JP3917742B2 - 温度補償機能付き増幅器 - Google Patents

温度補償機能付き増幅器 Download PDF

Info

Publication number
JP3917742B2
JP3917742B2 JP00050998A JP50998A JP3917742B2 JP 3917742 B2 JP3917742 B2 JP 3917742B2 JP 00050998 A JP00050998 A JP 00050998A JP 50998 A JP50998 A JP 50998A JP 3917742 B2 JP3917742 B2 JP 3917742B2
Authority
JP
Japan
Prior art keywords
amplifier
temperature
active element
circuit
temperature compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00050998A
Other languages
English (en)
Other versions
JPH11195932A (ja
Inventor
伸 茶木
康晴 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP00050998A priority Critical patent/JP3917742B2/ja
Priority to US09/100,751 priority patent/US6043713A/en
Priority to DE19831596A priority patent/DE19831596C2/de
Publication of JPH11195932A publication Critical patent/JPH11195932A/ja
Application granted granted Critical
Publication of JP3917742B2 publication Critical patent/JP3917742B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/193High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
    • H03F3/1935High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices with junction-FET devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • H03F1/306Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters in junction-FET amplifiers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Networks Using Active Elements (AREA)
  • Microwave Amplifiers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロ波又はミリ波帯用の増幅器に関する。より具体的には増幅器の温度による利得変動を補償する機能を備えた増幅器に関する。
【0002】
【従来の技術】
マイクロ波又はミリ波帯用の増幅器、または当該増幅器を用いた増幅器モジュールの利得は、使用環境温度によって変動する。上記増幅器又は増幅器モジュールの利得は環境温度が低くなると増加し、環境温度が高くなると減少する傾向にある。特に多段増幅器の場合、その変動幅は大きく、システム全体の安定動作の妨げとなる場合もある。
【0003】
例えば、出力の異なる2段増幅器MMICを3チップ直列に接続した構成の電力増幅器モジュールにおいて、増幅器1段当たりの温度による利得変化量が0.2dB/10℃の場合、周辺の環境温度が100℃変化すると、利得は12dBも変動する。
上記電力増幅器モジュールにおいて、環境温度が低く利得が最大となる場合には歪み特性が劣化する。また、環境温度が高く利得が最小となる場合には出力電力、効率の劣化等を招くことになる。
【0004】
【発明が解決しようとする課題】
上記のような温度変化による利得の変動を補償するための温度補償回路を増幅用FETのゲート端子に並列に接続して、印加されるゲートバイアス電圧を直接制御するものが知られている。上記温度補償回路は、温度の上昇に伴う増幅器の動作電流の減少を補償するため、ゲート端子に必要な電流を補給する。これにより、使用温度の範囲内において、増幅器内の動作電流を一定レベルに維持する。
【0005】
しかし、上記従来の温度補償回路には、利得制御端子である増幅用FETのゲート端子にバイアスを与えるための外部電源が別途必要である。更に、前もって増幅器の利得の温度特性を測定し、温度に対応したバイアス値を決定し、その情報を実動作時に反映させるための機構をシステム又はモジュール内に新たに設ける必要がある。このため、回路構成が複雑化し、コスト高を招いていた。
