sample
magnetic pole
probe microscope
scanning probe
cantilever
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001360623A
Other languages
Japanese (ja)
Other versions
JP2003161687A (en
Inventor
聡 蓮村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2001360623A priority Critical patent/JP3923300B2/en
Publication of JP2003161687A publication Critical patent/JP2003161687A/en
Application granted granted Critical
Publication of JP3923300B2 publication Critical patent/JP3923300B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、走査型プローブ顕微鏡に関する。
【0002】
【従来の技術】
走査型プローブ顕微鏡の測定モードの一つである磁気力顕微鏡は、磁性体試料表面からの漏洩磁界を磁性探針との間に作用する磁気力を用いて磁区を観察する力顕微鏡である。磁気力顕微鏡の主たる応用分野は磁気記録媒体の磁化状態観察である。近年は磁気記録への応用を目的とした新磁性体素材や磁気ドットの開発および次世代磁気ヘッドや磁性半導体デバイスへの応用を目的とした磁性材料や磁性薄膜の研究に磁気力顕微鏡が使用されており、磁場雰囲気中での磁気ドメインの移動観察や連続的に変化する磁場雰囲気中でのミクロな磁化反転率の測定などが要求されている。特に、磁気感度が向上し且つ低温環境が実現可能な真空磁場雰囲気中での磁気力測定が必須となる。
【0003】
従来、走査型プローブ顕微鏡において試料近傍を磁場雰囲気にする場合には、試料から一番近い位置に永久磁石や電磁石を置く方法がある。ここで試料近傍にはカンチレバー変位検出器や試料の微動部などの走査型プローブ顕微鏡の構成要素が存在する。そのため、強磁場の印加を目的とする大型の磁石が位置する空間は得られず、結果として磁極空隙に走査型プローブ顕微鏡全体が入る形となる。一方、磁石を小型にして試料近傍の試料台などに組込む方式もある。
【0004】
【発明が解決しようとする課題】
しかしながら、前述した従来例では、磁極空隙に走査型プローブ顕微鏡全体が入る形となり、それにより磁極空隙が大きくなることで強磁場を得ることが困難となる。ここで磁場印加機構を巨大化することで強磁場を得たとしても、走査型プローブ顕微鏡の信号伝送部や微少位置決め機構が強磁場雰囲気の中に位置することで顕微鏡動作の安定性が保証できない。
【0005】
また、磁石を小型にして試料近傍の試料台などに組込む方式では、磁石が小型となり強磁場を得ることができない。特に電磁石を用いる場合には、真空環境でのマグネットワイヤの発熱による断線の危険性を有する。
【0006】
本発明は従来のこのような問題を解決するためになされたものであり、その目的は、外部から試料近傍のみに任意の水平磁場を印加する機能を有する走査型プローブ顕微鏡を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するために、この発明は、先端の鋭い探針を有するカンチレバーとカンチレバーの変位を検出する機構とカンチレバーと試料を相対的に移動させる微動・粗動機構とカンチレバー試料間を任意に保つ制御系から構成される走査型プローブ顕微鏡において、外部から試料近傍のみに任意の水平磁場を印加する機能を有する走査型プローブ顕微鏡を提供する。
【0008】
上記外部から試料近傍のみに任意の水平磁場を印加するために、先端が試料台上の試料側面を両側から挟み込むように水平方向に一対の磁極柱を配置させることで可能とする。磁極柱は真空容器に真空シールを介して挿入され、真空容器は、試料室側壁に着脱自在に固定される。この時、磁極柱の前部は、試料室内に、後部は、試料室外の大気中に配置される。磁極柱の軸を水平方向に可動式とすることで、磁極柱先端間の空隙の大きさを変えることが可能となる。磁極柱として永久磁石を用いる場合には、空隙の大きさを変えることで任意の磁場を得る。電磁石を用いる場合にはコイル部を磁極柱後部大気側とすることで冷却が可能となる。磁場検出器からの信号に基づいてコイル部のマグネットワイヤ電流値を制御することで任意の磁場を得る。二つの磁極柱は、大気側でヨークにより接続可能であるため磁気回路が形成される。
【0009】
【発明の実施の形態】
以下に、この発明の実施の形態を図面に基づいて説明する。図1は、本発明の一実施例を示す構成図である。探針11を試料12近傍に位置することにより生じる様々な物理情報を含んだ力は、探針11をカンチレバー13の先端に付けることで、カンチレバー13の撓みとして検出される。カンチレバー13の撓みは、半導体レーザからのLD光を用いて微小変位検出器14により検出される。自己検出方式カンチレバーを用いる場合には、自己検出方式カンチレバーと信号変換増幅器によりカンチレバーの撓みが検出される。この検出された信号の出力変化に基づいて探針あるいは試料に接続されたスキャナ15のZ方向圧電素子を用いて探針試料間距離を一定にするように制御回路を通してフィードバック制御を行う。そして、探針試料間距離制御を行いながら探針または試料をXY走査回路により2次元走査し出力信号処理を行うことで、試料の物理情報像が画像表示装置において得られる。
【0010】
図1において試料12を挟み込むように、磁性材料で作成された磁極柱16を配置する。磁極柱16は磁場印加用真空容器17に可動Oリング18を用いて挿入され、マイクロメータなどの導入機構19により磁極空隙の設定を可能とする。二つの磁極柱16はヨーク20を取りまわすことにより磁気回路を形成する。
【0011】
磁極空隙中心位置にホール素子などの磁場計測器21を設置し、プローブ測定の際には二つの磁極片から同距離の位置まで退避させ磁場を計測する。
【0012】
電磁石により磁場印加を行うときには、コイル部22を磁極柱16の大気側に設置し、直流電源23からコイル部マグネットワイヤに供給する電流値を変化させることで任意の磁場空間を形成する。マグネットワイヤの発熱に起因する線抵抗増大による磁場減少を回避して磁場空間を一定に保つ場合には、磁場計測器21の出力が一定になるように制御器24を用いて直流電源出力を制御する。直流電源にバイポーラ電源を用いると、電流の方向を変えることにより磁場の向きを容易に反転でき、磁極柱の残留磁化を打ち消すことでゼロ磁場空間を形成することも可能となる。
【0013】
永久磁石により磁場印加を行うときは、永久磁石25を磁極柱16先端に設置し、磁極空隙を変化させることで任意の磁場空間を形成する。永久磁石と電磁石を併用することで磁極空隙を変化させずに電磁石によるオフセット磁場を加えることで磁場を変化することも可能となる。
【0014】
本願発明は、上記した実施形態をその一態様として含むが、この記載のみに基づき技術的範囲を解釈することはできず、本願明細書及び図面に開示された思想・精神に基づいて解釈されるものである。当然、以下の実施形態も本願発明の技術的範囲に含まれる。
【0015】
技術的思想(1)
先端の鋭い探針を有するカンチレバーと、前記カンチレバーの変位を検出する機構と、前記カンチレバーと試料を相対的に移動させる微動・粗動機構と、前記カンチレバー試料間距離を任意に保つ制御系から構成される走査型プローブ顕微鏡において、外部から試料及びその近傍のみに任意の水平方向磁場を印加する機能を持たせたことを特徴とする走査型プローブ顕微鏡。
【0016】
技術的思想(2)
先端の鋭い磁性探針を有するカンチレバーと、前記カンチレバーの変位を検出する機構と、前記カンチレバーと試料を相対的に移動させる微動・粗動機構と、前記カンチレバー試料間距離を任意に保つ制御系から構成される走査型プローブ顕微鏡において、磁性体試料の磁化状態を観察する場合に、先端が試料台上の前記磁性体試料側面を両側から挟み込むように水平方向に一対の磁極柱を配置させることで、試料に水平方向磁場を印加することを特徴とする走査型プローブ顕微鏡。
【0017】
技術的思想(3)
前記磁極柱は真空容器に真空シールを介して挿入され、前記真空容器は試料室側壁に着脱自在に固定されることを特徴とする技術的思想(2)記載の走査型プローブ顕微鏡。
【0018】
技術的思想(4)
前記磁極柱の軸を水平方向に可動式とすることで、磁極柱先端間の空隙の大きさを変えることが可能であることを特徴とする技術的思想(2)の走査型プローブ顕微鏡。
【0019】
技術的思想(5)
電磁石を用いて外部から試料に任意の磁場を印加する機能を持ち磁場の最大磁束密度が テスラオーダであり磁場の大きさを一定に制御する機能を持たせたことを特徴とする技術的思想(1)の走査型プローブ顕微鏡。
【0020】
技術的思想(6)
永久磁石を用いて外部から試料に任意の磁場を印加する機能を持たせたことを特徴とする技術的思想(1)の走査型プローブ顕微鏡。
【0021】
技術的思想(7)
真空またはガス置換雰囲気での測定が可能であることを特徴とする技術的思想(1)から技術的思想(5)のいずれかに記載の査型プローブ顕微鏡。
【0022】
【発明の効果】
この発明は、以上説明したように、走査型プローブ顕微鏡において外部から試料近傍のみに任意の磁場を印加することが可能となり、走査型プローブ顕微鏡の信号伝送部や微少位置決め機構が強磁場雰囲気の中に位置することによる悪影響を回避することが可能となる。また、電磁石のコイル部マグネットワイヤに供給する電流値を大きくすることで強磁場を得ることが可能となり、電磁石のコイル部が大気側に位置し水冷・空冷が可能であることからプローブ測定における熱ドリフトの影響が回避可能となる。また、磁極空隙を容易に変えることが可能であり、磁場印加でのプローブ測定が試料の体積による制限を受けない効果がある。また、磁場磁場印加用真空容器の着脱により容易に通常の走査型プローブ顕微鏡への変更が可能になる。
【図面の簡単な説明】
【図1】 本発明の実施例における走査型プローブ顕微鏡の構成図である。
【符号の説明】
11 探針
12 試料
13 カンチレバー
14 変位検出器
15 スキャナ
16 磁極柱
17 磁場印加用真空容器
18 可動Oリング
19 導入機構
20 ヨーク
21 磁場計測器
22 コイル部
23 直流電源
24 制御器
25 永久磁石
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a scanning probe microscope.
[0002]
[Prior art]
A magnetic force microscope, which is one of measurement modes of a scanning probe microscope, is a force microscope that observes a magnetic domain using a magnetic force that acts between a magnetic probe and a leakage magnetic field from the surface of a magnetic material sample. The main field of application of the magnetic force microscope is observation of the magnetization state of a magnetic recording medium. In recent years, magnetic force microscopes have been used for the development of new magnetic materials and magnetic dots for the purpose of application to magnetic recording, as well as for the study of magnetic materials and thin films for application to next-generation magnetic heads and magnetic semiconductor devices. Therefore, there is a demand for observation of magnetic domain movement in a magnetic field atmosphere and measurement of a micro magnetization reversal rate in a continuously changing magnetic field atmosphere. In particular, it is essential to measure magnetic force in a vacuum magnetic field atmosphere in which magnetic sensitivity is improved and a low temperature environment can be realized.
[0003]
Conventionally, in a scanning probe microscope, when a magnetic field atmosphere is provided in the vicinity of a sample, there is a method of placing a permanent magnet or an electromagnet at a position closest to the sample. Here, components of the scanning probe microscope such as a cantilever displacement detector and a fine movement portion of the sample exist in the vicinity of the sample. Therefore, a space where a large magnet intended for application of a strong magnetic field is not obtained, and as a result, the entire scanning probe microscope enters the magnetic pole gap. On the other hand, there is a method in which a magnet is made small and incorporated in a sample stand near the sample.
[0004]
[Problems to be solved by the invention]
However, in the above-described conventional example, the entire scanning probe microscope is inserted into the magnetic pole gap, which makes it difficult to obtain a strong magnetic field by increasing the magnetic pole gap. Here, even if a strong magnetic field is obtained by enlarging the magnetic field application mechanism, the stability of the microscope operation cannot be guaranteed because the signal transmission part of the scanning probe microscope and the minute positioning mechanism are located in the strong magnetic field atmosphere. .
[0005]
In addition, in a system in which the magnet is made small and incorporated in a sample stand near the sample, the magnet becomes small and a strong magnetic field cannot be obtained. In particular, when an electromagnet is used, there is a risk of disconnection due to heat generation of the magnet wire in a vacuum environment.
[0006]
The present invention has been made to solve such a conventional problem, and an object thereof is to provide a scanning probe microscope having a function of applying an arbitrary horizontal magnetic field only to the vicinity of a sample from the outside. .
[0007]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a cantilever having a sharp tip, a mechanism for detecting the displacement of the cantilever, a fine movement / coarse movement mechanism for relatively moving the cantilever and the sample, and the cantilever sample arbitrarily. Provided is a scanning probe microscope having a function of applying an arbitrary horizontal magnetic field only to the vicinity of a sample from the outside in a scanning probe microscope composed of a maintaining control system.
[0008]
In order to apply an arbitrary horizontal magnetic field only to the vicinity of the sample from the outside, it is possible to arrange a pair of magnetic pole columns in the horizontal direction so that the tip sandwiches the sample side surface on the sample stage from both sides. The magnetic pole column is inserted into the vacuum vessel via a vacuum seal, and the vacuum vessel is detachably fixed to the side wall of the sample chamber. At this time, the front part of the magnetic pole column is disposed in the sample chamber, and the rear part is disposed in the atmosphere outside the sample chamber. By making the pole column axis movable in the horizontal direction, it is possible to change the size of the gap between the pole column tips. When a permanent magnet is used as the magnetic pole column, an arbitrary magnetic field is obtained by changing the size of the gap. In the case of using an electromagnet, cooling can be performed by setting the coil portion to the air side at the rear of the magnetic pole column. An arbitrary magnetic field is obtained by controlling the magnet wire current value of the coil unit based on the signal from the magnetic field detector. Since the two magnetic pole columns can be connected by a yoke on the atmosphere side, a magnetic circuit is formed.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of the present invention. A force including various physical information generated by positioning the probe 11 in the vicinity of the sample 12 is detected as bending of the cantilever 13 by attaching the probe 11 to the tip of the cantilever 13. The bending of the cantilever 13 is detected by the minute displacement detector 14 using LD light from the semiconductor laser. When a self-detecting cantilever is used, bending of the cantilever is detected by the self-detecting cantilever and a signal conversion amplifier. Based on the output change of the detected signal, feedback control is performed through the control circuit so as to make the distance between the probe and the sample constant by using the Z direction piezoelectric element of the scanner 15 connected to the probe or the sample. Then, the physical information image of the sample is obtained in the image display device by performing two-dimensional scanning of the probe or the sample by the XY scanning circuit and performing output signal processing while controlling the distance between the probe and sample.
[0010]
In FIG. 1, a magnetic pole column 16 made of a magnetic material is disposed so as to sandwich the sample 12. The magnetic pole column 16 is inserted into the magnetic field application vacuum vessel 17 using a movable O-ring 18, and the magnetic pole gap can be set by an introduction mechanism 19 such as a micrometer. The two magnetic pole columns 16 form a magnetic circuit by surrounding the yoke 20.
[0011]
A magnetic field measuring device 21 such as a Hall element is installed at the center position of the magnetic pole gap, and the magnetic field is measured by retracting from two magnetic pole pieces to the same distance at the time of probe measurement.
[0012]
When applying a magnetic field with an electromagnet, the coil part 22 is installed on the atmosphere side of the magnetic pole column 16, and an arbitrary magnetic field space is formed by changing the current value supplied from the DC power source 23 to the coil part magnet wire. When the magnetic field space is kept constant by avoiding the magnetic field decrease due to the increase of the line resistance caused by the heat generation of the magnet wire, the DC power supply output is controlled using the controller 24 so that the output of the magnetic field measuring instrument 21 becomes constant. To do. When a bipolar power source is used as the DC power source, the direction of the magnetic field can be easily reversed by changing the direction of the current, and a zero magnetic field space can be formed by canceling the residual magnetization of the magnetic pole column.
[0013]
When applying a magnetic field by a permanent magnet, the permanent magnet 25 is installed at the tip of the magnetic pole column 16, and an arbitrary magnetic field space is formed by changing the magnetic pole gap. By using a permanent magnet and an electromagnet together, the magnetic field can be changed by applying an offset magnetic field by the electromagnet without changing the magnetic pole gap.
[0014]
The present invention includes the above-described embodiment as one aspect thereof, but the technical scope cannot be interpreted based on this description alone, and is interpreted based on the idea and spirit disclosed in the present specification and drawings. Is. Naturally, the following embodiments are also included in the technical scope of the present invention.
[0015]
Technical thought (1)
Consists of a cantilever having a sharp tip, a mechanism for detecting the displacement of the cantilever, a fine / coarse movement mechanism for relatively moving the cantilever and the sample, and a control system for arbitrarily maintaining the distance between the cantilever and the sample A scanning probe microscope characterized in that it has a function of applying an arbitrary horizontal magnetic field only to the sample and its vicinity from the outside.
[0016]
Technical thought (2)
From a cantilever having a magnetic tip having a sharp tip, a mechanism for detecting displacement of the cantilever, a fine / coarse movement mechanism for moving the cantilever and the sample relatively, and a control system for arbitrarily maintaining the distance between the cantilevers and the sample In a configured scanning probe microscope, when observing the magnetization state of a magnetic sample, a pair of magnetic pole columns are arranged horizontally so that the tip sandwiches the side surface of the magnetic sample on the sample stage from both sides. A scanning probe microscope characterized by applying a horizontal magnetic field to a sample.
[0017]
Technical thought (3)
The scanning probe microscope according to the technical idea (2), wherein the magnetic pole column is inserted into a vacuum vessel through a vacuum seal, and the vacuum vessel is detachably fixed to a sample chamber side wall.
[0018]
Technical thought (4)
The scanning probe microscope according to the technical idea (2), wherein the size of the gap between the pole pole tips can be changed by making the axis of the pole pole movable in the horizontal direction.
[0019]
Technical thought (5)
A technical idea characterized by having a function of applying an arbitrary magnetic field to the sample from the outside using an electromagnet, a function of controlling the magnitude of the magnetic field uniformly with a maximum magnetic flux density of Tesla order. Scanning probe microscope.
[0020]
Technical thought (6)
A scanning probe microscope according to the technical idea (1), which has a function of applying an arbitrary magnetic field to a sample from the outside using a permanent magnet.
[0021]
Technical thought (7)
The probe microscope according to any one of the technical idea (1) to the technical idea (5), characterized in that measurement in a vacuum or a gas replacement atmosphere is possible.
[0022]
【The invention's effect】
As described above, according to the present invention, an arbitrary magnetic field can be applied only from the outside to the vicinity of the sample in the scanning probe microscope, and the signal transmission unit and the micropositioning mechanism of the scanning probe microscope are in a strong magnetic field atmosphere. It is possible to avoid adverse effects caused by being located in In addition, it is possible to obtain a strong magnetic field by increasing the value of the current supplied to the magnet wire of the electromagnet, and the coil portion of the electromagnet is located on the atmosphere side and can be cooled by water or air. The effect of drift can be avoided. Further, the magnetic pole gap can be easily changed, and there is an effect that the probe measurement by applying the magnetic field is not limited by the volume of the sample. In addition, it is possible to easily change to a normal scanning probe microscope by attaching / detaching the vacuum container for applying a magnetic field.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a scanning probe microscope according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Probe 12 Sample 13 Cantilever 14 Displacement detector 15 Scanner 16 Magnetic pole column 17 Vacuum container 18 for applying a magnetic field Movable O-ring 19 Introduction mechanism 20 Yoke 21 Magnetic field measuring device 22 Coil unit 23 DC power supply 24 Controller 25 Permanent magnet

Claims (9)

探針を有するカンチレバーと、前記カンチレバーの変位を検出する機構と、前記カンチレバーと試料とを相対的に移動させる微動・粗動機構と、当該微動・粗動機構を制御してカンチレバーと試料との間の距離を任意に保つ制御系と、を備えた走査型プローブ顕微鏡において、
前記走査型プローブ顕微鏡は、さらに、一対の磁極柱が設けられ、各磁極柱が、互いの先端部で試料の側面両側に配置され、試料に磁場を印加するものであり、
前記磁極柱は真空容器に真空シールを介して挿入され、前記真空容器は試料室側壁に着脱自在に固定されることを特徴とする走査型プローブ顕微鏡。
A cantilever having a probe, a mechanism for detecting the displacement of the cantilever, a fine movement / coarse movement mechanism for relatively moving the cantilever and the sample, and controlling the fine movement / coarse movement mechanism to In a scanning probe microscope equipped with a control system that keeps the distance between them arbitrarily,
The scanning probe microscope is further provided with a pair of magnetic pole columns, each magnetic pole column is disposed on both sides of the sample at the tip of each other, and applies a magnetic field to the sample ,
The scanning probe microscope, wherein the magnetic pole column is inserted into a vacuum vessel through a vacuum seal, and the vacuum vessel is detachably fixed to a side wall of the sample chamber .
前記磁極柱の軸を水平方向(試料測定面と略平行な方向)に可動する機構を備え、磁極柱先端間の空隙の大きさを可変することを特徴とする請求項1に記載の走査型プローブ顕微鏡。2. The scanning type according to claim 1, further comprising a mechanism for moving the axis of the magnetic pole column in a horizontal direction (a direction substantially parallel to the sample measurement surface), and varying the size of the gap between the tips of the magnetic pole columns. Probe microscope. 探針を有するカンチレバーと、前記カンチレバーの変位を検出する機構と、前記カンチレバーと試料とを相対的に移動させる微動・粗動機構と、当該微動・粗動機構を制御してカンチレバーと試料との間の距離を任意に保つ制御系と、を備えた走査型プローブ顕微鏡において、
前記走査型プローブ顕微鏡は、さらに、一対の磁極柱が設けられ、各磁極柱が、互いの先端部で試料の側面両側に配置され、試料に磁場を印加するものであり、
前記磁極柱の軸を水平方向(試料測定面と略平行な方向)に可動する機構を備え、磁極柱先端間の空隙の大きさを可変することを特徴とする走査型プローブ顕微鏡。
A cantilever having a probe, a mechanism for detecting the displacement of the cantilever, a fine movement / coarse movement mechanism for relatively moving the cantilever and the sample, and controlling the fine movement / coarse movement mechanism to In a scanning probe microscope equipped with a control system that keeps the distance between them arbitrarily,
The scanning probe microscope is further provided with a pair of magnetic pole columns, each magnetic pole column is disposed on both sides of the sample at the tip of each other, and applies a magnetic field to the sample ,
A scanning probe microscope comprising a mechanism for moving the axis of the magnetic pole column in a horizontal direction (a direction substantially parallel to the sample measurement surface), and varying the size of the gap between the tips of the magnetic pole columns .
探針を有するカンチレバーと、前記カンチレバーの変位を検出する機構と、前記カンチレバーと試料とを相対的に移動させる微動・粗動機構と、当該微動・粗動機構を制御してカンチレバーと試料との間の距離を任意に保つ制御系と、を備えた走査型プローブ顕微鏡において、
前記走査型プローブ顕微鏡は、さらに、一対の磁極柱が設けられ、各磁極柱が、互いの先端部で試料の側面を両側から挟み込むように配置され、試料の磁化状態を観察する場合に、試料のみ及び試料とその近傍のみのいずれかに任意の水平方向磁場を印加するものであり、
前記磁極柱は真空容器に真空シールを介して挿入され、前記真空容器は試料室側壁に着脱自在に固定されることを特徴とする走査型プローブ顕微鏡。
A cantilever having a probe, a mechanism for detecting the displacement of the cantilever, a fine movement / coarse movement mechanism for relatively moving the cantilever and the sample, and controlling the fine movement / coarse movement mechanism to In a scanning probe microscope equipped with a control system that keeps the distance between them arbitrarily,
The scanning probe microscope is further provided with a pair of magnetic pole columns, and each magnetic pole column is arranged so as to sandwich the side surface of the sample from both sides at the tip of each other, and when the magnetization state of the sample is observed, An arbitrary horizontal magnetic field is applied only to either the sample and the vicinity thereof ,
A scanning probe microscope, wherein the magnetic pole column is inserted into a vacuum vessel through a vacuum seal, and the vacuum vessel is detachably fixed to a side wall of a sample chamber .
前記磁極柱の軸を水平方向(試料測定面と略平行な方向)に可動する機構を備え、磁極柱先端間の空隙の大きさを可変することを特徴とする請求項4に記載の走査型プローブ顕微鏡。5. The scanning type according to claim 4, further comprising a mechanism for moving the axis of the magnetic pole column in a horizontal direction (a direction substantially parallel to the sample measurement surface), wherein the size of the gap between the magnetic pole column tips is variable. Probe microscope. 探針を有するカンチレバーと、前記カンチレバーの変位を検出する機構と、前記カンチレバーと試料とを相対的に移動させる微動・粗動機構と、当該微動・粗動機構を制御してカンチレバーと試料との間の距離を任意に保つ制御系と、を備えた走査型プローブ顕微鏡において、
前記走査型プローブ顕微鏡は、さらに、一対の磁極柱が設けられ、各磁極柱が、互いの先端部で試料の側面を両側から挟み込むように配置され、試料の磁化状態を観察する場合に、試料のみ及び試料とその近傍のみのいずれかに任意の水平方向磁場を印加するものであり、
前記磁極柱の軸を水平方向(試料測定面と略平行な方向)に可動する機構を備え、磁極柱先端間の空隙の大きさを可変することを特徴とする走査型プローブ顕微鏡。
A cantilever having a probe, a mechanism for detecting the displacement of the cantilever, a fine movement / coarse movement mechanism for relatively moving the cantilever and the sample, and controlling the fine movement / coarse movement mechanism to In a scanning probe microscope equipped with a control system that keeps the distance between them arbitrarily,
The scanning probe microscope is further provided with a pair of magnetic pole columns, and each magnetic pole column is arranged so as to sandwich the side surface of the sample from both sides at the tip of each other, and when the magnetization state of the sample is observed, An arbitrary horizontal magnetic field is applied only to either the sample and the vicinity thereof ,
A scanning probe microscope comprising a mechanism for moving the axis of the magnetic pole column in a horizontal direction (a direction substantially parallel to the sample measurement surface), and varying the size of the gap between the tips of the magnetic pole columns .
前記磁極柱の少なくとも一つは電磁石である請求項1乃至請求項6のいずれか一項に記載の走査型プローブ顕微鏡。  The scanning probe microscope according to any one of claims 1 to 6, wherein at least one of the magnetic pole columns is an electromagnet. 前記電磁石の電源としてバイポーラ電源を用いた、請求項7に記載の走査型プローブ顕微鏡。  The scanning probe microscope according to claim 7, wherein a bipolar power source is used as a power source for the electromagnet. 前記磁極柱の少なくとも一つは永久磁石である請求項1乃至請求項6のいずれか一項に記載の走査型プローブ顕微鏡。  The scanning probe microscope according to any one of claims 1 to 6, wherein at least one of the magnetic pole columns is a permanent magnet.
JP2001360623A 2001-11-27 2001-11-27 Scanning probe microscope Expired - Fee Related JP3923300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001360623A JP3923300B2 (en) 2001-11-27 2001-11-27 Scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001360623A JP3923300B2 (en) 2001-11-27 2001-11-27 Scanning probe microscope

Publications (2)

Publication Number Publication Date
JP2003161687A JP2003161687A (en) 2003-06-06
JP3923300B2 true JP3923300B2 (en) 2007-05-30

Family

ID=19171404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001360623A Expired - Fee Related JP3923300B2 (en) 2001-11-27 2001-11-27 Scanning probe microscope

Country Status (1)

Country Link
JP (1) JP3923300B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114634154B (en) * 2022-02-25 2023-11-17 武汉大学 Ten-nanometer multi-energy field machining device and machining method based on AFM

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3675768A (en) * 1969-03-17 1972-07-11 Gildardo Legorreta Sanchez Method and apparatus for classifying and segregating particles with electrical and optical means
JPS51131389A (en) * 1975-05-12 1976-11-15 Hitachi Ltd Device for uniform polarized magnetic field
JPS59221639A (en) * 1983-05-31 1984-12-13 Keisuke Hirata Viscometer
JPH07104187B2 (en) * 1990-12-28 1995-11-13 日置電機株式会社 Display device
JPH04249054A (en) * 1991-02-01 1992-09-04 Hitachi Ltd Surface microscope
JPH0566188A (en) * 1991-09-06 1993-03-19 Ntc Kogyo Kk Measuring method for viscoelasticity
US5266896A (en) * 1992-06-09 1993-11-30 International Business Machines Corporation Mechanical detection and imaging of magnetic resonance by magnetic moment modulation
US5331589A (en) * 1992-10-30 1994-07-19 International Business Machines Corporation Magnetic STM with a non-magnetic tip
JPH08212604A (en) * 1994-01-31 1996-08-20 Matsushita Electric Ind Co Ltd Method and device for information recording and reproducing
JPH07244053A (en) * 1994-03-03 1995-09-19 Hitachi Ltd Scanning force microscope
JP2848539B2 (en) * 1995-02-07 1999-01-20 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Cantilever deflection sensor and method of using the same
JPH08236339A (en) * 1995-02-22 1996-09-13 Tokin Corp Coil
JPH09127222A (en) * 1995-10-31 1997-05-16 Sony Corp Measuring method for magnetization state
JPH09218213A (en) * 1995-12-07 1997-08-19 Sony Corp Method and apparatus for observing considerably minute magnetic domain
JPH1048302A (en) * 1996-07-31 1998-02-20 Fujitsu Ltd Magnetic-force microscope
JP3057153B2 (en) * 1997-08-26 2000-06-26 株式会社東芝 Spin detector
JP3235786B2 (en) * 1998-06-30 2001-12-04 技術研究組合オングストロームテクノロジ研究機構 Scan probe force control method
JP2001050885A (en) * 1999-08-10 2001-02-23 Natl Res Inst For Metals Scanning multi-probe microscope in magnetic field

Also Published As

Publication number Publication date
JP2003161687A (en) 2003-06-06

Similar Documents

Publication Publication Date Title
Rugar et al. Force microscope using a fiber‐optic displacement sensor
JP2006258429A (en) Scanning probe microscope
Roseman et al. Cryogenic magnetic force microscope
JP4245951B2 (en) Electrical property evaluation equipment
US6617848B2 (en) Magnetic head measuring apparatus and measuring method applied to the same apparatus
JP2004125540A (en) Scanning probe microscope and sample observation method using it
JP2023527008A (en) Magnetic field generator and transmission electron microscope sample holder for applying magnetic field
US6683451B1 (en) Magnetic resonance force microscope for the study of biological systems
Ramiandrisoa et al. A dark mode in scanning thermal microscopy
JP3923300B2 (en) Scanning probe microscope
CN109945986B (en) Nanoscale resolution integrated optical quantum thermometer
JP3522222B2 (en) Scanning AC Hall microscope and its measuring method
JP2005201775A (en) Resonance type magnetic sensor, and magnetic field detector using the same
Egelkamp et al. Imaging of magnetic domains by the Kerr effect using a scanning optical microscope
JP2014134523A (en) Magnetical characteristic evaluation apparatus for magnetic fine particle and magnetical characteristic evaluation method
Sandhu et al. A novel variable temperature scanning nano-Hall probe microscope system for large area magnetic imaging incorporating piezoelectric actuators maintained at room temperature
JP2001050885A (en) Scanning multi-probe microscope in magnetic field
JP2003344258A (en) Device for impressing vertical magnetic field for magnetic force microscope
JP2003077109A (en) Device and method for inspecting magnetic head
JP3106239B2 (en) Probe scanning device
JP2004226292A (en) Scanning hall probe microscope
JPH06323845A (en) Thin film force detection probe for scanning force microscope
JP2012013575A (en) Scanning probe microscope
JP2004309347A (en) Scanning probe microscope
JP3398411B2 (en) Magnetic force microscope

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040304

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3923300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees