JP3914000B2 - Anti-lock brake control method for motorcycles - Google Patents

Anti-lock brake control method for motorcycles Download PDF

Info

Publication number
JP3914000B2
JP3914000B2 JP2001067365A JP2001067365A JP3914000B2 JP 3914000 B2 JP3914000 B2 JP 3914000B2 JP 2001067365 A JP2001067365 A JP 2001067365A JP 2001067365 A JP2001067365 A JP 2001067365A JP 3914000 B2 JP3914000 B2 JP 3914000B2
Authority
JP
Japan
Prior art keywords
front wheel
deceleration
acceleration
brake
acl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001067365A
Other languages
Japanese (ja)
Other versions
JP2002264788A (en
Inventor
規之 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Kogyo Co Ltd
Original Assignee
Nissin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Kogyo Co Ltd filed Critical Nissin Kogyo Co Ltd
Priority to JP2001067365A priority Critical patent/JP3914000B2/en
Publication of JP2002264788A publication Critical patent/JP2002264788A/en
Application granted granted Critical
Publication of JP3914000B2 publication Critical patent/JP3914000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Regulating Braking Force (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、前輪用および後輪用車輪速度センサでそれぞれ検出した車輪速度に基づいて前輪および後輪の加・減速度を演算し、それらの演算加・減速度が正から負に転換したことを以って増圧制御を開始するようにして、前輪用および後輪用車輪ブレーキのアンチロック制御を相互に独立して実行し得る自動二輪車のアンチロックブレーキ制御方法に関する。
【0002】
【従来の技術】
このような自動二輪車のアンチロックブレーキ制御方法は、たとえば特開平9−328065号公報等で既に良く知られている。
【0003】
【発明が解決しようとする課題】
ところで、自動二輪車において前輪用車輪ブレーキをアンチロック制御するにあたっては、車体安定性の向上のために低い摩擦係数の路面を考慮して、前輪用車輪ブレーキの減圧制御時の減圧量を多めに設定するのが一般的である。ところが、走行が可能ではあるけれども低摩擦係数(たとえばμ=0.4程度)の路面を走行中には過減圧状態となりがちであり、特に前輪の単独制動時には必要以上の減圧により、制動時の減速度に「抜け感」が生じ、制動フィーリングが悪化することがある。
【0004】
本発明は、かかる事情に鑑みてなされたものであり、低摩擦係数の路面を走行中の前輪の単独制動時における制動フィーリングを向上した自動二輪車のアンチロックブレーキ制御方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明は、前輪用および後輪用車輪速度センサでそれぞれ検出した車輪速度に基づいて前輪および後輪の加・減速度を演算し、それらの演算加・減速度が正から負に転換したことを以って増圧制御を開始するようにして、前輪用および後輪用車輪ブレーキのアンチロック制御を相互に独立して実行し得る自動二輪車のアンチロックブレーキ制御方法において、低摩擦係数の路面で前輪単独制動を実行した状態での前輪用車輪ブレーキのアンチロック制御時に、前輪の演算加・減速度が、その演算加・減速度に関し予め設定された正の設定加・減速度を超えた後に前輪の演算加・減速度の微分値が、その演算加・減速度の微分値に関し予め設定された所定の設定微分値未満の範囲 なり且つ前輪のスリップ率が設定スリップ率以下となったときには、前輪の演算加・減速度が正から負に転換する前であっても前輪用車輪ブレーキの液圧を増圧制御することを特徴とする。
【0006】
このような制御方法によれば、前輪の単独制動状態で前輪用車輪ブレーキのアンチロック制御を実行する際に、低摩擦係数の路面で前輪用車輪ブレーキが過減圧状態となるのを防止し、減速度に「抜け感」が生じることを回避して制動フィーリングを向上することができる。すなわち前輪の演算加・減速度の微分値は、前輪の演算加・減速度の変化傾向を示すものであり、走行可能ではあるが低摩擦係数の路面では、走行困難な低摩擦係数の路面を考慮した前輪用車輪ブレーキの減圧制御により、前輪の車輪速度が比較的速く回復するはずである。そこで比較的速い車輪速度の復帰を前輪の演算加・減速度が正の設定加・減速度を超えることで検出した後に、車輪速度の変化が緩やかになった状態を前輪の演算加・減速度の微分値が所定の設定微分値未満となることで検出し、その状態で前輪のスリップ率が充分に低下するのに応じて前輪用車輪ブレーキの増圧制御を開始するようにしており、その状態は、前輪の演算加・減速度が正から負に転換する前に生じるので、前輪用車輪ブレーキを早めに増圧状態とすることができるのである。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態を、添付の図面に示した本発明の一実施例に基づいて説明する。
【0008】
図1および図2は本発明の一実施例を示すものであり、図1は自動二輪車用ブレーキ装置の液圧回路図、図2はタイミングチャートである。
【0009】
先ず図1において、スクータ型である自動二輪車には、乗員が右手で操作する右ブレーキレバー1の操作に応じて液圧を出力する第1マスタシリンダMAと、乗員が左手で操作する左ブレーキレバー2の操作に応じて液圧を出力する第2マスタシリンダMBとが搭載される。一方、自動二輪車の前輪には、一対のポッド3,4を有する前輪用車輪ブレーキBFが搭載されており、この前輪用車輪ブレーキBFには、第1マスタシリンダMAが制御弁手段6Aを介して接続されるとともに第2マスタシリンダMBが制御弁手段6B1および遅延弁5を介して接続される。また後輪に装着された後輪用車輪ブレーキBRには第2マスタシリンダMBが制御弁手段6B2を介して接続される。
【0010】
制御弁手段6Aは、前輪用車輪ブレーキBFのポッド3および第1マスタシリンダMA間に設けられる常開型電磁弁7と、該常開型電磁弁7に並列に接続されるチェック弁8と、前輪用車輪ブレーキBFのポッド3およびリザーバ10A間に設けられる常閉型電磁弁9とで構成されるものであり、第1マスタシリンダMAおよび前輪用車輪ブレーキBFのポッド3間の連通・遮断と、前輪用車輪ブレーキBFのポッド3およびリザーバ10A間の連通・遮断とを切換え可能である。
【0011】
リザーバ10Aには、該リザーバ10Aのブレーキ液を汲上げて第1マスタシリンダMA側に圧送する戻しポンプ11Aの吸入側が吸入弁12Aを介して接続されており、この戻しポンプ11Aの吐出側は、吐出弁13Aを介して第1マスタシリンダMAに接続される。
【0012】
制御弁手段6B1は、上記制御弁手段6Aと同様に常開型電磁弁7、チェック弁8および常閉型電磁弁9で構成されるものであり、前輪用車輪ブレーキBFのポッド4に接続される遅延弁5および第2マスタシリンダMB間の連通・遮断と、前記遅延弁5およびリザーバ10B間の連通・遮断とを切換え可能である。
【0013】
また制御弁手段6B2は、上記制御弁手段6A,6B1と同様に常開型電磁弁7、チェック弁8および常閉型電磁弁9で構成されるものであり、後輪用車輪ブレーキBRおよび第2マスタシリンダMB間の連通・遮断と、後輪用車輪ブレーキBRおよびリザーバ10B間の連通・遮断とを切換え可能である。
【0014】
リザーバ10Bには、該リザーバ10Bのブレーキ液を汲上げて第2マスタシリンダMB側に圧送する戻しポンプ11Bの吸入側が吸入弁12Bを介して接続されており、この戻しポンプ11Bの吐出側は、吐出弁13Bを介して第2マスタシリンダMBに接続される。
【0015】