【0006】
特開平9−139630号公報には、上記のような温度補償回路を備えることなく、温度補償が可能な電力増幅装置が開示されている。
当該電力増幅装置はGaAs基板上に形成されており、入力された高周波電力を増幅する増幅用FETと、抵抗及びGaAs基板上に形成された温度補償用FETが直列に接続されてなる自己バイアス型のゲートバイアス回路とを備えている。上記ゲートバイアス回路の一端は電源に接続され、他端は接地されている。上記ゲートバイアス回路における抵抗と上記温度補償用FETとの接続点は、上記増幅用FETのゲート端子に接続されている。互いに逆の温度特性を示すように、GaAs基板のオリエンテーションフラット方位に対して、上記増幅用FETのゲート方位は90゜に設定されると共に、上記温度補償用FETのゲート方位は0゜に設定される。
【0007】
環境温度の上昇に伴って、上記増幅用FETの動作電流が減少するのに対して、上記温度補償用のFETの動作電流は増加する。また、環境温度の低下に伴って、上記増幅用FETの動作電流が増加するのに対して、上記温度補償用のFETの動作電流は減少する。上記電力増幅装置では、上記温度特性を有する温度補償用FETを抵抗として使用し、通常の抵抗と直列に接続してゲートバイアス直列回路を構成し、抵抗分割を利用した当該ゲートバイアス直列回路の働きにより、温度の変化に対する増幅率の変化を抑制して出力を安定させる。
【0008】
しかし、上記構成の電力増幅装置では、特性の大きく異なるFETを1ウェハ(チップ)上に形成することによりプロセス制御が困難になることが予想される。
【0009】
そこで、本発明はより簡単な構成からなる温度補償機能付きの増幅器を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の請求項1に記載の温度補償機能付き増幅器は、温度補償機能付き増幅器であって、増幅回路と減衰回路とで構成されており、増幅回路が、入力高周波信号を増幅するものであり、温度の変化に応じて利得が変化する第1能動素子として第1トランジスタを有しており、そのゲートには入力高周波信号が印加されており、減衰回路が、増幅回路への入力高周波信号を減衰するものであり、キャパシタと、第2能動素子である第2トランジスタと、で構成されており、第2トランジスタは、ゲートに印加するバイアス電圧が固定されており、ソースが第1トランジスタのゲートに接続され、ドレインが上記キャパシタを介して接地されており、第2トランジスタが温度の変化に応じて減衰量を増減するように働き、上記利得の変化を補償するようになっている、ことを特徴とする。
【0011】
本発明の請求項2に記載の温度補償機能付き増幅器は、温度補償機能付き増幅器であって、増幅回路と減衰回路とで構成されており、増幅回路が、入力高周波信号を増幅するものであり、温度の変化に応じて利得が変化する第1能動素子として第1トランジスタ(101)を有しており、そのゲートには入力高周波信号が印加されており、減衰回路が、増幅回路への入力高周波信号を減衰するものであり、キャパシタ(103)と、第2能動素子である第2トランジスタ(102)と、で構成されており、第2トランジスタ(102)は、ゲートに印加するバイアス電圧が固定されており、ソースが第1トランジスタのゲートに接続され、ドレインが上記キャパシタを介して接地されており、第2トランジスタ(102)が温度の変化に応じて減衰量を増減するように働き、上記利得の変化を補償するようになっており、且つ、温度の上昇に伴い減衰量が少なくなり、温度の低下に伴い減衰量が増加するようになっている、ことを特徴とする。
【0012】
本発明の請求項3に記載の温度補償機能付き増幅器は、請求項1又は請求項2に記載の温度補償機能付き増幅器であって、更に、第2トランジスタのゲートに印加する上記バイアス電圧の固定点を調整する調整手段を備えている、ことを特徴とする。
【0020】
【発明の実施の形態】
本発明による温度補償機能付き増幅器は、マイクロ波又はミリ波帯用の増幅器であって、FET(field effect transistor),HEMT(high electron mobility transistor)よりなる温度補償用の能動素子の環境温度の変化による抵抗の変化を所定の帯域(高周波領域)にて利用する高周波信号の減衰回路(アッテネータ)を構成し、当該減衰回路を増幅用の能動素子のゲート端子又は出力端子に直列に接続して当該増幅用の能動素子の環境温度の変化に伴う利得の変動を、外部からの特別な制御無しに補償することを特徴とする。
以下、上記特徴を具備する温度補償機能付きの増幅器の実施の形態1〜10について、添付の図面を参照しつつ説明する。
【0021】
(1)実施の形態1
図1は、実施の形態1にかかる温度補償機能付きの増幅器100の回路図である。当該増幅器100の前段には、入力される高周波電力のインピーダンスを該増幅器100に適切なインピーダンスに変換する整合回路109が設けられている。また、増幅器100の後段には、増幅器100より出力される高周波電力のインピーダンスを次段に設けられる回路に適切なインピーダンスに変換する整合回路110が設けられている。
【0022】
以下、増幅器100の構成について説明する。増幅器100は、信号の増幅を行う能動素子101のゲート端子に、温度補償機能を実現する回路が直列に接続されてなる。増幅用の能動素子101及び温度補償用の能動素子102は、FET,HEMT等を採用する。上記温度補償機能を実現する回路は、抵抗104を介してゲート端子の接地された温度補償用の能動素子102のソース端子及びドレイン端子に、インダクタ105及び抵抗107,108を直列に接続したものであり、高周波信号の減衰回路(アッテネータ)として機能する。この他、当該回路にはコンデンサ103及び106が並列に接続されている。端子111には、電源電圧Vgが印加される。本回路において、能動素子101のゲート電位をVgとすると、能動素子102のゲート電位はそのソース・ドレイン電位に対して−Vgとなる。
【0023】
図2は、上記能動素子101及び102の静特性を示すグラフである。縦軸はドレイン・ソース間電流Idsを示し、横軸はドレイン・ソース間電圧Vdsを示す。図中、点Aを基準環境温度T0での増幅器の動作点とした場合、ドレイン・ソース間電流Idsは、温度がTHに上昇すると減少し、温度がTLに低下すると増加する。即ち、能動素子101及び102の利得は、温度がTHに上昇すると低下し、温度がTLに低下すると増加する。
【0024】
増幅器100において実行される温度補償機能は、能動素子102の上記図2を用いて説明した静特性のVds=0v近傍における抵抗特性を利用するものである。環境温度が上記T0の時の抵抗値をR0,環境温度が上記THの時の抵抗値をRH、環境温度が上記TLの時の抵抗値をRLとすると、これらの値の関係は、RL<R0<RHとなる。
【0025】
後に説明するが、温度補償用に用いる上記能動素子102を含む回路は、環境温度の上昇により通過損失が低下する高周波信号の減衰器(アッテネータ)として機能する。環境温度の上昇に伴い能動素子102における高周波信号の通過損失は減少し、増幅用の能動素子101のゲート端子に印加される高周波信号の割合は増加する。一方、環境温度の低下に伴い能動素子102における高周波信号の通過損失は増加し、増幅用の能動素子101のゲート端子に印加される高周波信号の割合は少なくなる。増幅器100では、上記能動素子102を含む回路の減衰器としての働きにより、増幅用の能動素子101の環境温度の変化に伴う利得の変化を補償する。
【0026】
以下、増幅器100の温度補償機能について説明する。図3の(a)及び(b)は、説明の便宜のため、図1に示した増幅器100の回路を機能的に2つに分割したものである。なお、温度補償機能に関与しない両端の回路は省略してある。増幅器100において、温度補償用の能動素子102はゲート端子にピンチオフ電圧Vp以上の電圧を与えて抵抗と等価なものとして取り扱うため、図3の(b)では当該能動素子102を抵抗Rとして記す。
【0027】
図3の(a)に示す回路において、点aより入力された電流は増幅用の能動素子101によって増幅された後に、点bより出力される。図3の(a)に示す回路の利得の温度特性は、既に述べたように、一般に温度の上昇と共に低下する傾向を示す。
【0028】
また、図3の(b)に示す回路において、点cより入力された高周波信号は、参照番号102の付された抵抗R及びコンデンサ103による損失を伴って回路を通過して点dより出力される。図3の(b)に示す回路は、後に説明するが上記温度の上昇に伴い低損失となり、点dへ出力される電流は増加する。
【0029】
図3の(b)に示す回路のインピーダンス行列Zは、以下の数1で表される。
【数1】
Figure 0003917742
1/ωc≒0として上記数1のZ行列をS行列に変換すると、次の数2が得られる。
【数2】
Figure 0003917742
更に、上記数2を抵抗Rで微分すると、次の数3が求められる。この結果、回路の損失は、抵抗Rの値の増加に伴い減少することが理解される。
【数3】
Figure 0003917742
【0030】
上述したように、増幅器100では能動素子102を抵抗Rとして取り扱う。図2を用いて説明したように上記能動素子102は、環境温度の上昇に伴い抵抗値が上昇する。従って、図3の(b)に示す回路は、環境温度の上昇に伴い低損失となり、より多くの電流を点dから出力する。増幅器100では、図3の(b)に示す回路の当該減衰器としての働きにより、増幅用の能動素子101の環境温度の変化に伴う利得の変化を補償することができる。
【0031】
図4は、図1に開示した温度補償機能付きの増幅器100の効果を説明するための図である。縦軸はT=T0の時の利得G0に対する利得の比G/G0を示し、横軸は温度を示す。図示するように、温度補償機能付き増幅器100の温度に対する利得の傾き(0.05dB/10℃)は、温度補償機能を持たない従来の増幅器の温度に対する利得の傾き(0.2dB/10℃)よりも小さいことが確認される。
【0032】
図5は、上記の温度補償機能付き増幅器100について、能動素子102のT=25℃及び75℃でのSパラメータ測定値を用いた場合のシミュレーション結果を示すグラフである。縦軸は利得(dB)を示し、横軸は周波数(GHz)を示す。例えば、図6に示すような通常の増幅器の場合、環境温度の上昇に伴い利得は低下する。これに対して、温度補償機能付きの増幅器100では、25℃から75℃への50度の温度上昇に対して、利得は0.73dB増加している。この結果は、通常の増幅器の温度特性と全く逆であり、図3の(b)に示した回路が、外部からの制御無しに能動素子101の温度特性を補償できることを証明するものである。
【0033】
図7は、増幅器100の内、高周波信号の減衰器として機能する図3の(b)に示した回路の周波数特性を、T=TH,TLの場合について示すグラフである。横軸は周波数を示し、縦軸はS21パラメータの絶対値を示す。当該グラフでは、上に行くほど利得の損失が少ないことを意味する。
上記減衰器として機能する回路の減衰量の周波数特性は、能動素子102の寄生容量及びコンデンサ103の容量によって共振する。動作周波数Aのように、回路の動作周波数が損失特性の共振周波数f0より低い場合、温度の上昇に伴い損失は低くなり、適切な温度補償効果が得られる。しかし、動作周波数Bのように、動作周波数が共振の周波数f0よりも高い場合、環境温度の変化に伴い損失が増加するため、増幅器100の環境温度の変化に伴う利得変動は逆に大きくなってしまう。
また、本グラフより、動作周波数Cの場合、動作周波数Aの場合と比較して大きな温度補償効果が得られること、及び、能動素子102の寄生成分の温度特性により共振周波数は環境温度の上昇にと伴って高周波数側へとシフトすることが解る。
以上のことから、コンデンサ103の容量は、能動素子102の動作周波数をグラフに示す動作周波数C近傍の値、即ち、最低の使用環境温度での共振の周波数f0Lminより小さいという条件を満足する周波数の内で最大の値とすることで、増幅器100における温度補償効果を最適化することができる。
【0034】
以上に説明したように、実施の形態1にかかる温度補償機能付き増幅器100では、能動素子102の抵抗値の温度特性を利用する減衰回路を用いて、環境温度の変化に伴う増幅用の能動素子101の利得変動を抑制する。これにより、特別な制御手段を備えることなく簡単な構成で温度補償機能を実現する。
【0035】
(2)実施の形態2
以下、実施の形態2にかかる温度補償機能付き増幅器120について説明する。図8は、実施の形態2にかかる温度補償機能付きの増幅器120の構成を示す図である。上記実施の形態1の増幅器100と同じ構成物には同一の参照番号を付し、ここでの重複した説明は省く。増幅器120は、上記実施の形態1の増幅器100の備える抵抗104のかわりに、抵抗112を備え、能動素子102のゲート端子及び能動素子101のゲート端子を接続したものである。
【0036】
当該構成において、能動素子102のソース・ドレイン電極とゲート端子の電位差は、能動素子101のドレイン電流設定値に関わらず0vとなる。これにより、能動素子102の抵抗値は一定になる。つまり、能動素子101をどのようなバイアス条件で用いても損失回路内の基準環境温度T0下での高周波信号の損失は一定となるため、安定した温度補償を行うことができる。
【0037】
また、能動素子102のゲート端子と能動素子101のゲート端子とを共通にすることで、ビィアホール(バイアホールともいう)をチップ上に持たないMMICであってもチップ外部のグランドとの接続が不要となるといった利点を有する。なお、上記ビィアホールとは、基板裏面に設けられている接地端子に基板表面の端子を接続する際に用いるホールをいう。
【0038】
(3)実施の形態3
図9は、実施の形態3にかかる増幅器130の構成を示す図である。上記実施の形態1及び2の増幅器と同じ構成物には同一の参照番号を付し、ここでの重複した説明は省く。増幅器130は、上記実施の形態2の増幅器120の能動素子102のゲート端子に、他端の接地された抵抗113を並列に接続した回路である。
【0039】
既に述べたように、損失回路の温度変化による損失変動量は、T=T0での能動素子102の抵抗値に依存する。能動素子101のゲート電位をVgとした場合、能動素子102のゲート電位Vgbは、{抵抗113の抵抗値/(抵抗112の抵抗値+抵抗113の抵抗値)−1}×Vgで表される。増幅器130は、抵抗112と抵抗113との比により能動素子102のゲート電位Vgbを0〜−Vgの範囲内に設定することができる。例えば実験結果に基づいて、抵抗112及び113の値を設定することで、より適切な温度補償を実行することができる。
【0040】
(4)実施の形態4
図10は、実施の形態4にかかる増幅器140の構成を示す図である。上記実施の形態1乃至3の増幅器と同じ構成物には同一の参照番号を付し、ここでの重複した説明は省く。増幅器140では、上記実施の形態3の増幅器130の抵抗113の替わりに、他端の接地された可変抵抗114を能動素子102のゲート端子に並列に接続したことを特徴とする。
【0041】
能動素子101のゲート電位をVgとした場合、能動素子102のゲート電位Vgbは、{可変抵抗114の抵抗値/(抵抗112の抵抗値+可変抵抗114の抵抗値)−1}×Vgで表される。一般に、能動素子101の駆動電流の設定値が一定であっても、製造上のばらつきのためVgはある範囲を持ち、利得についてばらつきを生じる。増幅器140では、可変抵抗114により能動素子102のソース・ドレイン電極とゲート端子の電位差を制御し、能動素子101の製造上のばらつきを吸収することができる。
