JP2001050885A - Scanning multi-probe microscope in magnetic field - Google Patents

Scanning multi-probe microscope in magnetic field

Info

Publication number
JP2001050885A
JP2001050885A JP11226471A JP22647199A JP2001050885A JP 2001050885 A JP2001050885 A JP 2001050885A JP 11226471 A JP11226471 A JP 11226471A JP 22647199 A JP22647199 A JP 22647199A JP 2001050885 A JP2001050885 A JP 2001050885A
Authority
JP
Japan
Prior art keywords
cantilever
magnetic field
piezoelectric element
laser light
probe microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11226471A
Other languages
Japanese (ja)
Inventor
Yoshio Kido
義勇 木戸
Tadashi Takamasu
正 高増
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP11226471A priority Critical patent/JP2001050885A/en
Publication of JP2001050885A publication Critical patent/JP2001050885A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a light-detection multi-probe microscope that can perform measurement in a strong magnetic field. SOLUTION: The scanning multi-probe microscope is equipped with a piezoelectric element 2 that moves a sample 1 in a three-dimensional direction, a piezoelectric element driving circuit 3 that drives the piezoelectric element 2, a cantilever 4 that has a probe 7 at a tip, a laser light source 5 that detects the displacement angle of the cantilever 4, and a laser photo detector 6, and can exchange the cantilever 4 for use. In this case, a vacuum container 10 is installed in a strong magnetic field being created by a superconductive magnet 9 with a large aperture by refrigerating machine cooling; the sample 1, the piezoelectric element 2, and the cantilever 4 are installed inside the vacuum container 10, and the displacement angle of the cantilever 4 is measured by the laser light source 5 and the laser photo detector 6 being installed inside or outside the vacuum container 10, thus measuring the surface of the sample.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願の発明は、走査型マ
ルチプローブ顕微鏡に関するものである。さらに詳しく
は、この出願の発明は、超伝導磁石による強磁場中にお
いて、複数のプローブにより物質表面構造の分析を行う
走査型マルチプローブ顕微鏡に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning multi-probe microscope. More specifically, the invention of this application relates to a scanning multi-probe microscope that analyzes a material surface structure using a plurality of probes in a strong magnetic field generated by a superconducting magnet.

【0002】[0002]

【従来の技術とその課題】近年、先端的な材料の物性や
機能に対する研究において、強磁場中における磁性材料
の磁気ドメインの変化や磁場誘起相転移過程の観察、半
導体中の担体と磁束の結合の観測などの微視的状態の観
測など、強磁場を印可した状態での磁性体材料や半導体
材料の表面構造を観測する技術に関する要求が高まって
いる。
2. Description of the Related Art In recent years, in research into advanced physical properties and functions of materials, changes in magnetic domains of magnetic materials in a strong magnetic field, observation of a magnetic field-induced phase transition process, coupling of magnetic flux with carriers in semiconductors have been studied. There is an increasing demand for a technique for observing the surface structure of a magnetic material or a semiconductor material in a state where a strong magnetic field is applied, such as observation of a microscopic state such as observation of an object.

【0003】これまで、走査型プローブ顕微鏡を用いた
強磁場中における表面構造の測定は、トンネル電流を利
用した走査型トンネル顕微鏡による測定が実用化されて
いるに過ぎず、原子間力顕微鏡をはじめとする光検知型
(光てこ方式)の走査型プローブ顕微鏡を用いた測定の
実現が望まれてきた。光検知型の走査型プローブ顕微鏡
を用いた試みとして、永久磁石や電磁石によって作られ
る磁場中における測定がなされたが、磁場強度が求めら
れる強度より遥かに低い値であるために、それらが実用
化されるには至らなかった。また、従来の超伝導磁石に
よって作られる磁場空間内においては、光検知型の走査
型プローブ顕微鏡を利用することは、難しいと考えられ
ていた。これは、従来の超伝導磁石によって作られる磁
場空間が、光検知型の走査型プローブ顕微鏡の装置が設
置するに足るほど広くなく、また、低温であるため試料
や顕微鏡を構成する機構に影響を与えるためである。こ
の出願の発明は、以上の通りの事情に鑑みてなされたも
のであり、強磁場中において測定可能な光検知型のマル
チプローブ顕微鏡を提供することを目的としている。
Hitherto, the measurement of the surface structure in a strong magnetic field using a scanning probe microscope has only been practically performed by a scanning tunnel microscope using a tunnel current. It has been desired to realize measurement using a scanning probe microscope of a light detection type (optical lever type). As an attempt to use a light-sensing scanning probe microscope, measurements were made in the magnetic field created by permanent magnets and electromagnets, but since the magnetic field strength was much lower than the required strength, they were put into practical use. It didn't happen. Also, it has been considered difficult to use a light-detecting scanning probe microscope in a magnetic field space created by a conventional superconducting magnet. This is because the magnetic field space created by conventional superconducting magnets is not large enough to install a light-sensitive scanning probe microscope, and the temperature is low enough to affect the mechanisms that make up the sample and the microscope. To give. The invention of this application has been made in view of the above circumstances, and an object of the invention is to provide a light-detection-type multi-probe microscope that can be measured in a strong magnetic field.

【0004】[0004]

【課題を解決するための手段】この出願の発明は、上記
の課題を解決するものとして、試料を3次元方向に移動
させるための圧電素子と、この圧電素子を駆動するため
の圧電素子駆動回路と、プローブを先端に有するカンチ
レバーと、カンチレバーの変位角度を検出するためのレ
ーザ光源およびレーザー光検出素子とを備え、カンチレ
バーを取り替えて使用することが可能な走査型マルチプ
ローブ顕微鏡であって、冷凍機冷却による大口径超伝導
磁石の作る強磁場中に真空容器を設置し、真空容器内部
に試料と前記圧電素子と前記カンチレバーを設置し、真
空容器内部または外部に設置された前記レーザ光源およ
び前記レーザー光検出素子により、前記カンチレバーの
変位角度を測定することにより、試料表面の測定を行う
ことを特徴とする磁場中走査型マルチプローブ顕微鏡
(請求項1)を提供する。さらに、この出願の発明は、
カンチレバーの先端に装着するプローブが、絶縁体材
料、導電体材料、磁性材料、もしくはこれらの2種以上
からなる複合材料、または光ファイバーによって構成さ
れており、カンチレバーが交換可能であること(請求項
2)を特徴とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems by providing a piezoelectric element for moving a sample in a three-dimensional direction and a piezoelectric element driving circuit for driving the piezoelectric element. A scanning multi-probe microscope comprising a cantilever having a probe at the tip, a laser light source and a laser light detecting element for detecting a displacement angle of the cantilever, and capable of replacing and using the cantilever. A vacuum vessel is installed in a strong magnetic field created by a large-diameter superconducting magnet by machine cooling, the sample, the piezoelectric element and the cantilever are installed inside the vacuum vessel, and the laser light source and the laser light source installed inside or outside the vacuum vessel are used. By measuring a displacement angle of the cantilever by a laser light detecting element, the surface of the sample is measured. Banaka to provide a scanning type multi-probe microscopes (claim 1). Further, the invention of this application
The probe attached to the tip of the cantilever is made of an insulator material, a conductor material, a magnetic material, a composite material composed of two or more of these materials, or an optical fiber, and the cantilever is replaceable. ).

【0005】また、この出願の発明は、加熱器または冷
却器により、真空容器内部の温度を調節可能であること
(請求項3)を特徴とする。
Further, the invention of this application is characterized in that the temperature inside the vacuum vessel can be adjusted by a heater or a cooler (claim 3).

【0006】[0006]

【発明の実施の形態】この出願の発明に係る磁場中走査
型マルチプローブ顕微鏡の形態について、図1に例示す
る。この出願の発明の磁場中走査型マルチプローブ顕微
鏡は、測定対象となる試料(1)を3次元方向に移動さ
せるための圧電素子(2)と、この圧電素子(2)を駆
動するための圧電素子駆動回路(3)と、カンチレバー
(4)とカンチレバー(4)の変位角度を検出するため
のレーザ光源(5)およびレーザー光検出素子(6)に
よって構成される。
FIG. 1 shows an embodiment of a multi-probe microscope in a magnetic field according to the invention of the present application. The scanning multi-probe microscope in a magnetic field according to the invention of the present application includes a piezoelectric element (2) for moving a sample (1) to be measured in a three-dimensional direction, and a piezoelectric element for driving the piezoelectric element (2). It comprises an element driving circuit (3), a cantilever (4), a laser light source (5) for detecting a displacement angle of the cantilever (4), and a laser light detecting element (6).

【0007】カンチレバー(4)の先端には、プローブ
(7)が取りつけられている。試料(1)表面にプロー
ブ(7)を近接させることにより、試料(1)表面の形
状や各種物性値が測定される。カンチレバー(4)先端
のプローブ(7)は、絶縁体材料、導電体材料、磁性材
料、または光ファイバーなどによって構成されており、
測定対象や測定目的に応じて適宜選択される。複数のカ
ンチレバー(4) は、カンチレバーホルダー(8)に固
定されている。このカンチレバーホルダー( 8) を交換
することにより、測定に最適なプローブを選択すること
が可能となる。測定に最適なプローブの選択は、カンチ
レバー(4)のみの交換によってなされてもよい。すな
わち、この出願の発明の磁場中走査型マルチプローブ顕
微鏡は、プローブ(7)を先端に持つカンチレバー
(4)の交換が容易であり、分子間力顕微鏡、磁気力顕
微鏡、近接場光プローブ顕微鏡など各種プローブ顕微鏡
としての機能を容易に切り替えて利用することが可能で
ある。
A probe (7) is attached to the tip of the cantilever (4). By bringing the probe (7) close to the surface of the sample (1), the shape of the surface of the sample (1) and various physical property values are measured. The probe (7) at the tip of the cantilever (4) is made of an insulator material, a conductor material, a magnetic material, an optical fiber, or the like.
It is appropriately selected according to the measurement object and the measurement purpose. The plurality of cantilevers (4) are fixed to a cantilever holder (8). By exchanging the cantilever holder (8), it becomes possible to select an optimal probe for measurement. The selection of the optimal probe for the measurement may be made by exchanging only the cantilever (4). That is, the scanning multi-probe microscope in a magnetic field of the invention of this application can easily replace the cantilever (4) having the probe (7) at the tip, and can be used for an intermolecular force microscope, a magnetic force microscope, a near-field optical probe microscope, and the like. It is possible to easily switch and use functions as various probe microscopes.

【0008】それぞれのカンチレバー(4)の上下変動
による変位角度の検出は、レーザ光源(5)およびレー
ザー光検出素子(6)によってなされる。レーザー光源
(5)より照射されるレーザー光は、カンチレバー
(4)先端に設置された反射板(9)によって反射さ
れ、反射角度がレーザー光検出素子(6)によって測定
される。測定される反射角度はカンチレバー(4)の変
位に比例しており、カンチレバー(4)を構成するスプ
リングのバネ定数が既知であるから、プローブ(7)と
試料(1)間に働く力を算出することが可能である。
The detection of the displacement angle due to the vertical fluctuation of each cantilever (4) is performed by a laser light source (5) and a laser light detecting element (6). The laser light emitted from the laser light source (5) is reflected by a reflector (9) provided at the tip of the cantilever (4), and the reflection angle is measured by a laser light detecting element (6). The measured reflection angle is proportional to the displacement of the cantilever (4). Since the spring constant of the spring forming the cantilever (4) is known, the force acting between the probe (7) and the sample (1) is calculated. It is possible to

【0009】この出願の発明の磁場中走査型マルチプロ
ーブ顕微鏡は、冷凍機冷却による大口径超伝導磁石の作
る強磁場中に設置され、測定が行われる。冷凍機冷却に
よる大口径超伝導磁石により、強い磁場空間を作ること
が可能となり、また、磁場の大きさの調整も容易に行う
ことが可能となる。具体的には、図1に示すとおり、冷
凍機冷却による大口径超伝導磁石(9)の間に真空容器
(10)を設置し、真空容器(10)内部には、試料
(1)、圧電素子(2)およびカンチレバー(4)が設
置される。1対の大口径超伝導磁石(9)間の空間は、
真空容器(10)内部に冷凍機による冷気の影響が無い
程度に十分な広さに設定される。圧電素子駆動回路
(3)、レーザ光源(5)およびレーザー光検出素子
(6)は、真空容器(10)の内外のどちらに設置され
てもよい。
The scanning multi-probe microscope in a magnetic field according to the invention of the present application is installed in a strong magnetic field created by a large-diameter superconducting magnet by cooling a refrigerator to perform measurement. The large-diameter superconducting magnet formed by cooling the refrigerator makes it possible to create a strong magnetic field space, and it is also possible to easily adjust the magnitude of the magnetic field. Specifically, as shown in FIG. 1, a vacuum vessel (10) is installed between large-diameter superconducting magnets (9) cooled by a refrigerator, and a sample (1) and a piezoelectric The element (2) and the cantilever (4) are installed. The space between a pair of large-diameter superconducting magnets (9)
The size is set to be sufficiently large such that the inside of the vacuum vessel (10) is not affected by cool air from the refrigerator. The piezoelectric element drive circuit (3), the laser light source (5), and the laser light detection element (6) may be installed inside or outside the vacuum vessel (10).

【0010】真空容器(10)内部には、加熱器(1
1)または冷却器(12)が設置されており、これらに
より真空容器(10)内部の温度が調節可能である。
A heater (1) is provided inside the vacuum vessel (10).
1) or a cooler (12) is provided, by which the temperature inside the vacuum vessel (10) can be adjusted.

【0011】[0011]

【発明の効果】この出願の発明により、超伝導磁石の作
る強磁場中において、各種の光検知型の走査型マルチプ
ローブ顕微鏡による測定がはじめて可能となり、研究開
発の現場において、新たな磁性材料や半導体材料などの
開発に貢献することが期待される。
According to the invention of this application, it is possible to measure for the first time in a strong magnetic field created by a superconducting magnet by using various types of light-detecting scanning multi-probe microscopes. It is expected to contribute to the development of semiconductor materials.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この出願の発明に係る磁場中走査型マルチプロ
ーブ顕微鏡の構成を示す概要図である。
FIG. 1 is a schematic diagram showing a configuration of a scanning multi-probe microscope in a magnetic field according to the invention of this application.

【符号の説明】[Explanation of symbols]

1 試料 2 圧電素子 3 圧電素子駆動回路 4 カンチレバー 5 レーザ光源 6 レーザー光検出素子 7 プローブ 8 カンチレバーホルダー 9 大口径超伝導磁石 10 真空容器 11 加熱器 12 冷却器 DESCRIPTION OF SYMBOLS 1 Sample 2 Piezoelectric element 3 Piezoelectric element drive circuit 4 Cantilever 5 Laser light source 6 Laser light detection element 7 Probe 8 Cantilever holder 9 Large-diameter superconducting magnet 10 Vacuum container 11 Heater 12 Cooler

フロントページの続き (72)発明者 高増 正 茨城県つくば市並木4−11−923−103 Fターム(参考) 2F069 AA60 AA61 DD27 DD30 GG07 GG62 HH05 JJ15 KK07 KK10 LL03 LL10 Continued on the front page (72) Inventor Tadashi Takamasu 4-11-923-103 Namiki, Tsukuba, Ibaraki F term (reference) 2F069 AA60 AA61 DD27 DD30 GG07 GG62 HH05 JJ15 KK07 KK10 LL03 LL10

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 試料を3次元方向に移動させるための圧
電素子と、この圧電素子を駆動するための圧電素子駆動
回路と、プローブを先端に有するカンチレバーと、カン
チレバーの変位角度を検出するためのレーザ光源および
レーザー光検出素子とを備え、カンチレバーを取り替え
て使用することが可能な走査型マルチプローブ顕微鏡で
あって、冷凍機冷却による大口径超伝導磁石の作る強磁
場中に真空容器を設置し、真空容器内部に試料と前記圧
電素子と前記カンチレバーを設置し、真空容器内部また
は外部に設置された前記レーザ光源および前記レーザー
光検出素子により、前記カンチレバーの変位角度を測定
することにより、試料表面の測定を行うことを特徴とす
る磁場中走査型マルチプローブ顕微鏡。
1. A piezoelectric element for moving a sample in a three-dimensional direction, a piezoelectric element driving circuit for driving the piezoelectric element, a cantilever having a probe at a tip thereof, and a detecting means for detecting a displacement angle of the cantilever. A scanning multi-probe microscope equipped with a laser light source and a laser light detecting element, which can be used by replacing a cantilever, in which a vacuum vessel is installed in a strong magnetic field created by a large-diameter superconducting magnet cooled by a refrigerator. By installing the sample, the piezoelectric element, and the cantilever inside the vacuum vessel, and measuring the displacement angle of the cantilever by the laser light source and the laser light detecting element installed inside or outside the vacuum vessel, the sample surface is measured. A scanning multi-probe microscope in a magnetic field, characterized in that the measurement is performed.
【請求項2】 カンチレバーの先端に装着するプローブ
が、絶縁体材料、導電体材料、磁性材料、もしくはこれ
らの2種以上からなる複合材料、または光ファイバーに
よって構成されており、カンチレバーが交換可能である
ことを特徴とする請求項1記載の磁場中走査型マルチプ
ローブ顕微鏡。
2. A probe mounted on a tip of a cantilever is made of an insulating material, a conductive material, a magnetic material, a composite material composed of two or more of them, or an optical fiber, and the cantilever is replaceable. The scanning multi-probe microscope in a magnetic field according to claim 1, wherein:
【請求項3】 加熱器または冷却器により、真空容器内
部の温度を調節可能であることを特徴とする請求項1記
載の磁場中走査型マルチプローブ顕微鏡。
3. The scanning multi-probe microscope in a magnetic field according to claim 1, wherein the temperature inside the vacuum vessel can be adjusted by a heater or a cooler.
JP11226471A 1999-08-10 1999-08-10 Scanning multi-probe microscope in magnetic field Pending JP2001050885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11226471A JP2001050885A (en) 1999-08-10 1999-08-10 Scanning multi-probe microscope in magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11226471A JP2001050885A (en) 1999-08-10 1999-08-10 Scanning multi-probe microscope in magnetic field

Publications (1)

Publication Number Publication Date
JP2001050885A true JP2001050885A (en) 2001-02-23

Family

ID=16845632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11226471A Pending JP2001050885A (en) 1999-08-10 1999-08-10 Scanning multi-probe microscope in magnetic field

Country Status (1)

Country Link
JP (1) JP2001050885A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114186A (en) * 2001-10-03 2003-04-18 Seiko Instruments Inc Scanning probe microscope
JP2003161687A (en) * 2001-11-27 2003-06-06 Seiko Instruments Inc Scanning probe microscope
WO2006003789A1 (en) * 2004-06-30 2006-01-12 Japan Science And Technology Agency Method and device for analyzing distribution of coercive force in vertical magnetic recording medium using magnetic force microscope
JP2008292373A (en) * 2007-05-25 2008-12-04 National Institute For Materials Science Scanning method in scanning probe microscope, and strong magnetic field scanning probe microscope device
CN102042789A (en) * 2010-10-19 2011-05-04 海信容声(广东)冰箱有限公司 Device for detecting prefabricated box and method for controlling dimensional precision of refrigerator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114186A (en) * 2001-10-03 2003-04-18 Seiko Instruments Inc Scanning probe microscope
JP2003161687A (en) * 2001-11-27 2003-06-06 Seiko Instruments Inc Scanning probe microscope
WO2006003789A1 (en) * 2004-06-30 2006-01-12 Japan Science And Technology Agency Method and device for analyzing distribution of coercive force in vertical magnetic recording medium using magnetic force microscope
JP2006017557A (en) * 2004-06-30 2006-01-19 Japan Science & Technology Agency Method for analyzing coercive force distribution in vertical magnetic recording medium using magnetic force microscope and analyzer therefor
US7560921B2 (en) 2004-06-30 2009-07-14 Japan Science And Technology Agency Method and device for analyzing distribution of coercive force in vertical magnetic recording medium using magnetic force microscope
JP2008292373A (en) * 2007-05-25 2008-12-04 National Institute For Materials Science Scanning method in scanning probe microscope, and strong magnetic field scanning probe microscope device
CN102042789A (en) * 2010-10-19 2011-05-04 海信容声(广东)冰箱有限公司 Device for detecting prefabricated box and method for controlling dimensional precision of refrigerator
CN102042789B (en) * 2010-10-19 2012-08-08 海信容声(广东)冰箱有限公司 Device for detecting prefabricated box and method for controlling dimensional precision of refrigerator

Similar Documents

Publication Publication Date Title
US11762046B2 (en) Method and apparatus for measuring magnetic field strength
Ohmichi et al. Torque magnetometry in pulsed magnetic fields with use of a commercial microcantilever
Pylkki et al. Scanning near-field optical microscopy and scanning thermal microscopy
Pietzsch et al. A low-temperature ultrahigh vacuum scanning tunneling microscope with a split-coil magnet and a rotary motion stepper motor for high spatial resolution studies of surface magnetism
Joulain et al. Definition and measurement of the local density of electromagnetic states close to an interface
EP0421355B1 (en) Scanning tunneling microscope
EP1540270A2 (en) Scanning probe microscope
US20060152232A1 (en) Method and apparatus for inspection of high frequency and microwave hybrid circuits and printed circuit boards
US20190025339A1 (en) High magnetic field scanning probe microscope employing liquid helium-free room-temperature bore superconducting magnet
KR950012094A (en) Physical property information measuring device
US5214342A (en) Two-dimensional walker assembly for a scanning tunneling microscope
Hobara et al. Variable-temperature independently driven four-tip scanning tunneling microscope
JP2001050885A (en) Scanning multi-probe microscope in magnetic field
JP2004301548A (en) Electric characteristic evaluating apparatus
US6683451B1 (en) Magnetic resonance force microscope for the study of biological systems
EP0872707B1 (en) Apparatus for measuring exchange force
Zhou et al. Scanning SQUID-on-tip microscope in a top-loading cryogen-free dilution refrigerator
NL2010334C2 (en) Terahertz scanning probe microscope.
JP3522222B2 (en) Scanning AC Hall microscope and its measuring method
CN107957507A (en) Define changeable and magnetic holding equipment
KR100284984B1 (en) Method of measuring exchange force and method of evaluating magnetism using the exchange force
Geng et al. A cryogen-free superconducting magnet based scanning tunneling microscope for liquid phase measurement
JPH07325090A (en) Optical lever type scanning probe microscope and atomic force microscope
JP3923300B2 (en) Scanning probe microscope
Sandhu et al. A novel variable temperature scanning nano-Hall probe microscope system for large area magnetic imaging incorporating piezoelectric actuators maintained at room temperature