JPH07244053A - Scanning force microscope - Google Patents

Scanning force microscope

Info

Publication number
JPH07244053A
JPH07244053A JP3336794A JP3336794A JPH07244053A JP H07244053 A JPH07244053 A JP H07244053A JP 3336794 A JP3336794 A JP 3336794A JP 3336794 A JP3336794 A JP 3336794A JP H07244053 A JPH07244053 A JP H07244053A
Authority
JP
Japan
Prior art keywords
probe
sample
force
force microscope
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3336794A
Other languages
Japanese (ja)
Inventor
Shigeyuki Hosoki
茂行 細木
Takeshi Hasegawa
剛 長谷川
Makiko Kono
真貴子 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3336794A priority Critical patent/JPH07244053A/en
Publication of JPH07244053A publication Critical patent/JPH07244053A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To provide a scanning force microscope capable of observing the arrangement of atoms not only in air but also in a vacuum. CONSTITUTION:A probe 1 is connected to a coarse adjustment mechanism 7 and a scanner 6 in a state floated from an electrode 3 or a magnetic pole electrostatically or magnetically to be arranged through a structure 5. A displacement measuring system 4 is provided on the side opposite to the probe 1 and allowed to approach a sample 2 in this state to detect force such as interatomic force. Therefore, the cantilever probe detection force on the surface of the sample 2 required in observation in a scanning force microscope is reduced as compared with conventional one to avoid the damage of the surface of the sample 2 or the leading end of a detection part and an image of an atomic scale can be observed not only in air but also in a vacuum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体表面の原子や有機
物、生体物質の分子等表面形状を観察するための走査型
フォース顕微鏡(以下SFM:Scanning Force Micro
scopeと略す)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning force microscope (hereinafter referred to as SFM: Scanning Force Microscope) for observing the surface shape of atoms, organic substances and molecules of biological substances on a solid surface.
abbreviated as scope).

【0002】[0002]

【従来の技術】SFMは、原子間力顕微鏡(AFM)の
発明によって類推された他の種々の力を何らかのプロー
ブによって検出して走査画像として顕微像を得るもの
で、上記AFM以外に磁気力、超音波等を利用したもの
があり、ここでは、それらの総称として用いる。従来A
FMでは、フィジカル・レビュー・レターズ56巻(1
986年)930ページに記述してあるように、それら
プローブとしてカンチレバーと呼ばれる一端を固定した
微小な片持ち梁型の検出部を用いている。カンチレバー
の自由端側先端にある探針と試料表面との間の相互作用
の結果受ける力とこれに対抗するカンチレバーのバネ定
数でバランスする変位量をカンチレバーの探針とは反対
側の表面の変位量でSTMによって検出したり、レーザ
ーを用いた干渉法や光テコ法等で検出している。試料側
もしくはカンチレバー側何れかで2次元走査を行うため
に、トライポッド型や円筒型等の微動機構を用いてい
る。
2. Description of the Related Art The SFM is for obtaining various microscopic images as a scanning image by detecting various other forces, which are inferred by the invention of the atomic force microscope (AFM), by using some kind of probe. There are those that use ultrasonic waves and the like, and are used as a generic name here. Conventional A
In FM, Physical Review Letters Volume 56 (1
(866) page 930, the probe uses a cantilever type micro-cantilever type detection unit with one end fixed. The amount of displacement that balances the force received as a result of the interaction between the probe at the tip of the free end of the cantilever and the sample surface and the spring constant of the cantilever that opposes this is the displacement of the surface of the cantilever opposite to the probe. The amount is detected by STM, the interference method using a laser, the optical lever method, or the like. A fine movement mechanism such as a tripod type or a cylindrical type is used to perform two-dimensional scanning on either the sample side or the cantilever side.