なお、増幅器140は、上記の実施の形態1乃至3の温度補償機能付き増幅器と同様に、能動素子102の抵抗値の温度特性を用いて温度補償機能を実現するため、特別な制御回路を必要とせず、簡単な構成で温度補償機能を実現することができる。
【0042】
(5)実施の形態5
図11は、実施の形態5にかかる増幅器150の構成を示す図である。上記実施の形態1乃至4の増幅器と同じ構成物には同一の参照番号を付し、ここでの重複した説明は省く。増幅器150は、実施の形態1の増幅器100において、能動素子102のゲート端子に、他端が電源供給端子に接続された抵抗115を直列に接続すると共に、他端が接地された抵抗116を並列に接続し、外部電源から上記電源供給端子を介してゲート電位Vcを供給する構成としたことを特徴とする。
【0043】
上記構成において、能動素子101のゲート電位をVgとした場合、能動素子102のゲート電位Vgbは、抵抗116の抵抗値/(抵抗115の抵抗値+抵抗116の抵抗値)×Vc−Vgで表される。本回路では、能動素子102のソース・ドレイン電極とゲート端子の電位差を外部電源によって制御する。このように増幅器150は、別途外部電源を必要とするが、利得の温度補償に関しては特別な制御回路は不要であり、簡単な構成で温度補償機能を実現することができる。
【0044】
(6)実施の形態6
図12は、実施の形態6にかかる増幅器160の構成を示す図である。上記実施の形態1乃至5の増幅器と同じ構成物には同一の参照番号を付し、ここでの重複した説明は省く。増幅器160は、実施の形態5の増幅器150において、抵抗116のかわりに可変抵抗117を能動素子102のゲート端子に並列に接続したものであり、外部電源からゲート電位Vcを供給する構成とするものである。
【0045】
当該構成において、能動素子101のゲート電位をVgとした場合、能動素子102のゲート電位Vgbは、可変抵抗117の抵抗値/(抵抗115の抵抗値+可変抵抗117の抵抗値)×Vc−Vgで表される。本回路では、能動素子102のソース・ドレイン電極とゲート端子の電位差を外部電源によって制御する。増幅器150では、別途外部電源を必要とするものの、利得の温度補償に関しての制御は不要である。また、増幅器160では、可変抵抗117の値を調節することで能動素子102のソース・ドレイン電極とゲート端子の電位差を制御し、能動素子101のプロセスのばらつきを吸収することができる。
また、
【0046】
(7)実施の形態7
図13は、実施の形態7にかかる増幅器170の構成を示す図である。上記実施の形態1乃至6の増幅器と同じ構成物には同一の参照番号を付し、ここでの重複した説明は省く。増幅器170では、増幅用の能動素子101の信号出力端子に、温度補償機能を実現する回路を直列に接続したことを特徴とする。該温度補償機能を実現する回路は、能動素子102、抵抗118及びコンデンサ119より構成され、高周波信号の減衰器(アッテネータ)として機能する。能動素子102のゲート端子は、抵抗118を介して接地されている。また、能動素子102のドレイン電極も接地されている。
【0047】
上記構成の増幅器170において、上記温度補償機能を実現する回路は減衰器(アッテネータ)として機能し、環境温度の低下に伴う増幅用の能動素子101の利得の増加に対して、該温度補償用の回路における高周波信号の損失量を増加させることで、該増幅器170より出力される高周波信号の量を一定のレベルに維持することができる。
なお、温度補償機能を実現する回路としては、図13に示した構成のものに限られず、上記実施の形態2乃至6に記載したタイプのものを採用しても良い。
【0048】
(8)実施の形態8
図14は、実施の形態8にかかる増幅器200のレイアウトを示す図である。上記実施の形態1乃至7に記載の増幅器と同じ構成物には同じ参照番号を付し、ここでの重複した説明は省く。増幅器200は、実施の形態1の増幅器100において、主線路203上に形成された増幅用の能動素子101のソース端子を接地するためのヴィアホール201に、温度補償用の能動素子102のソース端子又はドレイン端子を、キャパシタ103及び配線202を介して接続したことを特徴とする。当該レイアウト図において、キャパシタ103は、MIM(metal-insulator-metal)として記す。なお、説明の便宜のため、能動素子101,102及びキャパシタ103の他の素子、例えばインダクタ105や抵抗107,108等は省略してある。
【0049】
増幅器200では、能動素子101及び102の接地を共通のビィアホールを用いて行うレイアウトを採用することで、チップサイズの小型化を図ることができる。また、能動素子101及び102を接近させて配することにより、1つの素子として取り扱うことが可能となり、設計パラメータの把握など、設計上の取り扱いが容易になる。
【0050】
(9)実施の形態9
図15は、実施の形態9にかかる増幅器210のレイアウト設計を示す図である。増幅器220は、上記実施の形態8にかかる増幅器200に、温度補償用に用いる能動素子205を主線路204を挟んで能動素子102と対称に配したものである。温度補償用の能動素子102と同様に、温度補償用の能動素子205のソース端子又はドレイン端子は、キャパシタ206及び配線207を介して増幅用の能動素子101のビィアホール204に接続される。
【0051】
増幅器210では、能動素子102及び205の接地を能動素子101のビィアホール201及び204を用いて行うレイアウトを採用することで、チップサイズの小型化を図ることができる。
また、増幅器210では、2つの温度補償用の能動素子102及び205を主線路203を挟んで対象に配することで、温度補償効果が向上すると共に、ミリ波帯域における増幅用の能動素子201の入力端でのアンバランス動作を解消することができる。
【0052】
(10)実施の形態10
図16は、実施の形態10にかかる多段電力増幅装置300の構成を示す図である。本装置300では、少なくとも初段の増幅器に上記実施の形態1乃至8で示した温度補償用の回路、即ち高周波信号の減衰器として機能する回路を直列に付加することを特徴とする。本装置330は、チップサイズの制限などにより、各段に温度補償回路を付加できない場合、あるいは、スペック上各段に温度補償機能を実現する上記回路を付加する必要がない場合であって、後段に設ける増幅器との電力のつながりに余裕があり、入力される高周波信号の振幅が小さい場合などに、特に有効である。
【0053】
以上に説明したように、上記実施の形態1乃至10に記載した温度補償機能付き増幅器は、利得制御端子である増幅用の能動素子のゲート端子にバイアスを与えるための外部電源を必要とせず、更には、前もって利得の温度特性を測定し、温度に対応したバイアス値を決定し、その情報を実動作時に反映させるための機構をシステム或いはモジュール内に新たに設ける必要もない。また、温度変化に対して同一の特性(傾向)の能動素子を用いるため、簡単なプロセス制御により、これらの増幅器をウェハ(チップ)上に形成することができる。
【0054】
【補正の効果】
本発明の請求項1に記載の温度補償機能付き増幅器は、キャパシタと、ゲートに印加するバイアス電圧が固定されており、ソースが第1トランジスタのゲートに接続され、ドレインが上記キャパシタを介して接地されている第2トランジスタとで構成される減衰器を用いることによって、環境温度の上昇又は低下に伴う増幅用の能動素子の利得の変化を補償することができる。
【0055】
本発明の請求項2に記載の温度補償機能付き増幅器は、請求項1に記載の温度補償機能付き増幅器において、減衰回路は、温度の上昇に伴い減衰量が少なくなり、より多くの高周波信号を第1能動素子に供給する。減衰回路は、逆に温度の低下に伴い減衰量が増加し、第1能動素子に供給する高周波信号の量を減少する。この減衰回路の働きにより、温度の上昇又は低下に伴う増幅用の第1能動素子の利得の変化を補償することができる。
【0056】
本発明の請求項3に記載の温度補償機能付き増幅器は、請求項1又は請求項2に記載の温度補償機能付きの増幅器において、更に、第2トランジスタ(能動素子102)のゲートの上記バイアス電圧の固定点が、調整手段によって調整可能になっているため、第2トランジスタのソース・ドレイン電極とゲート電極間の電位差を制御し、第1トランジスタの(能動素子101)製造上のばらつきを吸収することができる。
【図面の簡単な説明】
【図1】 実施の形態1の温度補償機能付き増幅器の回路構成図である。
【図2】 能動素子の静特性を示す図である。
【図3】 実施の形態1の温度補償機能付き増幅器の回路を機能に基づいて(a)及び(b)の2つに分けて示す図である。
【図4】 従来の増幅器と本実施の形態1の温度補償機能付き増幅器の環境温度の変化に対する利得の変化を示すグラフである。
【図5】 実施の形態1の温度補償機能付き増幅器の環境温度の変化に対する利得の変化を示すグラフである。
【図6】 温度補償機能を有さない従来の増幅器の回路構成図である。
【図7】 減衰器として機能する回路の周波数特性を示すグラフである。
【図8】 実施の形態2の温度補償機能付き増幅器の回路構成図である。
【図9】 実施の形態3の温度補償機能付き増幅器の回路構成図である。
【図10】 実施の形態4の温度補償機能付き増幅器の回路構成図である。
【図11】 実施の形態5の温度補償機能付き増幅器の回路構成図である。
【図12】 実施の形態6の温度補償機能付き増幅器の回路構成図である。
【図13】 実施の形態7の温度補償機能付き増幅器の回路構成図である。
【図14】 実施の形態8の温度補償機能付き増幅器の回路構成図である。
【図15】 実施の形態9の温度補償機能付き増幅器の回路構成図である。
【図16】 実施の形態10の温度補償機能付き増幅器の回路構成図である。
【符号の説明】
101 増幅用の能動素子、102 温度補償用の能動素子、103,106,119 キャパシタ、104,107,108,112,113,114,115,116,117,118 抵抗、105 インダクタ、109,110 整合回路、203 ビィアホール、301,303,304 増幅器、302 減衰回路

