JP3913082B2 - 分析方法、分離方法、ミキサ、及び分析装置 - Google Patents

分析方法、分離方法、ミキサ、及び分析装置 Download PDF

Info

Publication number
JP3913082B2
JP3913082B2 JP2002074555A JP2002074555A JP3913082B2 JP 3913082 B2 JP3913082 B2 JP 3913082B2 JP 2002074555 A JP2002074555 A JP 2002074555A JP 2002074555 A JP2002074555 A JP 2002074555A JP 3913082 B2 JP3913082 B2 JP 3913082B2
Authority
JP
Japan
Prior art keywords
eluent
sample
mixer
flow path
separation column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002074555A
Other languages
English (en)
Other versions
JP2003270226A (ja
Inventor
賢 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP2002074555A priority Critical patent/JP3913082B2/ja
Publication of JP2003270226A publication Critical patent/JP2003270226A/ja
Application granted granted Critical
Publication of JP3913082B2 publication Critical patent/JP3913082B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液体クロマトグラフィを利用した分析方法及び分離方法、並びにこれらに用いるミキサ及び分析装置に関し、さらに詳しくは、溶離液の組成を変化させて分析等を行うグラジエント型の分析方法、分離方法等に関する。
【0002】
【従来の技術】
液体クロマトグラフィを用いた分析方法に、溶離液の組成を経時的に変化させて成分分離及び成分分析を行うグラジエント分析と呼ばれるものがある。このようなグラジエント分析では、移動層を構成する溶離液の組成を経時的に変化させることにより、試料中の目的とする成分を迅速かつ確実に分離・定量することができる。
【0003】
【発明が解決しようとする課題】
しかし、グラジエント分析を用いても、特定の被検対象については、ピーク形状が非常に悪くなり、或いはピーク形状の経時変化も起こって、精密な分析が困難になる場合があった。
【0004】
具体的に説明すると、例えばある標準物質の類縁物質についてグラジエント分析を行う場合において、類縁物質を溶かす試料溶媒がアセトニトリルであるものとする。また、類縁物質を分離するための溶離液の基底状態が殆ど水であって溶離液中のアセトニトリルの量を漸次増加させるものとする。この場合、試料注入時の移動層の組成が殆ど水となる。このため、分離カラムの入口側に試料を注入すると、試料溶媒は、あたかも移動層のように振舞うこととなり、分離カラム中でアセトニトリルのバンドを形成しつつ移動する。この結果、分離カラムの入口付近に濃縮されるべき試料溶質がアセトニトリル・バンドに押し出され、試料の分離すなわち類縁物質の構成成分のピーク検出が困難となる。
【0005】
そこで、本発明は、試料溶媒が分離カラム中で移動層のように振舞うことを防止して、類縁物質等を構成する近接するピークを有する成分を正確に分離、検出することができる分析方法及び分離方法を提供することを目的とする。
【0006】
また、本発明は、近接するピークを正確に分離、検出することができるグラジエント型の液体クロマトグラフィの分析方法等に用いるミキサや分析装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するため、本発明に係る分析方法は、液体クロマトグラフィを利用することにより、溶離液の組成を変化させつつ試料の成分を分析する分析方法であって、溶離液への試料の注入に際して、前記試料を前記溶離液に拡散させる工程と、前記溶離液に前記試料を拡散させた混合液を分離カラムの一端に充填する工程と、前記分離カラムの一端に溶離液を供給しつつ当該分離カラムの他端から吐出された溶出液の成分を逐次検出する工程とを備える。
【0008】
上記分析方法では、試料を分離カラムの一端に充填する前に、試料を基底状態の溶離液に拡散させるので、このような拡散によって得た混合液は、分離カラムの入口部に安定した状態で充填される。よって、従来のように試料溶媒が分離カラム中で移動層のように振舞うことを簡単に防止でき、グラジエント型の液体クロマトグラフィを用いた分析において、近接するピークを有する成分を正確に分離、検出することができる。
【0009】
また、上記分析方法の具体的な態様では、前記試料を前記溶離液に拡散させる工程で、流路の断面形状が流路に沿って変化する管状体を用いて前記試料と前記溶離液とを混合する。この場合、簡単な構造の管状体によって試料を溶離液に拡散させつつ適宜撹拌することができる。
【0010】
また、上記分析方法の別の具体的な態様では、前記管状体が、流路の断面形状が細長くなっている複数のネック部を流路に沿って周期的に有するとともに、隣接するネック部の断面長手方向を流路の延びる方向の回りに所定角度単位で回転させている。この場合、試料と溶離液とを効率よく混合することができる。
【0011】
また、上記分析方法の別の具体的な態様では、前記所定角度が、60゜である。この場合、試料と溶離液とをさらに効率よく混合してより均一に攪拌することができるので、近接するピークを有する成分の分離・検出能を高めることができる。
【0012】
また、上記分析方法の別の具体的な態様では、前記管状体が、円形断面の流路を有する直管を軸方向に沿った周期的な位置で押しつぶすように変形させることによって形成される。この場合、ミキサを簡単な構造で作製も容易なものとすることができる。
【0013】
また、上記分析方法の別の具体的な態様では、試料を注入した前記溶離液を、所定長以上の延長管に通した後に、前記管状体に供給する。この場合、試料と溶離液とをさらに効率よく混合し攪拌することができ、近接するピークを有する成分の分離・検出能を高めることができる。
【0014】
また、上記分析方法の別の具体的な態様では、試料を注入した前記溶離液を、前記管状体に供給した後に、所定長以上の延長管に通す。この場合も、試料と溶離液とをさらに効率よく混合し攪拌することができ、近接するピークを有する成分の分離・検出能を高めることができる。
【0015】
また、本発明に係る分離方法は、液体クロマトグラフィを利用することにより、溶離液の組成を変化させつつ試料を成分に分離する分離方法であって、溶離液への試料の注入に際して、前記試料を前記溶離液に拡散させる工程と、前記溶離液に前記試料を拡散させた混合液を分離カラムの一端に充填する工程と、前記分離カラムの一端に溶離液を供給しつつ当該分離カラムの他端から溶出液を吐出させる工程とを備える。
【0016】
上記分離方法でも、試料を分離カラムの一端に充填する前に溶離液に拡散させるので、このような拡散によって得た混合液は、分離カラムの入口部に安定した状態で充填され、近接するピークを有する成分を正確に分離、検出することができる。
【0017】
また、本発明に係るミキサは、液体クロマトグラフィ用の溶離液に試料を注入するための注入装置側に連結される入口部と、流路の断面形状が流路に沿って変化する管状体と、溶離液を通過させつつ試料を成分に応じて分離するための分離カラム側に連結される出口部とを備える。
【0018】
上記ミキサでは、入口部と出口部との間に配置される管状体が流路の断面形状が流路に沿って変化するので、試料を分離カラムの一端に充填する前に溶離液と試料とを適宜混合・撹拌することができる。このような撹拌によって得た混合液は、分離カラムの入口部に安定した状態で充填されるので、グラジエント型の液体クロマトグラフィを用いた分析において、近接するピークを有する成分を正確に分離、検出することができる。
【0019】
また、上記ミキサの具体的な態様では、前記管状体が、流路の断面形状が細長くなっている複数のネック部を流路に沿って周期的に有するとともに、隣接するネック部の断面長手方向を流路の延びる方向の回りに所定角度単位で回転させている。この場合、試料と溶離液とを効率よく混合することができる。
【0020】
また、本発明に係る分析装置は、液体クロマトグラフィ用の溶離液に試料を注入する注入装置と、前記注入装置の出口側に接続されるとともに、前記試料を前記溶離液に拡散させる拡散手段と、前記拡散手段の出口側に接続され、前記溶離液とともに一端に充填した試料を前記溶離液を通過させつつ成分に応じて分離する分離カラムと、当該分離カラムの他端から吐出された溶出液の成分を逐次検出する検出手段とを備える。
【0021】
上記分析装置では、試料を分離カラムの一端に充填する前に拡散手段が試料を溶離液に拡散させるので、このような拡散によって得た混合液は、分離カラムの入口部に安定した状態で充填され、近接するピークを有する成分を正確に分離、検出することができる。
【0022】
また、上記ミキサの具体的な態様では、前記拡散手段が、流路の断面形状が流路に沿って変化する管状体を有する。この場合、簡単な構造の管状体によって試料を溶離液に拡散させつつ適宜撹拌することができる。
【0023】
【発明の実施の形態】
〔第1実施形態〕
図1は、本発明の第1実施形態に係る分析方法を実施するための分析装置を概念的に説明するブロック図である。
【0024】
図示の分析装置10は、グラジエント型の高速液体クロマトグラフィの装置であり、溶離液の組成を経時的に変化させて成分分離及び成分分析を行うことができる。この分析装置10は、複数の異なる溶媒A、Bを所望の比率で混合して溶離液SSを生成する溶離液供給装置21と、溶離液供給装置21の出口側に接続されて溶離液SSに分析対象である試料SAを注入する試料注入装置23と、試料注入装置23の出口側に接続されて試料SAと溶離液SSとを補助的に混合する補助ミキサ25と、補助ミキサ25の出口側に接続されて試料SAと所定量の溶離液SSとをより均一に混合するミキサ27と、ミキサ27を経た溶離液SS及び試料SAの混合液Mが一端29aから注入される分離カラム29とを備える。さらに、分析装置10は、分離カラム29の他端29bに配管を介して接続されて試料SAから分離された各成分の蛍光や吸光を検出するディテクタ部31と、ディテクタ部31で検出した蛍光や吸光に対応する信号を解析して分離成分の濃度等を計測する演算処理部33と、ディテクタ部31を経た溶出液Sを収容するタンク35とを備える。
【0025】
溶離液供給装置21は、溶媒A、Bの供給源や圧送用のポンプを有しており、溶媒A、Bを所望の比率で混合した溶離液SSを高圧で出射する。また、溶離液供給装置21は、溶媒A、Bの混合比を適宜変更することができ、試料SAを分離カラム29に充填した後に分離カラム29に供給する溶離液SSの組成比を連続的或いは段階的に変更することができる。これにより、試料SAのグラジエント分析が可能になる。なお、溶媒A、Bは、例えば水やアセトニトリル等の有機溶媒とすることができる。
【0026】
試料注入装置23は、溶離液供給装置21から供給される溶離液SSに試料SAを所望量だけ注入する。溶離液SSに注入する試料SAの量は、他の測定条件等を考慮して適宜適宜変更することができる。なお、試料SAは、分析対象である物質(被検対象)をアセトニトリル等の試料溶媒に溶かしたものである。
【0027】
補助ミキサ25は、流路を延長するための延長管であり、試料注入装置23から供給される溶離液SSと試料SAとを混合してある程度均一化する。この補助ミキサ25は、内径0.25mm程度で250mm〜1500mm程度の長さを有するSUS製の管を螺旋状に形成したものであり、管内で液体を通過させる過程において、この液体すなわち溶離液SS中で試料SAを徐々に拡散させつつ混合することができる。
【0028】
ミキサ27は、流路の断面形状が流路に沿って変化する管状体からなり、管状体内に形成される乱流によって所定量の溶離液SS中における試料SAの均一な混合を達成し、ほぼ均一な組成の混合液Mを分離カラム29の一端29aに供給する。なお、ミキサ27は、補助ミキサ25とともに拡散手段を構成する。
【0029】
図2は、ミキサ27の外観を説明する斜視図であり、図3は、図2のミキサ27の寸法例を説明する図である。また、図4は、図2及び図3に示すミキサ27の縦断面構造を説明する図である。このミキサ27は、内径1mm程度のSUS製の管を加工したものであり、補助ミキサ25に連結される入口部27aと、内部の流路FPの断面形状が流路FPの方向に沿って変化する管状体からなるミキサ本体27bと、分離カラム29側に連結される出口部27cとからなり、総容量50μl程度である。このうち入口部27aと出口部27cは、円形断面の流路を有するが、ミキサ本体27bは、スリット状の細長い流路断面を有するネック部NPを等間隔で形成した構造となっており、隣接するネック部NPは、流路断面の長手方向が互いに直交する方向に延びるようになされている。つまり、ミキサ本体27b中における流路FPの断面は、矩形になっており、その縦横の寸法比が周期的に増減を繰り返すとともに、長手方向が周期的に切り換る。具体的作製例では、ミキサ本体27bの長さを21mmとし、断面形状の変化の周期を6mmとしているので、直交するネック部NPは、8箇所に形成されておりそれらの間隔は3mmとなっている。
【0030】
図5は、ミキサ本体27bの内部における混合・撹拌を説明する図である。ミキサ本体27bの内部では、所定量の溶離液SSと試料SAとからなる液体Lが細長い断面形状を直交する方向に周期的に変化させつつ流動する。このため、ミキサ本体27b内部では液体Lに複雑な圧力が作用して乱流が形成され、液体Lに含まれる溶離液SSと試料SAとを効率よく均一に混合することができる。
【0031】
図1に戻って、分離カラム29は、管状の部材からなり、内部に試料分離用の固定相としてシリカゲル等を封入している。なお、分離カラム29の周囲には温度調節調節用のヒータ(不図示)等が配置されており、分離カラム29内部の温度を一定に保つことができる。
【0032】
また、ディテクタ部31は、検出手段として、分離カラム29の他端29bから吐出される溶出液Sが通過するガラス管路等を備える。このディテクタ部31では、これを通過する溶出液Sに紫外光を照射して蛍光を検出したり、赤外線の吸光度を検出するといった光学的な手法で分離された成分の検出が行われる。
【0033】
演算処理部33は、ディテクタ部31から出力される蛍光や吸光度に対応する信号に適当な処理を施して、溶出液Sに含まれる分離成分の濃度やこれに対応する数値をリテンションタイムとの相関として記録、表示する。
【0034】
タンク35は、ディテクタ部31で分析を終了した溶出液Sを回収するためのものであり、リテンションタイムを考慮してタンク35を切り換えれば、溶出液Sを成分ごとに精密に分離することもできる。
【0035】
以下、図1に示す分析装置10の動作について説明する。まず、溶離液供給装置21を動作させて、グラジエント分析における基底状態に対応する溶離液SSを一定流量で試料注入装置23、さらには分離カラム29に導入する。例えば溶媒A、Bが水及びアセトニトリルである場合、基底状態の溶離液SSは水が主要な成分となる。
【0036】
この後、適当なタイミングで試料注入装置23を介して溶離液SSに試料SAを所望量(例えば2μl)だけ注入する。ここで、試料SAは、例えばアセトニトリルのみからなる試料溶媒に被検対象を溶かし込むことによって調整されたものである。このように、試料SAをアセトニトリルのみからなる試料溶媒で調整するのは、試料SAに含まれる被検対象が水によって分解作用を受けやすい場合を考慮したものであり、特定種類の被検対象については、その分析条件が試料SAの調整方法、試料注入量等に関して基準書に詳細に規定されていて、これらを簡単に変更できないからである。
【0037】
以上のような注入により、試料SAが溶離液SSに送り出されて補助ミキサ25やミキサ27を通過する。補助ミキサ25を通過する際に、注入された試料SAは、周囲の溶離液SSに徐々に拡散し緩やかな混合が行われる。次に、ミキサ27を通通過する際に、試料SAは、特にミキサ本体27bで溶離液SSと十分に混合され、ほぼ均一な混合液Mが得られる。ここで、混合液Mは、例えばアセトニトリルのみからなる試料溶媒に被検対象を溶かし込むことによって得た試料SAと、ほぼ水からなる溶離液SSとを混合して得たものであり、上記のような補助ミキサ25及びミキサ27を用いることにより、被検対象を例えば水:アセトニトリル=1:1の溶媒に溶かした場合に近い状態とすることができる。
【0038】
ミキサ27を出射した混合液Mは、その後試料注入装置23から圧送される溶離液SSに押し出されて分離カラム29の一端29aに導入される。これにより、試料SAの分離カラム29への充填が完了する。
【0039】
その後も、溶離液供給装置21からの溶離液SSを分離カラム29に供給しつづけることにより、分離カラム29の一端29aに充填された混合液Mすなわち試料SAが成分ごとに徐々に分離しつつ分離カラム29の他端29bに移動する。このような移動により、試料SAが分離カラム29中で成分ごとのバンドに分離され、特定の標準物質やその類縁物質等の精密な分離が可能になる。この際、溶離液SSは、グラジエント分析のために徐々にその組成を変化させる。例えば、溶離液SS中の水の濃度を低下させアセトニトリルの濃度を増加させる。これにより、試料SAの分離条件をある程度の任意性をもって制御することができるので、迅速で高精度の測定結果を得ることができる。すなわち、被検対象である溶質の極性差が大きい場合に、当初水が多い分離液で分離カラム29に保持されにくい極性の高い化合物を分離し、その後次第にアセトニトリルの比率を増加させて比較的極性の低い化合物を分離することができる。
【0040】
なお、上記の補助ミキサ25及びミキサ27による拡散・希釈が過剰な場合、分離カラム29の一端29aに充填される試料SAの濃度が希釈されだけでなく、混合液Mとして広いバンドを有することになるので、分離カラム29による分離ピークのバンド幅が広がって、成分分離の精度が却って低下する場合もある。そこで、補助ミキサ25及びミキサ27の寸法及び形状を調節して、これらによる拡散、希釈が過剰にならない範囲で、試料SAと溶離液SSの混合を行う。
【0041】
一方、上記の補助ミキサ25及びミキサ27による拡散・希釈が全くない場合、基底状態にあって水に近い組成の溶離液SSで安定している分離カラム29に、アセトニトリル等の有機溶媒のみにて調整した試料SAが充填されることになる。この場合、分離カラム29の一端29aに充填された試料SAは、あたかも移動相すなわち溶離液SSのように振舞う。つまり、本来は分離カラム29の一端29aに濃縮されるべき溶質すなわち被検物質がアセトニトリル等の有機溶媒のバンドとともに分離カラム29中で押し出されるように移動して各成分の溶出が早まって、特にリテンションタイムの短い成分を含有する被検対象(例えば特定種類の標準物質の類縁物質等)の分離が困難になる。
【0042】
これに対し、上記実施形態のような補助ミキサ25及びミキサ27を分離カラム29の一端29aに近接して配置した場合、試料SAから極性の低い成分を分離する際に得られる各ピーク形状の鋭さが改善され、ピーク形状の再現性も高まる。従来、試料SAはなるべく高濃度のバンドにして分離カラム29に充填することが望ましいと考えられていたが、本実施形態のようにミキサ27等を用いて試料SAのバンドを強制的に一定範囲でブロードにすることで、却って測定精度や分離精度が高まる場合があることが判明した。
〔第2実施形態〕
以下、第2実施形態に係る分析方法等を実施するための分析装置について説明する。第2実施形態の分析方法等は、第1実施形態の分析方法等で用いるミキサ27を変更したものであり、ここでは、改良したミキサについてのみ説明する。
【0043】
図6は、ミキサ127の外観を説明する斜視図であり、図7は、図6のミキサ127の寸法例を説明する図である。
【0044】
このミキサ127も、内径1mm程度のSUS製の管を加工したものであり、図1の補助ミキサ25に連結される入口部127aと、内部の流路FPの断面形状が流路FPの方向に沿って変化するミキサ本体127bと、分離カラム29側に連結される出口部127cとからなる。このうち入口部127aと出口部127cは、円形断面の流路を有するが、ミキサ本体27bは、スリット状の細長い流路断面を有する6つのネック部NP1〜NP6を等間隔で形成した構造となっており、隣接する一対のネック部NP1及びNP2(NP2及びNP3、NP3及びNP4、…)は、流路断面の長手方向が60°ずれた方向に延びるように形成されている。この結果、ミキサ本体127b中における流路断面は、その矩形状の縦横の寸法比が増減を繰り返し、その断面長手方向が60°ずつ周期的に切り換る。具体的作製例では、ミキサ本体127bの長さを15mmとし、隣接するネック部NPの間隔を2.5mmとした。
【0045】
図8は、ミキサ本体127bを流路に沿った軸方向から見た形状を説明する図である。ネック部NP2は、ネック部NP1に対して時計方向に60°回転して形成されており、ネック部NP3は、ネック部NP2に対して時計方向に60°回転して形成される。この結果、ミキサ本体127b内部の流路中CHでは、を試料SAと溶離液SSとを含む液体が旋回するように断面形状を変化させながら流動することになり、試料SAと所定量の溶離液SSとを効率よく均一に混合することができる。なお、実験的には、流路断面の長手方向の角度ずれの単位を60°とすることで、溶離液SSと試料SAの混合効率を高めることができ高い均一性が得られることが分かった。すなわち、隣接する断面長手方向の角度ずれを第1実施形態のように90°とする場合から徐々に減少させて効果を試したが、角度ずれを60°とした場合に、分析において最もシャープなピークが得られた。
【0046】
以下、具体的な実施例について説明する。分析装置10としては、図1に示すような構造のものを用いた。ただし、分離カラム29の一端29a側には、第1実施形態のミキサ27でなく第2実施形態で説明したミキサ127を用いた。
【0047】
図9〜14は、ある標準物質の類縁物質の分析における補助ミキサ25やミキサ127の効果を説明するグラフである。図9は、補助ミキサ25やミキサ127を特に設けない比較例であり、横軸はリテンションタイム(min)を示し、縦軸は強度を示す。この場合、試料注入装置23から分離カラム29の一端29aまでの配管長は250mmとなっている。図10は、ミキサ127を設けた実施例の場合であり、試料注入装置23から分離カラム29の一端29aまでの配管長は250mmとなっている。この場合、図9の比較例よりもピークがシャープになり、微小なピークが現れる。また、図11は、補助ミキサ25のみを設けた場合であり、試料注入装置23から分離カラム29の一端29aまでの配管長は1000mmとなっている。この場合、図9の比較例よりもピークがシャープになる。図12は、補助ミキサ25及びミキサ127を設けた場合であり、試料注入装置23から分離カラム29の一端29aまでの配管長は1000mmとなっている。この場合、図11の場合よりもさらにピークがシャープになり、微小なピークが現れる。図13は、長めの補助ミキサ25のみを設けた場合であり、試料注入装置23から分離カラム29の一端29aまでの配管長は1500mmとなっている。この場合、図11の比較例よりもさらにピークがシャープになる。図14は、長めの補助ミキサ25及びミキサ127を設けた場合であり、試料注入装置23から分離カラム29の一端29aまでの配管長は1500mmとなっている。この場合、図13の場合よりもさらにピークがシャープになり、微小なピークが現れる。上記実施例では、溶媒Aとして10%アセトニトリル水溶液にTFAを0.005%添加したものを用い、溶媒BとしてアセトニトリルにTFAを0.005%添加したものを用いた。また、分離カラム29に供給する溶離液SSの流量を1.0ml/minとし、分離カラム29の温度を40℃とし、試料SAの注入量を20μlとした。また、溶出液Sの検出には、240nmの紫外吸収を用いた。
【0048】
以上をまとめると、ミキサ127を設けることによって、メインピーク(リテンションタイム19.496min)に対し、相対リテンションタイム0.98minにおけるピーク形状の分離及び改善が達成されていることが分かる。また、上記メインピークの面積値は、ミキサ127の装着の有無に関わらずほぼ等しいが、ピークの高さがミキサ127を装着することによって約1.5倍となり、ピーク形状がシャープ化することが分かる。その他のピークに関しても、ミキサ127を装着することによってピーク形状がシャープになっており、補助ミキサ25の付加によってピークの高さがさらに増加している。
【0049】
図16、17は、参考のため、図9〜14に示す類縁物質に対応する標準物質の分析を説明するグラフである。図16は、補助ミキサ25のみを設けた場合であり、試料注入装置23から分離カラム29の一端29aまでの配管長は1500mmとなっている。図17は、補助ミキサ25及びミキサ127を設けた場合であり、試料注入装置23から分離カラム29の一端29aまでの配管長は1500mmとなっている。
【0050】
以上実施形態に即して本発明を説明したが、本発明は上記実施形態に限定されるものではない。例えば、ミキサ27、127の形状や寸法は、用途に応じて適宜変更することができる。特にネック部NPの間隔やずれ角を一定とする必要はなく、例えば不規則な間隔でネック部NPを配置し、或いはずれ角を90°や60°に限らずランダムに設定することも可能である。
【0051】
また、上記実施形態では、試料SAをアセトニトリルで調整した場合について説明したが、他の溶媒で調整した試料であっても、溶離液SSと親和性があれば上記実施形態と同様の効果が得られる。同様に、溶離液SSの種類やグラジエント分析における組成変更のレートも目的や用途に応じて適宜変更することができる。
【0052】
【発明の効果】
以上の説明から明らかなように、本発明に係る分析方法や分離方法等によれば、試料を分離カラムの一端に充填する前に溶離液に拡散させることになるので、このような拡散によって得た混合液は、分離カラムの入口部に安定した状態で充填され、近接するピークを有する成分を正確に分離、検出することができる。
【図面の簡単な説明】
【図1】第1実施形態に係る分析方法を実施するための分析装置を概念的に説明するブロック図である。
【図2】ミキサの外観を説明する斜視図である。
【図3】図2のミキサの寸法例を説明する図である。
【図4】図2及び図3に示すミキサの縦断面構造を説明する図である。
【図5】ミキサ内部における撹拌を説明する図である。
【図6】ミキサの外観を説明する斜視図である。
【図7】図2のミキサの寸法例を説明する図である。
【図8】ミキサの流路を説明する図である。
【図9】補助ミキサやミキサの効果を説明するグラフである。
【図10】補助ミキサやミキサの効果を説明するグラフである。
【図11】補助ミキサやミキサの効果を説明するグラフである。
【図12】補助ミキサやミキサの効果を説明するグラフである。
【図13】補助ミキサやミキサの効果を説明するグラフである。
【図14】補助ミキサやミキサの効果を説明するグラフである。
【図15】標準物質の分析を説明するグラフである。
【図16】標準物質の分析を説明するグラフである。
【符号の説明】
10 分析装置
21 溶離液供給装置
23 試料注入装置
25 補助ミキサ
27,127 ミキサ
27a 入口部
27b ミキサ本体
27c 出口部
29 分離カラム
29a 一端
29b 他端
31 ディテクタ部
33 演算処理部
35 タンク
A,B 溶媒
M 混合液
NP ネック部
S 溶出液
SA 試料
SS 溶離液

Claims (12)

  1. 液体クロマトグラフィを利用することにより、溶離液の組成を変化させつつ試料の成分を分析する分析方法であって、
    溶離液への試料の注入に際して、前記試料を前記溶離液に拡散させる工程と、
    前記溶離液に前記試料を拡散させた混合液を分離カラムの一端に充填する工程と、
    前記分離カラムの一端に溶離液を供給しつつ当該分離カラムの他端から吐出された溶出液の成分を逐次検出する工程と
    を備える分析方法。
  2. 前記試料を前記溶離液に拡散させる工程で、流路の断面形状が流路に沿って変化する管状体を用いて前記試料と前記溶離液とを混合することを特徴とする請求項1記載の分析方法。
  3. 前記管状体は、流路の断面形状が細長くなっている複数のネック部を流路に沿って周期的に有するとともに、隣接するネック部の断面長手方向を流路の延びる方向の回りに所定角度単位で回転させていることを特徴とする請求項2記載の分析方法。
  4. 前記所定角度は、60゜であることを特徴とする請求項3記載の分析方法。
  5. 前記管状体は、円形断面の流路を有する直管を軸方向に沿った周期的な位置で押しつぶすように変形させることによって形成されることを特徴とする請求項2から請求項4のいずれか記載の分析方法。
  6. 試料を注入した前記溶離液を、所定長以上の延長管に通した後に、前記管状体に供給することを特徴とする請求項2から請求項5のいずれか記載の分析方法。
  7. 試料を注入した前記溶離液を、前記管状体に供給した後に、所定長以上の延長管に通すことを特徴とする請求項2から請求項5のいずれか記載の分析方法。
  8. 液体クロマトグラフィを利用することにより、溶離液の組成を変化させつつ試料を成分に分離する分離方法であって、
    溶離液への試料の注入に際して、前記試料を前記溶離液に拡散させる工程と、
    前記溶離液に前記試料を拡散させた混合液を分離カラムの一端に充填する工程と、
    前記分離カラムの一端に溶離液を供給しつつ当該分離カラムの他端から溶出液を吐出させる工程と
    を備える分離方法。
  9. 液体クロマトグラフィ用の溶離液に試料を注入するための注入装置側に連結される入口部と、
    流路の断面形状が流路に沿って変化する管状体と、
    溶離液を通過させつつ試料を成分に応じて分離するための分離カラム側に連結される出口部と
    を備えるミキサ。
  10. 前記管状体は、流路の断面形状が細長くなっている複数のネック部を流路に沿って周期的に有するとともに、隣接するネック部の断面長手方向を流路の延びる方向の回りに所定角度単位で回転させていることを特徴とする請求項9記載のミキサ。
  11. 液体クロマトグラフィ用の溶離液に試料を注入する注入装置と、
    前記注入装置の出口側に接続されるとともに、前記試料を前記溶離液に拡散させる拡散手段と、
    前記拡散手段の出口側に接続され、前記溶離液とともに一端に充填した試料を前記溶離液を通過させつつ成分に応じて分離する分離カラムと、
    当該分離カラムの他端から吐出された溶出液の成分を逐次検出する検出手段と
    を備える分析装置。
  12. 前記拡散手段は、流路の断面形状が流路に沿って変化する管状体を有することを特徴とする請求項11記載の分析装置。
JP2002074555A 2002-03-18 2002-03-18 分析方法、分離方法、ミキサ、及び分析装置 Expired - Fee Related JP3913082B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002074555A JP3913082B2 (ja) 2002-03-18 2002-03-18 分析方法、分離方法、ミキサ、及び分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002074555A JP3913082B2 (ja) 2002-03-18 2002-03-18 分析方法、分離方法、ミキサ、及び分析装置

Publications (2)

Publication Number Publication Date
JP2003270226A JP2003270226A (ja) 2003-09-25
JP3913082B2 true JP3913082B2 (ja) 2007-05-09

Family

ID=29203924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002074555A Expired - Fee Related JP3913082B2 (ja) 2002-03-18 2002-03-18 分析方法、分離方法、ミキサ、及び分析装置

Country Status (1)

Country Link
JP (1) JP3913082B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4690864B2 (ja) * 2005-11-11 2011-06-01 日本曹達株式会社 分析方法、分離方法、ミキサ、及び分析装置
DE102008037008B3 (de) * 2008-08-08 2010-04-08 Dionex Softron Gmbh Mischvorrichtung für die Flüssigkeitschromatographie
IL253336A0 (en) * 2017-07-05 2017-09-28 Koren Mordechai Liquid handling system and method
JP7276809B2 (ja) * 2019-02-01 2023-05-18 山善株式会社 分取液体クロマトグラフ方法、分取用液体クロマトグラフ装置及び分取用液体クロマトグラフ装置制御用プログラム

Also Published As

Publication number Publication date
JP2003270226A (ja) 2003-09-25

Similar Documents

Publication Publication Date Title
Vanderlinden et al. Effect of pre-and post-column band broadening on the performance of high-speed chromatography columns under isocratic and gradient conditions
US8104330B2 (en) Method and apparatus for analysis by liquid chromatography
Prüß et al. Extracolumn band broadening in capillary liquid chromatography
Steiner et al. Instrumentation for capillary electrochromatography
JP2005172829A (ja) 移動相の再循環機能を有するクロマトグラフシステム
Chocholouš et al. Fast simultaneous spectrophotometric determination of naphazoline nitrate and methylparaben by sequential injection chromatography
JP3865119B2 (ja) 移動相グラジエント装置及びそれを用いた高速液体クロマトグラフ
JP3913082B2 (ja) 分析方法、分離方法、ミキサ、及び分析装置
Koblová et al. Simple automated generation of gradient elution conditions in sequential injection chromatography using monolithic column
Kubáň et al. Flow/sequential injection sample treatment coupled to capillary electrophoresis. A review
Tangen et al. Microconcentric Nebulizer for the Coupling of Micro LiquidChromatography and Capillary Zone Electrophoresis With Inductively CoupledPlasma Mass Spectrometry
US6581442B1 (en) Splitted tubing apparatus for gradient high performance liquid chromatography
US7229551B2 (en) Diffusion promoting device for low flow velocity gradient high performance liquid chromatography
Kamarei et al. Accurate measurements of frontal analysis for the determination of adsorption isotherms in supercritical fluid chromatography
CN105784854A (zh) 一种检测牛磺熊去氧胆酸中有关物质的方法
Gritti The Mass Transfer Mechanism of Columns Packed With Sub-3 μ m Shell Particles and Its Reproducibility for Low-and High-Molecular Weight Compounds
JP4690864B2 (ja) 分析方法、分離方法、ミキサ、及び分析装置
CN109884235A (zh) 卡马西平的高效液相检测方法
Han et al. A pressure-driven capillary electrophoretic system with injection valve sampling
JP7388206B2 (ja) 液体クロマトグラフおよび分析方法
Wada et al. Development of tube radial distribution chromatography based on phase-separation multiphase flow created via pressure loss
CN104897818A (zh) 一种同时测定比卡鲁胺中6种有关物质的uplc方法
JP2936289B2 (ja) 試料溶液の希釈法
JP2006003203A (ja) 液体クロマトグラフィー用グラジエントミキサー
Molander et al. Temperature-promoted large-volume solute enrichment in column-switching miniaturized liquid chromatography: Determination of an antioxidant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees