JPH04249054A - Surface microscope - Google Patents

Surface microscope

Info

Publication number
JPH04249054A
JPH04249054A JP1191791A JP1191791A JPH04249054A JP H04249054 A JPH04249054 A JP H04249054A JP 1191791 A JP1191791 A JP 1191791A JP 1191791 A JP1191791 A JP 1191791A JP H04249054 A JPH04249054 A JP H04249054A
Authority
JP
Japan
Prior art keywords
sample
refrigerant
stage
vessel
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1191791A
Other languages
Japanese (ja)
Inventor
Hideo Kashima
秀夫 鹿島
Yukio Honda
幸雄 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1191791A priority Critical patent/JPH04249054A/en
Publication of JPH04249054A publication Critical patent/JPH04249054A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To provide possibility of observation with high resolution in am ultra- cryogenic environment by equipping a surface microscope with a special vibration decreasing function consisting of a spiral metal sheet. CONSTITUTION:A refrigerant vessel 3 for cooling a specimen 14 is fixed to a flange 22, and a reflex board 11 to shield radiation heat is fixed to the periphery of this vessel 3. The end face of a specimen table 10 is coupled with the surface of the vessel 8 by a coupling member made from a circular metal sheet 8 elongated in spiral. form, in which cuts are provided concentrically. Two of such metal sheets 8 are used and installed so that their spirals are directed oppositely. Liquid nitrogen is injected into another refrigerant vessel 1 in order to lessen the quantity of radiation heat given to the first named refrigerant vessel 3 from a vacuums vessel 23. The specimen 14 is cooled by releasing its heat to the refrigerant vessel 3 via the specimen table 10 and metal sheets 8. Thus heat transfer to the specimen 14 can be made while vibrations likely to intrude externally are shielded.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、試料の冷却機能を備え
た表面顕微鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface microscope equipped with a sample cooling function.

【0002】0002

【従来の技術】表面顕微鏡に属する顕微鏡として、例え
ば走査トンネル顕微鏡,原子間力顕微鏡、及び磁気力顕
微鏡がある。磁気力顕微鏡は、例えばサーフェス・サイ
エンス(Surface・Science)189/1
90(1987)29に記載のような構造のものがある
2. Description of the Related Art Microscopes belonging to surface microscopes include, for example, scanning tunneling microscopes, atomic force microscopes, and magnetic force microscopes. The magnetic force microscope is, for example, Surface Science 189/1.
90 (1987) 29.

【0003】この磁気力顕微鏡は、試料の冷却機能が備
わっていなかったため、観察時の試料の温度は室温状態
のみにかぎられる。さらに試料への磁界印加機能及び通
電機能を有していないため、試料の磁性観察が制限され
る。一方、試料の冷却機能を備えた走査トンネル顕微鏡
としては、例えば第49回応用物理学会学術講演会(1
988)424に記載のように、試料を冷却する冷媒流
路と試料を保持する試料台を一体化しており、冷媒流路
に例えば液体窒素などの冷媒を注入し、冷媒流路と試料
間の熱伝導によって、冷却していた。
[0003] Since this magnetic force microscope was not equipped with a cooling function for the sample, the temperature of the sample during observation was limited to room temperature. Furthermore, since it does not have the function of applying a magnetic field to the sample or the function of supplying electricity, observation of the magnetism of the sample is limited. On the other hand, as a scanning tunneling microscope equipped with a sample cooling function, for example, the 49th Japan Society of Applied Physics Academic Conference (1st
As described in 988) 424, a refrigerant flow path for cooling the sample and a sample stage for holding the sample are integrated, and a refrigerant such as liquid nitrogen is injected into the refrigerant flow path to cool the gap between the refrigerant flow path and the sample. It was cooled by heat conduction.

【0004】0004

【発明が解決しようとする課題】磁性試料の磁気特性や
磁区構造は、温度によって変化する。特に各物質の超電
導状態にいたる前後の磁区観察を行うには、試料に振動
を伝達せずに極低温まで冷却する冷却機能が要求される
。これは同様に走査トンネル顕微鏡にも要求される。
[Problems to be Solved by the Invention] The magnetic properties and magnetic domain structure of a magnetic sample change depending on temperature. In particular, in order to observe the magnetic domains of each material before and after it reaches the superconducting state, a cooling function is required to cool the sample to an extremely low temperature without transmitting vibrations to it. This is likewise required for scanning tunneling microscopes.

【0005】前述した従来の冷却機能を備えた走査トン
ネル顕微鏡の構造は、冷媒流路と試料台は密着して固定
されているため、冷媒流路内の冷媒の流れや蒸発などに
起因する振動が、試料へ伝達されることになり、高分解
能の観察が困難であるという問題があった。また、微動
ステージと冷媒流路は一体構造となっているため、微動
ステージも冷却される。この場合、微動ステージの動き
が不安定になり、精度上の問題があった。微動ステージ
が、外部から侵入する振動から遮断する除振機構に積載
している場合、当然除振機構も冷却される。除振機構に
高分子材料を使用している場合、低温に冷却されると、
高分子材料が硬化して、除振性能が劣化することになり
、試料の観察が行えないという問題があった。
[0005] In the structure of the conventional scanning tunneling microscope equipped with the cooling function described above, the refrigerant flow path and the sample stage are fixed in close contact with each other. is transmitted to the sample, making high-resolution observation difficult. Further, since the fine movement stage and the coolant flow path are integrated, the fine movement stage is also cooled. In this case, the movement of the fine movement stage became unstable, causing a problem in accuracy. When the fine movement stage is mounted on a vibration isolating mechanism that isolates it from vibrations entering from the outside, the vibration isolating mechanism is also naturally cooled. If a polymer material is used for the vibration isolation mechanism, when it is cooled to a low temperature,
There was a problem in that the polymer material hardened and the vibration isolation performance deteriorated, making it impossible to observe the sample.

【0006】本発明は冷媒の流れや蒸発等に起因する振
動を遮断し試料を極低温まで冷却する試料冷却機能を備
えた磁気力顕微鏡又は走査トンネル顕微鏡等の表面顕微
鏡を提供することを目的とする。
An object of the present invention is to provide a surface microscope such as a magnetic force microscope or a scanning tunneling microscope, which is equipped with a sample cooling function that cools the sample to an extremely low temperature by blocking vibrations caused by coolant flow, evaporation, etc. do.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、冷媒容器又は冷媒流路と除振台に積載した試料を保
持する試料台をつなぐ伝熱部材、もしくはその一部に円
形の金属薄板に切断しないように同芯円状に細い切り込
みを設け、これをスパイラル状に伸ばして使用した。
[Means for Solving the Problems] In order to achieve the above object, a heat transfer member connecting a refrigerant container or a refrigerant flow path and a sample stand that holds a sample loaded on a vibration isolation table, or a part thereof, has a circular metal shape. Thin incisions were made in concentric circles to avoid cutting into thin plates, and these were stretched into a spiral shape for use.

【0008】この金属薄板で冷媒容器もしくは冷媒流路
と試料台を接続することによって、冷媒の流れ、蒸発な
どに起因する振動は試料台へ伝達されず、また可動性に
優れるため、試料の3次元の移動に容易に追随できる。 さらに金属薄板をスパイラル状にして使用するため、低
温収縮による歪の異方性が無い。
[0008] By connecting the refrigerant container or refrigerant flow path and the sample stage with this thin metal plate, vibrations caused by the flow or evaporation of the refrigerant are not transmitted to the sample stage, and since it is highly movable, it is possible to Can easily follow dimensional movement. Furthermore, since the thin metal plate is used in a spiral shape, there is no strain anisotropy due to low-temperature shrinkage.

【0009】[0009]

【作用】試料を試料台に固定し、冷媒を冷媒容器もしく
は冷媒流路に注入すると、前述した構造の金属薄板を介
して試料を冷却する。この際、冷媒の流れ,蒸発等に起
因する振動は、この金属薄板で遮断される。
[Operation] When a sample is fixed on a sample stage and a refrigerant is injected into a refrigerant container or a refrigerant channel, the sample is cooled through the thin metal plate having the above-described structure. At this time, vibrations caused by the flow of refrigerant, evaporation, etc. are blocked by this thin metal plate.

【0010】0010

【実施例】以下本発明の実施例を図面を用いて説明する
[Embodiments] Examples of the present invention will be described below with reference to the drawings.

【0011】第1図は本発明による磁気力顕微鏡の外観
図である。
FIG. 1 is an external view of a magnetic force microscope according to the present invention.

【0012】本発明による磁気力顕微鏡は、フランジ2
2に固定され、真空容器23内へ置かれる。試料14は
試料台10とキャップ13の間に固定される。試料台1
0の内部には試料を1E−3から1T程度に励磁するた
めの電磁石12が納められている。試料台10は、試料
14へ通電するために、微動ステージ17と電気絶縁し
て固定している。試料の磁気情報を得る磁性針を備えた
カンチレバー16とカンチレバー16の変位を検出する
探針15は、それぞれ微動ステージ17に積載している
。微動ステージ17はベース18上に固定している。 ベース18は除振機構19上に固定することによって、
外部からベース18へ伝達しようとする振動を遮断して
いる。この除振機構19はステージ20の上に固定され
る。ステージ20は取り付けベース21を介してフラン
ジ22に固定され、真空容器23内へ置かれる。
The magnetic force microscope according to the present invention has a flange 2
2 and placed in a vacuum container 23. The sample 14 is fixed between the sample stage 10 and the cap 13. Sample stand 1
An electromagnet 12 for exciting the sample from about 1E-3 to 1T is housed inside the magnet. The sample stage 10 is fixed and electrically insulated from the fine movement stage 17 in order to supply electricity to the sample 14. A cantilever 16 equipped with a magnetic needle for obtaining magnetic information about the sample and a probe 15 for detecting displacement of the cantilever 16 are mounted on a fine movement stage 17, respectively. Fine movement stage 17 is fixed on base 18. By fixing the base 18 on the vibration isolation mechanism 19,
This blocks vibrations trying to be transmitted to the base 18 from the outside. This vibration isolation mechanism 19 is fixed on the stage 20. The stage 20 is fixed to a flange 22 via a mounting base 21 and placed in a vacuum vessel 23.

【0013】試料14を冷却するための冷媒容器A3は
、フランジ22にパイプ5を介して固定されており、注
入口4から冷媒を注入する。冷媒容器A3の外周には真
空容器23から試料台10へ入射するふく射熱を遮蔽す
る反射板11を固定している。反射板11の外周には、
冷媒容器B1が反射板と接触しないようにフランジ22
とパイプ6を介して固定している。冷媒は注入口2から
注入される。
A refrigerant container A3 for cooling the sample 14 is fixed to the flange 22 via a pipe 5, and refrigerant is injected through the injection port 4. A reflecting plate 11 is fixed to the outer periphery of the refrigerant container A3 to shield radiant heat from the vacuum container 23 entering the sample stage 10. On the outer periphery of the reflecting plate 11,
The flange 22 is installed so that the refrigerant container B1 does not come into contact with the reflecting plate.
and is fixed via a pipe 6. The refrigerant is injected from the injection port 2.

【0014】試料台10の端面と冷媒容器A3の面は円
形の金属薄板に同芯円状に細いきり込みをいれ、スパイ
ラル状に伸ばした金属薄板8によって連結される。金属
薄板8は2枚使用し、スパイラルの方向が互いに反対に
なるように設置した。金属薄板8は密着性を向上するた
めに、冷媒容器A3と当て板7の間にはさんで固定して
いる。同様に金属薄板8は試料台10と当て板9の間に
はさんで固定している。
The end face of the sample stage 10 and the face of the refrigerant container A3 are connected by a thin metal plate 8, which is formed by making concentric narrow notches in a circular thin metal plate and stretched into a spiral shape. Two metal thin plates 8 were used, and they were installed so that the spiral directions were opposite to each other. The metal thin plate 8 is sandwiched and fixed between the refrigerant container A3 and the backing plate 7 in order to improve adhesion. Similarly, the metal thin plate 8 is sandwiched and fixed between the sample stage 10 and the backing plate 9.

【0015】真空容器23から冷媒容器A3に入射する
ふく射熱量を小さくするため、冷媒容器B1に注入口2
から液体窒素を注入する。一方冷媒容器A3には注入口
4から液体ヘリウムを注入する。試料14は試料14の
熱を試料台10,金属薄板8を介して冷媒容器A3に伝
達することによって、冷却される。
In order to reduce the amount of heat radiated from the vacuum container 23 to the refrigerant container A3, an injection port 2 is provided in the refrigerant container B1.
Inject liquid nitrogen from the On the other hand, liquid helium is injected into the refrigerant container A3 from the injection port 4. The sample 14 is cooled by transferring the heat of the sample 14 to the coolant container A3 via the sample stage 10 and the thin metal plate 8.

【0016】本実施例では金属薄板として銅を使用した
が、金又は銀等の薄板も使用できる。本実施例で使用し
た銅薄板の切り込みを入れた状態の外観図を図2に示す
Although copper is used as the thin metal plate in this embodiment, a thin plate of gold or silver can also be used. FIG. 2 shows an external view of the thin copper plate used in this example with cuts made.

【0017】又図3にスパイラル状に伸ばした状態の銅
薄板を示す。
FIG. 3 shows a thin copper plate stretched into a spiral shape.

【0018】図3に示す形状で試料台10と冷媒容器A
3を連結している。
The sample stage 10 and refrigerant container A are arranged in the shape shown in FIG.
3 are connected.

【0019】この図3に示すような形状の銅薄板は、剛
性が極めて弱いため、微小の外力で容易に変位する。こ
のためフランジまたは冷媒容器A3から発生した振動を
遮断できる。又、可動性に優れた形状でもあるため、試
料台の3次元移動に容易に追随することが可能である。 また低温における収縮の異方性も無い。この銅薄板は試
料台などとは面どうしで固定されるため、取り付けが容
易で接触熱抵抗も小さい。さらに、冷媒容器を試料台と
密着するまで移動することによって、試料を瞬間に極低
温まで冷却でき、その後はまた元の位置まで戻すことに
よって、観察時間の短縮が可能となる。
The thin copper plate having the shape shown in FIG. 3 has extremely low rigidity and is easily displaced by a minute external force. Therefore, vibrations generated from the flange or refrigerant container A3 can be isolated. Furthermore, since the shape has excellent movability, it is possible to easily follow the three-dimensional movement of the sample stage. Furthermore, there is no anisotropy of shrinkage at low temperatures. This thin copper plate is fixed face-to-face with the sample stand, so it is easy to install and has low contact thermal resistance. Furthermore, by moving the refrigerant container until it comes into close contact with the sample stage, the sample can be instantly cooled to an extremely low temperature, and then returned to its original position, thereby making it possible to shorten the observation time.

【0020】以上の構成からなる冷却機能により、試料
は40K程度まで冷却することが可能であった。また本
実施例で使用した、金属薄板を使用した試料冷却機構は
、他の振動を嫌う測定器等にも容易に応用が可能である
[0020] With the cooling function constructed as described above, it was possible to cool the sample to about 40K. Further, the sample cooling mechanism using a thin metal plate used in this example can be easily applied to other vibration-averse measuring instruments.

【0021】[0021]

【発明の効果】以上説明したように、本発明によれば外
部から侵入する振動を遮蔽しつつ、試料へ熱伝達が行な
えるので、極低温下の環境で高分解能の観察が可能な表
面顕微鏡が得られる。
[Effects of the Invention] As explained above, according to the present invention, heat can be transferred to the sample while shielding vibrations from entering from the outside, so that a surface microscope capable of high-resolution observation in an extremely low temperature environment can be achieved. is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の1実施例の外観図。FIG. 1 is an external view of one embodiment of the present invention.

【図2】図1内の切り込みを入れた状態の金属薄板の正
面図。
FIG. 2 is a front view of the thin metal plate shown in FIG. 1 with cuts made therein.

【図3】図1内で使用した金属薄板の斜視図。FIG. 3 is a perspective view of the thin metal plate used in FIG. 1.

【符号の説明】[Explanation of symbols]

1…冷媒容器B、2…注入口、3…冷媒容器A、4…注
入口、5…パイプ、6…パイプ、7…当て板、8…金属
薄板、9…当て板、10…試料台、11…反射板、12
…電磁石、13…キャップ、14…試料、15…探索針
、16…カンチレバー、17…微動ステージ、18…ベ
ース、19…除振機構、20…ステージ、21…取り付
けベース、22…フランジ、23…真空容器、31…冷
媒流路、31a…注入口、32…パイプ、31b…出口
1... Refrigerant container B, 2... Inlet, 3... Refrigerant container A, 4... Inlet, 5... Pipe, 6... Pipe, 7... Backing plate, 8... Metal thin plate, 9... Backing plate, 10... Sample stage, 11...Reflector, 12
...electromagnet, 13...cap, 14...sample, 15...search needle, 16...cantilever, 17...fine movement stage, 18...base, 19...vibration isolation mechanism, 20...stage, 21...attachment base, 22...flange, 23... Vacuum container, 31... Refrigerant channel, 31a... Inlet, 32... Pipe, 31b... Outlet.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】試料と試料を保持する試料台と、試料に接
近し、試料との間の力又は試料との間の電気信号を検出
する検出媒体と、検出媒体又は試料を積載し微動するス
テージと、ステージ,検出媒体,試料台を振動から除振
する除振機構を備えた、選択された特殊雰囲気中で動作
する表面顕微鏡において、特別の除振機能を備えた試料
冷却機能をもつことを特徴とする表面顕微鏡。
Claim 1: A sample stage that holds a sample, a detection medium that approaches the sample and detects a force between the sample and an electric signal between the sample, and a detection medium or sample that is loaded and moves slightly. A surface microscope that operates in a selected special atmosphere and is equipped with a stage, a vibration isolation mechanism that isolates the stage, detection medium, and sample table from vibration, and has a sample cooling function with a special vibration isolation function. A surface microscope featuring:
【請求項2】請求項1内の冷却機構において、試料を冷
却する冷媒容器もしくは冷媒流路と、前記試料台をつな
ぐ伝熱部材もしくはその一部に、円形の金属薄板に同芯
円状の細い切り込みをいれ、この金属薄板をスパイラル
状に伸ばして使用したことを特徴とする表面顕微鏡。
2. In the cooling mechanism according to claim 1, a heat transfer member or a part thereof that connects the refrigerant container or refrigerant flow path for cooling the sample and the sample stage is provided with a concentric ring formed on a circular thin metal plate. A surface microscope characterized by using a thin metal plate made with thin cuts and stretched into a spiral shape.
【請求項3】請求項2内の冷却機構において試料を冷却
する冷媒容器、もしくは冷媒流路が試料台と密着するま
で移動可能な冷却機構を備えたことを特徴とする請求項
1の表面顕微鏡。
3. The surface microscope according to claim 1, characterized in that the cooling mechanism according to claim 2 is provided with a cooling mechanism that is movable until the refrigerant container for cooling the sample or the refrigerant channel comes into close contact with the sample stage. .
【請求項4】請求項1内の表面顕微鏡において、試料に
磁界を印加する機能と、通電する機能を備えた表面顕微
鏡。
4. The surface microscope according to claim 1, which has a function of applying a magnetic field to a sample and a function of supplying electricity.
JP1191791A 1991-02-01 1991-02-01 Surface microscope Pending JPH04249054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1191791A JPH04249054A (en) 1991-02-01 1991-02-01 Surface microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1191791A JPH04249054A (en) 1991-02-01 1991-02-01 Surface microscope

Publications (1)

Publication Number Publication Date
JPH04249054A true JPH04249054A (en) 1992-09-04

Family

ID=11791053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1191791A Pending JPH04249054A (en) 1991-02-01 1991-02-01 Surface microscope

Country Status (1)

Country Link
JP (1) JPH04249054A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114186A (en) * 2001-10-03 2003-04-18 Seiko Instruments Inc Scanning probe microscope
JP2003161687A (en) * 2001-11-27 2003-06-06 Seiko Instruments Inc Scanning probe microscope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114186A (en) * 2001-10-03 2003-04-18 Seiko Instruments Inc Scanning probe microscope
JP2003161687A (en) * 2001-11-27 2003-06-06 Seiko Instruments Inc Scanning probe microscope

Similar Documents

Publication Publication Date Title
Crangle et al. The magnetization of pure iron and nickel
US10539590B2 (en) High magnetic field scanning probe microscope employing liquid helium-free room-temperature bore superconducting magnet
Zijlstra A vibrating reed magnetometer for microscopic particles
US6489769B2 (en) Nuclear magnetic resonance apparatus
Amoureux et al. Crystal structure of 1-cyanoadamantane, C10H15CN, in its plastic phase
Eisenstein High‐precision torsional magnetometer: Application to two‐dimensional electron systems
Ishizuka et al. Precise magnetization measurements under high pressures in the diamond‐anvil cell
Conger Magnetization reversal in thin films
Columbro et al. A clamp and release system for superconducting magnetic bearings
JPH04249054A (en) Surface microscope
US4912408A (en) Distance measuring system using superconducting quantum interference device
Schiessl et al. Determining the vibrations between sensor and sample in SQUID microscopy
Karcı et al. Design of a self-aligned, wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with 10 nm magnetic force microscope resolution
Haw Variable-temperature solid-state NMR spectroscopy
Yang et al. Construction of a 3He magnetic force microscope with a vector magnet
Matsumura A cosmic microwave background radiation polarimeter using superconducting magnetic bearings
Matsui et al. Development of a new ULT scanning tunneling microscope at University of Tokyo
Lu et al. Metglas thin film with as-deposited domain alignment for smart sensor and actuator applications
JP3247715B2 (en) Element cooling test equipment
Brozyniak et al. In situ electromagnet with active cooling for real-time magneto-optic Kerr effect spectroscopy
JP2001050885A (en) Scanning multi-probe microscope in magnetic field
Ou et al. Development of a system for low-temperature ultrafast optical study of three-dimensional magnon and spin orbital torque dynamics
Volodin et al. Magnetic force microscopy investigation of superconductors: first results
Foner et al. Calibration and Differential Field Measurement of High Magnetic Fields by Means of a Periodic Size Effect in Gallium
Mangum et al. Vibrating sample magnetometer for use at very low temperatures and in high magnetic fields