【0003】[0003]

【発明が解決しようとする課題】現在用いられているS
FMにおいて、カンチレバーにかかる力Fと変位量xの
関係は後述するように、カンチレバーのバネ定数をkと
したときのバネ特性とみなすことができ、F=kxと表
わせる。吸着原子などを検出するためには10-11
(ニュートン)以下の微小力に応答しなければならない
と推定され、且つ変位xとして、0.1nm以下の量を
検出することが必要であるため、バネ定数kとして少な
くとも0.1N/m程度の値が要求される。この値はS
iO2やSiN2からなる物質で作る従来のカンチレバー
(バネ定数k〜1N/m)では困難なものである。即
ち、物質の選択や少々の形状変更では改善が困難なもの
である。
[Problems to be Solved by the Invention]
In the FM, the relationship between the force F applied to the cantilever and the displacement amount x can be regarded as a spring characteristic when the spring constant of the cantilever is k, as will be described later, and can be expressed as F = kx. 10 -11 N to detect adsorbed atoms
It is estimated that it must respond to a small force of (Newton) or less, and it is necessary to detect a displacement x of 0.1 nm or less. Therefore, the spring constant k is at least about 0.1 N / m. A value is required. This value is S
It is difficult to use a conventional cantilever (spring constant k to 1 N / m) made of a substance composed of iO 2 or SiN 2 . That is, it is difficult to improve it by selecting the material or changing the shape a little.

【0004】また、探針と試料の間に何らかの媒体が存
在しないような真空中や空気中では、探針部の検出でき
るフォース(力)の下限が大きすぎるためと考えられて
いるため、個々の原子の観察ができていないという問題
があった。
Further, it is considered that the lower limit of the force (force) that can be detected by the probe is too large in a vacuum or in air where no medium exists between the probe and the sample. There was a problem that we could not observe the atoms.

【0005】本発明の目的は、材料および形状によって
検出できる力の限界が定まってしまい、かつ大きさが未
だ充分に小さくは無いカンチレバー検出方式を用いるこ
となく、試料と探針との間の弱い原子間力を検出するこ
とにより、真空中や空気中において個々の原子の観察可
能なSFMを提供するものである。
The object of the present invention is to determine the limit of the force that can be detected depending on the material and the shape, and without using the cantilever detection method whose size is not yet sufficiently small, without weakness between the sample and the probe. The detection of atomic forces provides an observable SFM of individual atoms in vacuum or in air.

【0006】[0006]

【課題を解決するための手段】上記問題点は、釘状の探
針と、探針を保持し、かつ浮上させる浮上手段を有する
構造体と、構造体を保持し、かつ試料に近づける移動手
段を有するスキャナーと、探針の変位を検出する検出手
段とを有する走査型フォース顕微鏡を形成することによ
り解決される。
The above problems are caused by a nail-shaped probe, a structure having levitation means for holding and floating the probe, and a moving means for holding the structure and approaching the sample. The problem is solved by forming a scanning force microscope having a scanner having the above and a detecting means for detecting the displacement of the probe.

【0007】[0007]

【作用】本発明は、浮揚した状態に保持された、かつ出
来る限り軽量とした探針によって直接原子間力による変
位を検出することを特徴とする。
The present invention is characterized in that the displacement caused by the interatomic force is directly detected by the probe which is held in a levitated state and is as light as possible.

【0008】因みに半径10μm長さ300μmのSi
の棒の重量は、おおよそ3×10-7gである。すなわ
ち、3×10-7ダイン(dyn)、したがって、3×1
-12ニュートン(N)より大きい力で浮上し、その変
位を検出出来ることになる。また、同形状の白金(P
t)では、おおよそ、一桁大きな力(2×10-11N)
まで検出することとなる。
Incidentally, Si having a radius of 10 μm and a length of 300 μm
The rod weighs approximately 3 × 10 −7 g. That is, 3 × 10 -7 dyne, and therefore 3 × 1
Levitating with a force larger than 0 -12 Newton (N), the displacement can be detected. In addition, platinum of the same shape (P
At t), the force is about one digit larger (2 × 10 -11 N).
Will be detected.

【0009】以下、図2を用いて本発明の原理を示す。
構造体5の端部などに設けられた環状の電極3の中空部
に釘状の微小探針1を通し保持した状態で、電極3に電
荷を与えると探針1が良導体であれば、中空中心に浮上
する。(浮上の原理は物理の基礎実験で用いられる、所
謂、検電器と同様に電荷が与えられることによって探針
1表面と電極3表面に同一電荷が乗るため電荷が行き渡
った状態で反発しあって探針が浮上することになる。)
この状態で試料表面との間のギャップを原子間力が働く
距離dまで近付けると上記のオーダーの範囲で探針が変
位する。さらに、試料と検出系を相対的に走査すること
により、探針が常に一定の力を受けるように、試料表面
をなぞるように変位するのでその変位を釘の頭の形状の
ディスク状探針上部でのレーザーなどを用いた変位計測
手段4によって測定する。
The principle of the present invention will be described below with reference to FIG.
If the electric charge is applied to the electrode 3 in a state in which the nail-shaped micro probe 1 is passed through the hollow portion of the annular electrode 3 provided at the end of the structure 5 or the like and the probe 1 is a good conductor, it is hollow. Come to the center. (The levitation principle is used in basic experiments of physics, so that the same charge is applied to the surface of the probe 1 and the surface of the electrode 3 as in the case of a so-called electroscope. The probe will surface.)
In this state, when the gap between the sample surface and the sample surface is brought close to the distance d where the interatomic force works, the probe is displaced within the range of the above order. Furthermore, by relatively scanning the sample and the detection system, the probe is displaced so as to trace the sample surface so as to always receive a constant force. The displacement is measured by the displacement measuring means 4 using a laser or the like.

【0010】探針浮上の方法として上記静電式とは別
に、図3に示すように磁気的な手段もある。図3におい
て上記電極3の代わりに磁極8を置き探針1は磁性体を
用いて磁極8の磁化方向と同一になるようにする。ま
た、高周波を用いた浮上方式もあるが、浮上原理がその
まま渦電流損による発熱を伴うため、探針を加熱して用
いる目的に限定される。
As a method of floating the probe, in addition to the electrostatic method, there is magnetic means as shown in FIG. In FIG. 3, a magnetic pole 8 is placed instead of the electrode 3 and the probe 1 is made of a magnetic material so that it is aligned with the magnetization direction of the magnetic pole 8. There is also a levitation method using a high frequency, but since the levitation principle is accompanied by heat generation due to eddy current loss, it is limited to the purpose of heating the probe.

【0011】以上のように浮上した探針によって微小力
を検出することによって、試料表面や探針先端を傷める
ことなく、空気中、真空中で原子の観察を可能にするも
のである。
By detecting a minute force by the floating probe as described above, it is possible to observe atoms in air or in vacuum without damaging the sample surface or the tip of the probe.

【0012】[0012]

【実施例】【Example】

(実施例1)図1は本出願の一実施例を示す。探針1、
電極3およびこれらを保持する構造体5は半導体素子と
同様に微細加工技術を用いて製作するが、それら素子に
要求されるような最先端の技術は必要とせずに製作出来
る。構造体5は円筒型スキャナー6に接合されるが、構
造体やスキャナーの大きさによって適宜剛性を保って接
続されれば良い。スキャナーは探針と試料を近づけるた
めの移動機構などの粗動構造7に接続される。光レーザ
ーを用いた干渉法や光テコ法などの変位検出系4を動作
状態にした後、電極3に電位を印加して電荷を与え探針
1を浮上させる。この後、試料2に対して探針1が変位
を起こすまで近づける。スキャナー6によって二次元の
走査を行うと試料表面の凹凸に合わせて探針1が変位し
その変位を変位計測手段4によって計測する。試料表面
の凹凸形状が探針の変位する領域を越える場合には探針
の変位範囲を定めた上それ以上変位する場合にはスキャ
ナーのサーボ機構を用いて制御し、表示系でその分を加
算する。
(Embodiment 1) FIG. 1 shows an embodiment of the present application. Probe 1,
The electrodes 3 and the structure 5 holding them are manufactured by using a microfabrication technique as in the case of semiconductor devices, but can be manufactured without the need of the latest technology required for those devices. The structure 5 is bonded to the cylindrical scanner 6, but the structure 5 and the scanner may be connected with appropriate rigidity depending on the sizes of the structure and the scanner. The scanner is connected to a coarse movement structure 7 such as a moving mechanism for bringing the probe and the sample close to each other. After the displacement detection system 4 such as an interference method using an optical laser or an optical lever method is put into an operating state, a potential is applied to the electrode 3 to give an electric charge and the probe 1 is levitated. After that, the probe 1 is brought closer to the sample 2 until displacement occurs. When two-dimensional scanning is performed by the scanner 6, the probe 1 is displaced according to the unevenness of the sample surface, and the displacement is measured by the displacement measuring means 4. If the unevenness of the sample surface exceeds the displacement area of the probe, set the displacement range of the probe, and if it displaces more, control using the servo mechanism of the scanner and add that amount on the display system. To do.

【0013】静電力によって、浮上させる点について、
探針の持っている電荷が、探針の走査中に試料表面に移
り、その結果電極3からの浮上効果が失われることが考
えられる。しかし、それは第一に、探針が電極3に触れ
れば直ちに浮上すること、第二に、探針が電極3から浮
上しているか否かに関わらず原子間力によって常に浮上
出来る程度に軽量であること、のそれぞれの点から杞憂
の問題である。
Regarding the point of levitating by electrostatic force,
It is conceivable that the electric charge possessed by the probe moves to the sample surface during scanning of the probe, and as a result, the floating effect from the electrode 3 is lost. However, first of all, it is immediately levitated when the probe touches the electrode 3, and secondly, it is light enough to be always levitated by the atomic force regardless of whether the probe is levitated from the electrode 3. From each of the points of being, it is a matter of melancholy.

【0014】(実施例2)図4は探針部の他の実施例を
示す。図3で示した磁気浮上方式の実用的実施方法を示
し、図3の永久磁石3を励磁電流を通ずることによって
磁石として動作するコイルもしくは、フェライト等のコ
アを伴ったコイルで置き換え、探針部を磁性体とするこ
とによって、探針を浮上させる。即ち、探針はコイル通
電電流が、つくる磁界と同一方向に磁化するが、探針が
磁化すると共にコイルと同極同士が接近するため、反発
しあい浮上する。試料が非磁性体であれば、その動作は
上記実施例1と同様であるが、磁性体の場合には所謂、
磁気力顕微鏡(MFM)として応用できる。しかも、励
磁電流を逆向きに通ずるとただちに逆磁界を実現できる
のでMFMとして非常に有効である。
(Embodiment 2) FIG. 4 shows another embodiment of the probe portion. 3 shows a practical implementation method of the magnetic levitation method shown in FIG. 3, in which the permanent magnet 3 of FIG. 3 is replaced with a coil that operates as a magnet by passing an exciting current or a coil with a core such as ferrite, The probe is levitated by using a magnetic substance. That is, the probe current is magnetized in the same direction as the magnetic field generated by the coil, but the probe magnetizes and the coils and the same poles approach each other, so that they repel each other and levitate. If the sample is a non-magnetic material, the operation is similar to that of the first embodiment, but in the case of a magnetic material, the so-called
It can be applied as a magnetic force microscope (MFM). Moreover, since the reverse magnetic field can be immediately realized by passing the exciting current in the opposite direction, it is very effective as an MFM.

【0015】なお、磁気浮上のために必要な磁場の強さ
は、3×10-7gの探針に対して、電極3との隙間が極
めて小さい場合(10μm以下)おおよそ10-10AT
(アンペアターン),2×10-6gの探針では電極3と
の隙間が〜100μmの場合で、10-8ATのオーダー
であり、充分に小さい電流で浮上可能である。
The strength of the magnetic field required for magnetic levitation is approximately 10 -10 AT when the gap between the probe and the electrode 3 is extremely small (10 μm or less) with respect to the 3 × 10 -7 g probe.
(Ampere turn), 2 × 10 −6 g of the probe is of the order of 10 −8 AT when the gap with the electrode 3 is ˜100 μm, and can be levitated with a sufficiently small current.

【0016】(実施例3)図5は、本発明の他の実施例
を示す。探針の浮上原理は他の実施例と同様であるが、
探針1を保持する構造体5は、さらに他の構造体11に
よって保持される。試料2の観察表面とは反対側でスキ
ャナー6さらに粗動構造7と接続し、それぞれ構造体1
2、13、および14を介して探針側と接続される。粗
動構造7およびスキャナー6を制御して試料を探針に近
付け、探針の変位を変位計測手段4が検出したとき粗動
構造7を止めるとともにスキャナー6が変位量に対応し
た制御を行う。スキャナーの二次元の走査によって探針
が変位を起こすが変位量を常に一定に保つように走査制
御系15によってサーボを行い、表面形状を表示系16
に表わす。この実施例では構造体11、12、13、お
よび14をできるだけ剛性高く製作することが重要であ
る点は従来同種装置と同様であり、可能な範囲で一体化
して製作することも有効である。
(Embodiment 3) FIG. 5 shows another embodiment of the present invention. The floating principle of the probe is the same as in the other embodiments,
The structure 5 holding the probe 1 is held by another structure 11. On the side opposite to the observation surface of the sample 2, the scanner 6 and the coarse movement structure 7 are connected to each other, and
It is connected to the probe side via 2, 13, and 14. The coarse movement structure 7 and the scanner 6 are controlled to bring the sample close to the probe, and when the displacement measuring means 4 detects the displacement of the probe, the coarse movement structure 7 is stopped and the scanner 6 performs control corresponding to the displacement amount. Although the probe is displaced by the two-dimensional scanning of the scanner, servo is performed by the scanning control system 15 so that the displacement amount is always kept constant, and the surface shape is displayed on the display system 16.
Represent. In this embodiment, it is important to manufacture the structures 11, 12, 13, and 14 as rigid as possible, which is the same as the conventional apparatus of the same kind, and it is also effective to integrally manufacture the structures.

【0017】[0017]

【発明の効果】以上のように本発明によれば、走査型フ
ォース顕微鏡において観察に要する、検出部と試料の間
に働く力を従来より小さくすることによって、試料表面
や検出部の先端を傷めることを避け、これによって空気
中、真空中でも原子の配列を観察することが可能になっ
た。
As described above, according to the present invention, the surface force of the sample and the tip of the detection part are damaged by making the force required between the detection part and the sample necessary for observation with the scanning force microscope smaller than before. This made it possible to observe the arrangement of atoms in air and in vacuum.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す図。FIG. 1 is a diagram showing a first embodiment of the present invention.

【図2】本発明の作用を説明する図。(静電力浮上)FIG. 2 is a diagram for explaining the operation of the present invention. (Levitation of electrostatic force)

【図3】本発明の作用を説明する図。(磁気浮上)FIG. 3 is a diagram for explaining the operation of the present invention. (Magnetic levitation)

【図4】本発明の第2の実施例を示す図。FIG. 4 is a diagram showing a second embodiment of the present invention.

【図5】本発明の第3の実施例を示す図。FIG. 5 is a diagram showing a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…探針、2…試料、3…電極(カンチレバー)、4…
変位測定系、5…構造体、6…スキャナー、7…粗動構
造、8…磁極、9…コイル、10…コアー、11、1
2、13、14…装置を構成する構造体、15…走査制
御系、16…表示系。
1 ... Probe, 2 ... Sample, 3 ... Electrode (cantilever), 4 ...
Displacement measuring system, 5 ... Structure, 6 ... Scanner, 7 ... Coarse movement structure, 8 ... Magnetic pole, 9 ... Coil, 10 ... Core, 11, 1
2, 13, 14 ... Structures constituting the apparatus, 15 ... Scan control system, 16 ... Display system.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】釘状の探針と、上記探針を保持し、かつ浮
上させる浮上手段を有する構造体と、上記構造体を保持
し、かつ試料に近づける移動手段を有するスキャナー
と、上記探針の変位を検出する検出手段からなることを
特徴とする走査型フォース顕微鏡。
1. A nail-shaped probe, a structure having a levitation means for holding and floating the probe, a scanner having a moving means for holding the structure and bringing it closer to a sample, and the probe. A scanning force microscope comprising a detection means for detecting displacement of a needle.
【請求項2】上記浮上手段は、静電力および磁気力もし
くは高周波電流により上記探針を浮上させることを特徴
とする請求項1に記載の走査型フォース顕微鏡。
2. The scanning force microscope according to claim 1, wherein the levitation means floats the probe by electrostatic force, magnetic force or high frequency current.
【請求項3】上記検出手段は、上記探針の上部に光を照
射することにより、上記探針の変位を検出することを特
徴とする請求項1に記載の走査型フォース顕微鏡。
3. The scanning force microscope according to claim 1, wherein the detecting means detects the displacement of the probe by irradiating the upper part of the probe with light.
JP3336794A 1994-03-03 1994-03-03 Scanning force microscope Pending JPH07244053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3336794A JPH07244053A (en) 1994-03-03 1994-03-03 Scanning force microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3336794A JPH07244053A (en) 1994-03-03 1994-03-03 Scanning force microscope

Publications (1)

Publication Number Publication Date
JPH07244053A true JPH07244053A (en) 1995-09-19

Family

ID=12384621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3336794A Pending JPH07244053A (en) 1994-03-03 1994-03-03 Scanning force microscope

Country Status (1)

Country Link
JP (1) JPH07244053A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161687A (en) * 2001-11-27 2003-06-06 Seiko Instruments Inc Scanning probe microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161687A (en) * 2001-11-27 2003-06-06 Seiko Instruments Inc Scanning probe microscope

Similar Documents

Publication Publication Date Title
JP3249132B2 (en) A method for magnetically modulating a force sensor for alternating current detection in an atomic force microscope
US6220084B1 (en) Detecting fields with a single-pass, dual-amplitude-mode scanning force microscope
US5925818A (en) Method and apparatus for magnetic force control of a scanning probe
Martin et al. Magnetic imaging by ‘‘force microscopy’’with 1000 Å resolution
US6134955A (en) Magnetic modulation of force sensor for AC detection in an atomic force microscope
US5515719A (en) Controlled force microscope for operation in liquids
JP3013858B2 (en) Fine positioning device with atomic resolution
JPH11166936A (en) Probe for magnetic microscope and cantilever assembly
US5266897A (en) Magnetic field observation with tunneling microscopy
JPH01320750A (en) Scanning type tunnel microscope
US5907096A (en) Detecting fields with a two-pass, dual-amplitude-mode scanning force microscope
US5509300A (en) Non-contact force microscope having a coaxial cantilever-tip configuration
Gibson et al. A high‐sensitivity alternating‐gradient magnetometer for use in quantifying magnetic force microscopy
JPH09218213A (en) Method and apparatus for observing considerably minute magnetic domain
JPH07244053A (en) Scanning force microscope
Rudnitsky et al. Rapid biochemical detection and differentiation with magnetic force microscope cantilever arrays
Harley et al. A high-stiffness axial resonant probe for atomic force microscopy
JP4345179B2 (en) Magnetic field measuring device
JP2869508B2 (en) Scanning probe microscope with magnetic field control
JP5579516B2 (en) Scanning probe microscope
US6476386B1 (en) Method and device for tunnel microscopy
Lee et al. High-speed imaging by electromagnetic alloy actuated probe with dual spring
JP3566567B2 (en) Magnetic resonance type exchange interaction force microscope and observation method using the same
JP3398411B2 (en) Magnetic force microscope
JP3428403B2 (en) Friction force probe microscope and method for identifying atomic species and materials using friction force probe microscope