Claims (3)

  1. 温度補償機能付き増幅器であって、
    増幅回路と減衰回路とで構成されており、
    増幅回路が、入力高周波信号を増幅するものであり、温度の変化に応じて利得が変化する第1能動素子として第1トランジスタを有しており、そのゲートには入力高周波信号が印加されており、
    減衰回路が、増幅回路への入力高周波信号を減衰するものであり、キャパシタと、第2能動素子である第2トランジスタと、で構成されており、第2トランジスタは、ゲートに印加するバイアス電圧が固定されており、ソースが第1トランジスタのゲートに接続され、ドレインが上記キャパシタを介して接地されており、第2トランジスタが温度の変化に応じて減衰量を増減するように働き、上記利得の変化を補償するようになっている、ことを特徴とする温度補償機能付き増幅器。
  2. 温度補償機能付き増幅器であって、
    増幅回路と減衰回路とで構成されており、
    増幅回路が、入力高周波信号を増幅するものであり、温度の変化に応じて利得が変化する第1能動素子として第1トランジスタ(101)を有しており、そのゲートには入力高周波信号が印加されており、
    減衰回路が、増幅回路への入力高周波信号を減衰するものであり、キャパシタ(103)と、第2能動素子である第2トランジスタ(102)と、で構成されており、第2トランジスタ(102)は、ゲートに印加するバイアス電圧が固定されており、ソースが第1トランジスタのゲートに接続され、ドレインが上記キャパシタを介して接地されており、第2トランジスタ(102)が温度の変化に応じて減衰量を増減するように働き、上記利得の変化を補償するようになっており、且つ、温度の上昇に伴い減衰量が少なくなり、温度の低下に伴い減衰量が増加するようになっている、ことを特徴とする温度補償機能付き増幅器。
  3. 更に、第2トランジスタのゲートに印加する上記バイアス電圧の固定点を調整する調整手段を備えている、請求項1又は請求項2に記載の温度補償機能付き増幅器。
JP00050998A 1998-01-05 1998-01-05 温度補償機能付き増幅器 Expired - Lifetime JP3917742B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP00050998A JP3917742B2 (ja) 1998-01-05 1998-01-05 温度補償機能付き増幅器
US09/100,751 US6043713A (en) 1998-01-05 1998-06-22 Amplifier with temperature compensation function
DE19831596A DE19831596C2 (de) 1998-01-05 1998-07-14 Verstärkerschaltung für Hochfrequenzsignale und mehrstufiger Verstärker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00050998A JP3917742B2 (ja) 1998-01-05 1998-01-05 温度補償機能付き増幅器

Publications (2)

Publication Number Publication Date
JPH11195932A JPH11195932A (ja) 1999-07-21
JP3917742B2 true JP3917742B2 (ja) 2007-05-23

Family

ID=11475753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00050998A Expired - Lifetime JP3917742B2 (ja) 1998-01-05 1998-01-05 温度補償機能付き増幅器

Country Status (3)

Country Link
US (1) US6043713A (ja)
JP (1) JP3917742B2 (ja)
DE (1) DE19831596C2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005143079A (ja) 2003-10-14 2005-06-02 Matsushita Electric Ind Co Ltd 高周波電力増幅器
JP5454366B2 (ja) * 2010-06-04 2014-03-26 株式会社村田製作所 パワーアンプモジュール及び携帯情報端末
CN107238819B (zh) * 2017-06-07 2023-07-04 成都振芯科技股份有限公司 一种具有温度补偿功能的信号幅度控制装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4485349A (en) * 1983-04-08 1984-11-27 Varian Associates, Inc. Stabilized microwave power amplifier system
GB8826918D0 (en) * 1988-11-17 1988-12-21 Motorola Inc Power amplifier for radio frequency signal
US5132632A (en) * 1991-07-01 1992-07-21 Raytheon Company Frequency multiplier
JPH09139630A (ja) * 1995-11-14 1997-05-27 Matsushita Electric Ind Co Ltd 携帯型通信機器における電力増幅装置及び携帯型通信機器
JP3565667B2 (ja) * 1996-10-08 2004-09-15 富士通株式会社 利得可変半導体回路

Also Published As

Publication number Publication date
DE19831596C2 (de) 2001-08-02
DE19831596A1 (de) 1999-07-15
US6043713A (en) 2000-03-28
JPH11195932A (ja) 1999-07-21

Similar Documents

Publication Publication Date Title
US9859854B2 (en) Power amplifier with stabilising network
JPH05251964A (ja) 可変リアクタンス回路およびこれを用いた可変整合回路
WO2008115749A2 (en) Power efficient multistage amplifier and design method
US7663444B2 (en) Amplifying circuit utilizing nonlinear gate capacitance for enhancing linearity and related method thereof
EP0601888B1 (en) Variable gain RF amplifier with linear gain control
JP2000174559A (ja) マイクロ波電力増幅装置
JP3917742B2 (ja) 温度補償機能付き増幅器
US6400222B1 (en) Linearizer
US6239670B1 (en) Short-stub matching circuit
KR101687756B1 (ko) Rf 신호의 선형성을 개선할 수 있는 능동 바이어스 회로를 채용하는 rf 증폭기
US20120280753A1 (en) System and method for adjusting gain frequency response of rf power amplifier
JPH0786851A (ja) 高周波集積回路
JP3231449B2 (ja) マイクロ波回路
JP3886642B2 (ja) 高周波利得可変増幅回路
JP7566208B2 (ja) 帰還型増幅器
US20220271719A1 (en) Semiconductor device
JPH0758870B2 (ja) 低抗帰還形増幅器
JPH09162648A (ja) 歪補償回路
JP2002252550A (ja) 半導体集積回路およびこれを用いたシステム
JP2000040922A (ja) マイクロ波増幅器
JP7415088B1 (ja) 増幅器
KR100543788B1 (ko) 적응형 역방향 다이오드 구조를 갖는 전력증폭기
JPH11266130A (ja) 高周波電力増幅器
JP3302643B2 (ja) 歪補償回路
JP2023013424A (ja) 電力増幅回路

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term