前記両戻しポンプ11A,11Bには共通な単一のモータ16が連結されており、該モータ16により両戻しポンプ11A,11Bが駆動される。
【0016】
このような制御弁手段6A,6B1,6B2において、右および左ブレーキレバー1,2によるブレーキ操作時に車輪がロック状態に入りそうになったときのアンチロックブレーキ制御時には、常開型電磁弁7…のうちロック状態に入りそうである車輪に対応する常開型電磁弁を通電により閉弁するとともに常閉型電磁弁9…のうち上記車輪に対応する常閉型電磁弁を通電により開弁する。そうすると、ブレーキ液圧の一部がリザーバ10Aあるいは10Bに逃がされて減圧されることになる。またブレーキ液圧を保持する際には、常開型電磁弁7…を通電により閉弁するとともに常閉型電磁弁9…を非通電により閉弁状態に保持すればよく、ブレーキ液圧を増圧する際には、常開型電磁弁7…を非通電により開弁するとともに常閉型電磁弁9…を非通電により閉弁状態に保持すればよい。
【0017】
一対の戻しポンプ11A,11Bを共通に駆動するモータ16は、上記アンチロックブレーキ制御の開始に応じて作動を開始するものであり、リザーバ10A,10Bに逃がされたブレーキ液が戻しポンプ11A,11Bから第1および第2マスタシリンダMA,MB側に戻される。従ってリザーバ10A,10Bに逃がした分だけ第1および第2マスタシリンダMA,MBにおけるブレーキレバー1,2の操作量が増加することはない。
【0018】
各制御弁手段6A,6B1,6B2における常開型電磁弁7…および常閉型電磁弁9…の非通電・通電、ならびにモータ16の作動は、前輪および後輪の車輪速度を個別に検出する前輪用および後輪用車輪速度センサ19F,19Rの検出信号が入力される制御ユニット18により制御されるものであり、制御ユニット18は、前記車輪速度センサ19F,19Rの検出信号に基づいて車輪がロック状態に入りそうであると判断したときには、ブレーキ液圧の減・増圧サイクルを繰返すように各制御弁手段6A,6B1,6B2の作動を制御することで、前輪用および後輪用車輪ブレーキBF,BRのアンチロック制御を実行する。
【0019】
また制御ユニット18は、前記各制御弁手段6A,6B1,6B2のいずれか1つによるアンチロックブレーキ制御の開始に伴ってモータ16の作動を開始する。
【0020】
ところで、制御ユニット18は、前輪用および後輪用車輪速度センサ19F,19Rでそれぞれ検出した車輪速度に基づいて前輪および後輪の加・減速度を演算し、基本的には、前記演算加・減速度が正から負に転換したことを以って増圧制御を開始するのであるが、走行路面の摩擦係数μが0.4程度の状態すなわち自動二輪車の走行を可能とした低摩擦係数の路面で前輪単独制動を実行した状態での前輪用車輪ブレーキBFのアンチロック制御時には、前輪の演算加・減速度ACLが正の設定加・減速度ACLOを超えた後に前輪の演算加・減速度ACLの微分値WDDが所定の設定微分値WDDO未満の範囲で前輪のスリップ率が設定スリップ率以下となったときには、前輪の演算加・減速度ACLが正から負に転換する前であっても前輪用車輪ブレーキBFの液圧を増圧制御するようにしている。
【0021】
次にこの実施例の作用について説明すると、自動二輪車の走行を可能とする程度の低摩擦係数の路面での前輪の単独制動時に前輪がロック状態に陥ることを回避するために前輪用車輪ブレーキBFのアンチロック制御を実行する場合、前輪の車輪速度、前輪の演算加・減速度ACL、前輪の演算加・減速度ACLの微分値WDDが、図2で示すように変化するときに、基本的には、前輪の演算加・減速度ACLが正から負に転換する時刻t4で前輪用車輪ブレーキBFの増圧制御を開始するのであるが、その時刻t4前であっても、前輪の演算加・減速度ACLが時刻t1で正の設定加・減速度ACLOを超えた後に時刻t2で前輪の演算加・減速度ACLの微分値WDDが設定微分値WDDO未満となる範囲で、時刻t3で前輪のスリップ率が設定スリップ率以下となったとき、すなわち前輪の車輪速度が設定スリップ率の基準車輪速度以上となった時刻t3で、前輪用車輪ブレーキBFの増圧制御を開始する。
【0022】
このように自動二輪車の走行を可能とする程度の低摩擦係数の路面での前輪の単独制動時に前輪用車輪ブレーキBFの増圧制御開始タイミングを定めることにより、前輪用車輪ブレーキBFが過減圧状態となるのを防止し、減速度に「抜け感」が生じることを回避して制動フィーリングを向上することができる。
【0023】
すなわち前輪の演算加・減速度ACLの微分値WDDは、前輪の演算加・減速度ACLの変化傾向を示すものであり、走行可能ではあるが低摩擦係数の路面では、走行困難な低摩擦係数の路面を考慮した前輪用車輪ブレーキBFの減圧制御により、前輪の車輪速度が比較的速く回復するはずである。そこで比較的速い車輪速度の復帰を前輪の演算加・減速度ACLが正の設定加・減速度ACLOを超えることで検出した後に、車輪速度の変化が緩やかになった状態を前輪の演算加・減速度ACLの微分値WDDが所定の設定微分値WDDO未満となることで検出し、前輪のスリップ率が充分に低下するのに応じて前輪用車輪ブレーキBFの増圧制御を開始するようにしており、その状態は、前輪の演算加・減速度ACLが正から負に転換する前に生じるので、前輪用車輪ブレーキBFを早めに増圧状態とすることができるのである。
【0024】
以上、本発明の実施例を説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載された本発明を逸脱することなく種々の設計変更を行うことが可能である。
【0025】
【発明の効果】
以上のように本発明によれば、前輪の単独制動状態で前輪用車輪ブレーキのアンチロック制御を実行する際に、低摩擦係数の路面で前輪用車輪ブレーキが過減圧状態となるのを防止し、減速度に「抜け感」が生じることを回避して制動フィーリングを向上することができる。即ち、前輪の演算加・減速度の微分値は、前輪の演算加・減速度の変化傾向を示すものであり、走行可能ではあるが低摩擦係数の路面では、走行困難な低摩擦係数の路面を考慮した前輪用車輪ブレーキの減圧制御により、前輪の車輪速度が比較的速く回復するはずである。そこで比較的速い車輪速度の復帰を、前輪の演算加・減速度が予め設定された正の設定加・減速度を超えることで検出した後に、車輪速度の変化が緩やかになった状態を、前輪の演算加・減速度の微分値が予め設定された所定の設定微分値未満となることで検出し、その状態で前輪のスリップ率が充分に低下するのに応じて前輪用車輪ブレーキの増圧制御を開始するようにしており、その状態は、前輪の演算加・減速度が正から負に転換する前に生じるので、前輪用車輪ブレーキを早めに増圧状態とすることができて、低摩擦係数の路面でも減速度に「抜け感」が生じることを回避し、制動フィーリングを向上させることができる。
【図面の簡単な説明】
【図1】 自動二輪車用ブレーキ装置の液圧回路図である。
【図2】 タイミングチャートである。
【符号の説明】
19F・・・前輪用車輪速度センサ
19R・・・後輪用車輪速度センサ
ACL・・・前輪の演算加・減速度
ACLO・・正の設定加・減速度
BF・・・・前輪用車輪ブレーキ
BR・・・・後輪用車輪ブレーキ
WDD・・・前輪の演算加・減速度の微分値
WDDO・・所定の設定微分値
[0001]
BACKGROUND OF THE INVENTION
The present invention calculates the acceleration / deceleration of front wheels and rear wheels based on the wheel speeds detected by the front wheel and rear wheel wheel speed sensors, respectively, and the calculated acceleration / deceleration has changed from positive to negative. Thus, the present invention relates to an antilock brake control method for a motorcycle that can execute antilock control of front and rear wheel brakes independently of each other by starting pressure increase control.
[0002]
[Prior art]
Such an antilock brake control method for a motorcycle is already well known, for example, in Japanese Patent Laid-Open No. 9-328065.
[0003]
[Problems to be solved by the invention]
By the way, when anti-locking control of front wheel brakes in motorcycles, considering the road surface with a low coefficient of friction in order to improve vehicle stability, set a large amount of pressure reduction during decompression control of front wheel brakes. It is common to do. However, although it is possible to travel, it tends to be over-depressurized while traveling on a road surface with a low friction coefficient (for example, μ = 0.4). A “feeling of falling out” may occur in the deceleration, and the braking feeling may deteriorate.
[0004]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide an antilock brake control method for a motorcycle with improved braking feeling during single braking of a front wheel traveling on a road surface having a low friction coefficient. And
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention calculates acceleration / deceleration of front wheels and rear wheels based on wheel speeds detected by a wheel speed sensor for front wheels and rear wheels, and calculates and accelerates them. Anti-lock brake control for motorcycles that can perform anti-lock control for wheel brakes for front wheels and rear wheels independently of each other by starting pressure-increasing control with the change from positive to negative In the method, when the anti-lock control of the front wheel brake is performed on the road surface having a low friction coefficient, the front wheel has a calculated acceleration / deceleration that is a positive value set in advance with respect to the calculated acceleration / deceleration . after exceeding the set acceleration and deceleration, the differential value of the front wheel of the operation acceleration and deceleration, and the front wheel slip becomes a preset range below a predetermined set differential value relates differential values of the calculated acceleration and deceleration Rate set When equal to or less than the slip ratio is characterized in that Gosuru pressure increasing the fluid pressure in the front wheel brake even before the front wheels of the operational acceleration and deceleration is converted from positive to negative.
[0006]
According to such a control method, when performing antilock control of the front wheel brake in the single brake state of the front wheel, the front wheel brake is prevented from being over-depressurized on the road surface with a low friction coefficient, The braking feeling can be improved by avoiding the occurrence of “missing feeling” in the deceleration. In other words, the differential value of the calculated acceleration / deceleration of the front wheels indicates the tendency of the calculated acceleration / deceleration of the front wheels to change. The wheel speed of the front wheel should recover relatively quickly by taking into account the pressure reduction control of the front wheel brake. Therefore, after detecting a relatively fast wheel speed return by the calculated acceleration / deceleration of the front wheels exceeding the positive set acceleration / deceleration, the calculation of the front wheels is calculated / decelerated. When the differential value of the front wheel brake is less than a predetermined differential value, and the slip ratio of the front wheel is sufficiently reduced in that state, the pressure control of the front wheel brake is started. Since the state occurs before the calculated acceleration / deceleration of the front wheels changes from positive to negative, the front wheel brake can be brought into a pressure increasing state early.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on one embodiment of the present invention shown in the accompanying drawings.
[0008]
1 and 2 show an embodiment of the present invention. FIG. 1 is a hydraulic circuit diagram of a motorcycle brake device, and FIG. 2 is a timing chart.
[0009]
First, in FIG. 1, a scooter type motorcycle includes a first master cylinder MA that outputs a hydraulic pressure in response to an operation of a right brake lever 1 that is operated by an occupant with a right hand, and a left brake lever that is operated by an occupant with a left hand. The second master cylinder MB that outputs the hydraulic pressure in response to the operation of 2 is mounted. On the other hand, a front wheel brake BF having a pair of pods 3 and 4 is mounted on the front wheel of the motorcycle, and the first master cylinder MA is connected to the front wheel brake BF via the control valve means 6A. The second master cylinder MB is connected via the control valve means 6B1 and the delay valve 5 while being connected. The second master cylinder MB is connected to the rear wheel brake BR mounted on the rear wheel via the control valve means 6B2.
[0010]
The control valve means 6A includes a normally open solenoid valve 7 provided between the pod 3 of the front wheel brake BF and the first master cylinder MA, a check valve 8 connected in parallel to the normally open solenoid valve 7, It is composed of a normally closed electromagnetic valve 9 provided between the pod 3 of the front wheel brake BF and the reservoir 10A. The communication between the first master cylinder MA and the pod 3 of the front wheel brake BF is interrupted. The communication between the pod 3 of the front wheel brake BF and the reservoir 10A can be switched.
[0011]
A suction side of a return pump 11A that pumps up the brake fluid of the reservoir 10A and pumps it to the first master cylinder MA side is connected to the reservoir 10A via a suction valve 12A. The discharge side of the return pump 11A is It is connected to the first master cylinder MA via the discharge valve 13A.
[0012]
The control valve means 6B1, like the control valve means 6A, is composed of a normally open solenoid valve 7, a check valve 8, and a normally closed solenoid valve 9, and is connected to the pod 4 of the front wheel brake BF. It is possible to switch between communication / blocking between the delay valve 5 and the second master cylinder MB and communication / blocking between the delay valve 5 and the reservoir 10B.
[0013]
Similarly to the control valve means 6A, 6B1, the control valve means 6B2 is composed of a normally open type electromagnetic valve 7, a check valve 8 and a normally closed type electromagnetic valve 9. The communication / blocking between the two master cylinders MB and the communication / blocking between the rear wheel brake BR and the reservoir 10B can be switched.
[0014]
A suction side of a return pump 11B that pumps up the brake fluid of the reservoir 10B and pumps it to the second master cylinder MB side is connected to the reservoir 10B via a suction valve 12B. The discharge side of the return pump 11B is It is connected to the second master cylinder MB via the discharge valve 13B.
[0015]
A common single motor 16 is connected to the both return pumps 11A and 11B, and the both return pumps 11A and 11B are driven by the motor 16.
[0016]
In such control valve means 6A, 6B1, 6B2, during the anti-lock brake control when the wheel is about to enter the locked state when the right and left brake levers 1, 2 are operated, the normally open solenoid valve 7. The normally open solenoid valve corresponding to the wheel that is likely to enter the locked state is closed by energization, and the normally closed solenoid valve corresponding to the wheel of the normally closed solenoid valve 9 is opened by energization. . Then, a part of the brake fluid pressure is released to the reservoir 10A or 10B and is reduced. In order to maintain the brake fluid pressure, the normally open solenoid valve 7... May be closed by energization and the normally closed solenoid valve 9. When pressure is applied, the normally open solenoid valves 7 are opened by de-energization and the normally closed solenoid valves 9 are kept closed by de-energization.
[0017]
The motor 16 that drives the pair of return pumps 11A and 11B in common starts operation in response to the start of the antilock brake control, and the brake fluid released to the reservoirs 10A and 10B is returned to the return pumps 11A and 11B. 11B is returned to the first and second master cylinders MA and MB. Accordingly, the amount of operation of the brake levers 1 and 2 in the first and second master cylinders MA and MB does not increase by the amount released to the reservoirs 10A and 10B.
[0018]
The deenergization / energization of the normally open solenoid valve 7... And the normally closed solenoid valve 9... And the operation of the motor 16 in each control valve means 6A, 6B1, 6B2 individually detect the wheel speeds of the front wheels and the rear wheels. It is controlled by a control unit 18 to which detection signals of front wheel and rear wheel wheel speed sensors 19F and 19R are inputted. The control unit 18 detects the wheels based on the detection signals of the wheel speed sensors 19F and 19R. When it is determined that the vehicle is about to enter the locked state, the operation of each control valve means 6A, 6B1, 6B2 is controlled so as to repeat the brake fluid pressure decreasing / increasing cycle, so that the wheel brakes for the front and rear wheels are controlled. Anti-lock control of BF and BR is executed.
[0019]
The control unit 18 starts the operation of the motor 16 with the start of antilock brake control by any one of the control valve means 6A, 6B1, 6B2.
[0020]
By the way, the control unit 18 calculates acceleration / deceleration of the front wheels and the rear wheels based on the wheel speeds detected by the front wheel and rear wheel wheel speed sensors 19F and 19R, respectively. The pressure increase control starts when the deceleration changes from positive to negative, but the friction coefficient μ of the running road surface is about 0.4, that is, the low friction coefficient that enables the motorcycle to run. During anti-lock control of the front wheel brake BF with front wheel single braking on the road surface, the front wheel calculated acceleration / deceleration ACL exceeds the positive set acceleration / deceleration ACLO before the front wheel calculated acceleration / deceleration ACLO. When the front wheel slip rate falls below the set slip rate within a range where the ACL differential value WDD is less than the predetermined set differential value WDDO, even before the front wheel calculation acceleration / deceleration ACL changes from positive to negative. So that Gosuru the pressure increase control the hydraulic pressure in the wheel brake BF.
[0021]
Next, the operation of this embodiment will be described. The front wheel brake BF is used to prevent the front wheels from being locked when the front wheels are individually braked on a road surface having a low friction coefficient that allows the motorcycle to travel. When the anti-lock control is executed, when the front wheel speed, the front wheel calculation acceleration / deceleration ACL, and the front wheel calculation acceleration / deceleration ACL differential value WDD change as shown in FIG. In this case, the pressure increase control of the front wheel brake BF is started at time t4 when the front wheel calculation acceleration / deceleration ACL changes from positive to negative. The front wheel at time t3 within a range where the differential value WDD of the calculated acceleration / deceleration ACL of the front wheel is less than the set differential value WDDO at time t2 after the deceleration ACL exceeds the positive set acceleration / deceleration ACLO at time t1. Slip There when it becomes less than the set slip rate, i.e. at time t3 when the wheel speed of the front wheels is equal to or greater than the reference wheel speed setting slip ratio starts to pressure increasing control of the front wheel brake BF.
[0022]
In this way, the front wheel brake BF is in an over-depressurized state by determining the start-up control start timing of the front wheel brake BF when the front wheels are individually braked on a road surface having a low friction coefficient that allows the motorcycle to run. Thus, the braking feeling can be improved by avoiding the occurrence of “missing feeling” in the deceleration.
[0023]
That is, the differential value WDD of the front wheel arithmetic acceleration / deceleration ACL indicates a change tendency of the front wheel arithmetic acceleration / deceleration ACL, and the low friction coefficient that is difficult to travel on a road surface that can travel but has a low friction coefficient. By reducing the pressure of the front wheel brake BF in consideration of the road surface, the front wheel speed should recover relatively quickly. Therefore, after detecting a relatively fast wheel speed return when the front wheel calculation acceleration / deceleration ACL exceeds the positive setting acceleration / deceleration ACLO, the front wheel calculation acceleration / Detection is performed when the differential value WDD of the deceleration ACL is less than a predetermined set differential value WDDO, and pressure increase control of the front wheel brake BF is started in response to a sufficient decrease in the slip ratio of the front wheels. This state occurs before the front wheel calculation acceleration / deceleration ACL changes from positive to negative, so that the front wheel brake BF can be brought into a pressure increasing state early.
[0024]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various design changes can be made without departing from the present invention described in the claims. It is.
[0025]
【The invention's effect】
As described above, according to the present invention, when the anti-lock control of the front wheel brake is executed in the single brake state of the front wheel , the front wheel brake is prevented from being over-depressurized on the road surface having a low friction coefficient. Further, it is possible to improve the braking feeling by avoiding a “feeling of falling out” in the deceleration. In other words, the differential value of the calculated acceleration / deceleration of the front wheels indicates the changing tendency of the calculated acceleration / deceleration of the front wheels, and the road surface with a low friction coefficient that is difficult to drive on a road surface that can travel but has a low friction coefficient. By reducing the pressure of the front wheel brake in consideration of the above, the front wheel speed should recover relatively quickly. Therefore, after detecting a relatively fast wheel speed recovery by the front wheel calculation acceleration / deceleration exceeding the preset positive acceleration / deceleration, the front wheel changes gradually. This is detected when the differential value of the calculated acceleration / deceleration is less than the preset differential value set in advance, and the front wheel brake increases in response to the sufficiently reduced slip ratio of the front wheels in that state. The control is started, and this state occurs before the front wheel calculation acceleration / deceleration changes from positive to negative. Even when the road surface has a coefficient of friction, it is possible to avoid the occurrence of “feeling of slipping” in the deceleration and improve the braking feeling.
[Brief description of the drawings]
FIG. 1 is a hydraulic circuit diagram of a motorcycle brake device.
FIG. 2 is a timing chart.
[Explanation of symbols]
19F: front wheel speed sensor 19R: rear wheel speed sensor ACL: front wheel calculation acceleration / deceleration ACLO ... positive setting acceleration / deceleration BF ... front wheel brake BR・ ・ ・ ・ Rear wheel brake WDD ・ ・ ・ Calculation acceleration / deceleration differential value WDDO of front wheel ・ ・ Predetermined set differential value

Claims (1)

前輪用および後輪用車輪速度センサ(19F,19R)でそれぞれ検出した車輪速度に基づいて前輪および後輪の加・減速度を演算し、それらの演算加・減速度が正から負に転換したことを以って増圧制御を開始するようにして、前輪用および後輪用車輪ブレーキ(BF,BR)のアンチロック制御を相互に独立して実行し得る自動二輪車のアンチロックブレーキ制御方法において、
低摩擦係数の路面で前輪単独制動を実行した状態での前輪用車輪ブレーキ(BF)のアンチロック制御時に、前輪の演算加・減速度(ACL)が、その演算加・減速度(ACL)に関し予め設定された正の設定加・減速度(ACLO)を超えた後に前輪の演算加・減速度(ACL)の微分値(WDD)が、その演算加・減速度(ACL)の微分値(WDD)に関し予め設定された所定の設定微分値(WDDO)未満の範囲となり且つ前輪のスリップ率が設定スリップ率以下となったときには、前輪の演算加・減速度(ACL)が正から負に転換する前であっても前輪用車輪ブレーキ(BF)の液圧を増圧制御することを特徴とする、自動二輪車のアンチロックブレーキ制御方法。
The acceleration / deceleration of the front and rear wheels is calculated based on the wheel speed detected by the front wheel and rear wheel speed sensors (19F, 19R), respectively, and the calculated acceleration / deceleration changes from positive to negative. Thus, in the antilock brake control method for a motorcycle, the antilock control for the front wheel and rear wheel brakes (BF, BR) can be executed independently of each other by starting the pressure increase control. ,
During antilock control of the front wheel brake (BF) in the state where the front wheel single brake is executed on the road surface with a low friction coefficient, the calculated acceleration / deceleration (ACL) of the front wheel is related to the calculated acceleration / deceleration (ACL). After the preset positive set acceleration / deceleration (ACLO) is exceeded, the differential value (WDD) of the calculated acceleration / deceleration (ACL) of the front wheel is the differential value of the calculated acceleration / deceleration (ACL) ( When the front wheel slip ratio falls below the preset slip ratio when the range is less than the preset preset differential value (WDDO) for WDD) , the front wheel calculation acceleration / deceleration (ACL) changes from positive to negative. An anti-lock brake control method for a motorcycle, characterized in that the hydraulic pressure of the front wheel brake (BF) is increased even before starting.
JP2001067365A 2001-03-09 2001-03-09 Anti-lock brake control method for motorcycles Expired - Fee Related JP3914000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001067365A JP3914000B2 (en) 2001-03-09 2001-03-09 Anti-lock brake control method for motorcycles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001067365A JP3914000B2 (en) 2001-03-09 2001-03-09 Anti-lock brake control method for motorcycles

Publications (2)

Publication Number Publication Date
JP2002264788A JP2002264788A (en) 2002-09-18
JP3914000B2 true JP3914000B2 (en) 2007-05-09

Family

ID=18925728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001067365A Expired - Fee Related JP3914000B2 (en) 2001-03-09 2001-03-09 Anti-lock brake control method for motorcycles

Country Status (1)

Country Link
JP (1) JP3914000B2 (en)

Also Published As

Publication number Publication date
JP2002264788A (en) 2002-09-18

Similar Documents

Publication Publication Date Title
JP4543484B2 (en) Brake hydraulic pressure control device
JP6406820B2 (en) BRAKE CONTROL DEVICE AND ITS CONTROL METHOD
JP2844777B2 (en) Anti-skid control device
JP3914000B2 (en) Anti-lock brake control method for motorcycles
JP4177559B2 (en) Anti-lock brake control method for motorcycles
EP2947300B1 (en) Idle-stop device
JP3913993B2 (en) Anti-lock brake control method for motorcycles
JP3913994B2 (en) Anti-lock brake control method for motorcycles
JP3913992B2 (en) Anti-lock brake control method for motorcycles
JP4318973B2 (en) Anti-lock brake control method for vehicle
JP4364444B2 (en) Method for judging friction coefficient of road surface for motorcycle
JP4030456B2 (en) Brake device for vehicle
JP2736745B2 (en) Anti-skid control method for four-wheel drive vehicle
JP2007030752A (en) Brake control system and method for vehicle
JP4243011B2 (en) Anti-lock brake control method for motorcycles
JP4419272B2 (en) Anti-skid control device
JP4453152B2 (en) Starting method of braking force distribution control
JP2756507B2 (en) Vehicle traction control method
JP4560850B2 (en) Brake hydraulic pressure control device
JP4138222B2 (en) Front wheel brake fluid pressure control method for motorcycles
JP3040497B2 (en) Anti-skid brake system for vehicles
JP4015810B2 (en) Anti-skid control device
JP4233945B2 (en) Anti-lock brake control device for vehicle and motorcycle
JP3607318B2 (en) Anti-skid control device for vehicle
JP4529229B2 (en) Anti-skid control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3914000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees