JP3909965B2 - 映像信号周波数変換装置 - Google Patents
映像信号周波数変換装置 Download PDFInfo
- Publication number
- JP3909965B2 JP3909965B2 JP31108898A JP31108898A JP3909965B2 JP 3909965 B2 JP3909965 B2 JP 3909965B2 JP 31108898 A JP31108898 A JP 31108898A JP 31108898 A JP31108898 A JP 31108898A JP 3909965 B2 JP3909965 B2 JP 3909965B2
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- signal
- video signal
- video
- clock
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Picture Signal Circuits (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Controls And Circuits For Display Device (AREA)
Description
【発明の属する技術分野】
この発明は、映像表示装置に入力されるデジタル映像信号の周波数を変換して、低減された信号周波数で出力する映像信号周波数変換装置に関する。
【0002】
【従来の技術】
近年、映像表示装置のデジタル化が進み、それに伴って入力映像信号の周波数を映像表示装置の周波数に変換する技術が必要になった。これは、映像表示装置への入力映像信号の解像度が高くなり、解像度とともに映像周波数も高くなってきているからである。たとえば、DLP(Digital Light Processing)等のデジタル映像表示装置では、その動作周波数が入力映像信号の周波数ほど高くないために、映像表示装置に入力される映像信号の信号周波数を変換して、映像周波数のギャップを埋める必要がある。
【0003】
図8は、従来の周波数変換装置の構成を示すブロック図である。図8において、1はアナログ映像信号S1をデジタル映像信号S2に変換するA/D変換器、11、12はフレームメモリ、13、14は電子スイッチ等の切り替えスイッチ、3はPLL発振器である。このPLL発振器3には水平同期信号Hsが供給され、ここから書き込みサンプリング用のクロック信号(書き込みクロック)K1をA/D変換器1に出力している。
【0004】
4はフレームメモリ11,12へ映像を書き込むための書き込み制御回路である。この書き込み制御回路4は、水平同期信号Hs、垂直同期信号Vs及び書き込みクロックK1が供給され、フレームメモリ11,12に対する書き込み制御信号C1を作る。書き込み制御信号C1は、切り替えスイッチ14を介してフレームメモリ11,12のいずれかに供給されるとともに、デジタル映像信号S2が切り替えスイッチ13を介して、フレームメモリ11,12のいずれかに書き込まれる。
【0005】
5は読み出し側のPLL発振器、6はフレームメモリ11,12から映像信号S3を読み出すための読み出し制御回路、9は映像表示装置である。読み出し制御回路6では、PLL発振器5からのクロック信号(読み出しクロック)K2によって、読み出し側の水平同期信号Hs’と垂直同期信号Vs’を作るとともに、フレームメモリ11,12からの読み出し制御信号C2を作成している。表示用のデジタル映像信号S3をフレームメモリ11,12から読み出すために、現在、デジタル映像信号S2が書き込まれているフレームメモリとは異なるフレームメモリに、切り替えスイッチ14を介して読み出し制御信号C2が供給されている。また、フレームメモリ11,12から読み出されたデジタル映像信号S3は、映像表示装置9に供給される。この映像表示装置9へは、読み出し制御回路6から水平同期信号Hs’と垂直同期信号Vs’とが供給されている。
【0006】
ところで、映像表示装置のデジタル化に伴って、従来のアナログRGBインターフェイスからデジタルRGBインターフェイスに移行してきている。たとえば、LVDS(Low Vo1tage Differential Signaling)のようなデジタルインターフェイスにはクロック信号も含まれており、信号源との接続もデジタル化され、従来のサンプリング用のPLL発振器3を必要としない。
【0007】
また、表示解像度の高精細化に伴い映像信号の周波数が高くなってきているので、上記デジタルインターフェイスの伝送速度を上げるために、互いに独立したクロック信号を含んだデジタル映像信号として2系統以上の映像蓄積手段に分割して並列に入力される場合もある。たとえば、偶数画素と奇数画素を並列に伝送することによって、映像周波数を見かけ上2倍にすることができる。
【0008】
【発明が解決しようとする課題】
以上のような従来の周波数変換装置は、2つのフレームメモリ11,12を用いて構成されているため、フレーム変換を行わずに、入出力の映像信号周波数を変換するだけでよい場合には、装置価格が高くなる欠点があった。
【0009】
また、2系統以上の映像蓄積手段に分割して並列に入力された映像信号の周波数変換を行う映像信号周波数変換装置では、クロックも2系統必要とするので、偶数画素のクロックと奇数画素のクロックとの時間差(位相差)が生じる。このため、偶数画素のクロックを用いて、Dラッチ等で奇数画素のRGBデータを記憶する場合、セットアップ時間やホールドタイムの裕度によっては、誤ったデータとしてラッチされてしまうという問題があった。
【0010】
この発明は、上述した課題を解決するためになされたもので、その目的は、安価に入出力の映像信号周波数変換を行うことができる映像信号周波数変換装置を提供することである。
【0011】
また、2画素並列にデジタル映像信号を受信する場合に、クロック間の時間差(クロックスキュー)を吸収する映像信号周波数変換装置を提供することを目的としている。
【0012】
【課題を解決するための手段】
請求項1に記載した映像信号周波数変換装置は、入力されるクロック信号を含んだデジタル映像信号の周波数を変換して、低減された信号周波数で映像表示装置に出力する映像信号周波数変換装置において、デジタル映像信号の垂直同期信号の周波数と水平同期信号の周波数を測定する周波数測定手段と、デジタル映像信号の1水平走査線期間に含まれる水平帰線期間を除いた有効映像の容量に対して、前記入力されるデジタル映像信号の周波数に対する出力周波数の比を1から減算した割合の前記容量分だけ少ない映像記憶容量を有する映像蓄積手段と、デジタル映像信号の1水平走査線期間中の映像有効期間と水平帰線期間に跨る信号幅を有する読み出し制御信号により、周波数測定手段での測定結果に基づいて映像蓄積手段の映像信号を前記映像表示装置へ読み出すタイミングを書き込みのタイミングに対して1クロック以上遅らせて設定する設定手段とを備えたものである。
【0013】
また、請求項2の発明に係る映像信号周波数変換装置は、請求項1に記載のデジタル映像信号が、互いに独立したクロック信号を含んだデジタル映像信号として2系統以上の映像蓄積手段に分割して並列に入力され、映像信号の周波数変換を行う映像信号周波数変換装置であって、映像蓄積手段は、それぞれのクロック信号に同期した書き込み制御信号に基づいて映像信号を蓄積するものであり、設定手段は、クロック信号のいずれかに同期して読み出し制御信号を設定するものである。
【0015】
また、請求項3の発明に係る映像信号周波数変換装置は、周波数測定手段が、プログラム処理による周期測定モードとパルス数カウントモードを備えたマイクロコンピュータであって、デジタル映像信号の垂直同期信号の周期、及びその1垂直同期期間内の水平ライン数を測定して読み出し制御信号の位相を設定することを特徴とするものである。
【0016】
請求項4の発明に係る映像信号周波数変換装置は、映像蓄積手段が、入力映像信号に対してラインメモリ構成されたFIFOである。
【0017】
請求項5の発明に係る映像信号周波数変換装置は、設定手段が、周波数測定手段での測定結果に基づいて映像蓄積手段の書き込みクロック及び読み出しクロックを所定の周波数で出力するPLL発振器を備え、書き込みクロックに対して読み出しクロックの周波数を、読み出し制御信号により規定される映像有効期間に応じて低減するものである。
【0018】
【発明の実施の形態】
以下、添付した図面を参照して、この発明の実施の形態について説明する。
【0019】
実施の形態1.
最初に、実施の形態1の映像信号周波数変換装置の構成について、図1乃至図4を用いて説明する。図1は、この発明の実施の形態1である映像信号周波数変換装置の構成を示すブロック図である。
【0020】
図1において、1はアナログ映像信号S1をデジタル映像信号S2に変換するA/D変換器、2はデジタル映像信号S2の1水平走査線期間に含まれる有効映像に対応する映像記憶容量を有するFIFOメモリ(First In First Out Memory;以下、FIFOという。)、3はFIFO2への書き込みクロックK1を発生するPLL(Phased Locked Loop)発振器(以下、PLLという。)、4はFIFO2への書き込み制御回路、5はFIFO2からの読み出しクロックK2を発生するPLL、6はFIFO2からの読み出し制御回路、7は水平同期信号Hsを遅延させるための遅延回路、8は垂直同期信号Vsと水平同期信号Hsの周波数を測定し、その測定結果に基づいて各回路ヘパラメータを設定するためのマイコン、9は映像表示装置、10はマイコン8の発振素子であり、周期測定のための基準クロックK0を発生する発振素子を兼ねている。
【0021】
次に、上述の映像信号周波数変換装置の動作について説明する。
【0022】
図2は、実施の形態1の動作を説明するタイミング図である。同図(a)に示すHsは周期THの水平同期信号であり、この水平同期信号Hsが書き込み制御回路4に入力されている。同図(b)に示すデジタル映像信号S2は、A/D変換回路1に入力されたアナログ映像信号S1がA/D変換されたものであり、同図(c)に示す書き込み制御信号C1に従ってA/D変換回路1からFIFO2に書き込まれる。この書き込み制御信号C1は、水平同期信号Hsの1周期TH内で、水平帰線期間Tws[sec.]の経過後の書き込み開始時刻twsに立ち上がり、デジタル映像信号S2の1水平期間内での有効エリアに対応する有効映像期間Twに等しい信号幅を有している。
【0023】
また、FIFO2には同図(d)に示す読み出し制御信号C2が供給され、この読み出し制御信号C2に同期して、FIFO2から同図(e)に示すデジタル映像信号S3が映像表示装置9に読み出される。この読み出し制御信号C2は、書き込み制御信号C1より更にオフセット時間Toffsetだけ遅れた読み出し開始時刻trsに立ち上がり、1水平走査線期間中の映像有効期間と水平帰線期間に跨る信号幅Trを有している。同図(f)は、映像表示装置9へ供給されている水平同期信号Hs’であり、この水平同期信号Hs’は、FIFO2から出力されるデジタル映像信号S3の遅れに合わせて、水平同期信号Hsを遅延回路7で遅らせることで形成されるものである。
【0024】
図3は、デジタル映像信号の書き込み動作と読み出し動作を説明するタイミング図である。同図(a)〜(d)は、書き込みクロックK1、デジタル映像信号S2、書き込み制御信号C1、およびFIFO2への書き込みデータDを示すものである。図において、書き込み制御信号C1がHighであり、かつFIFO2への書き込みクロックK1が立ち上がるタイミングでデジタル映像信号S2がFIFO2に書き込まれる。
【0025】
図3(e)〜(g)は、読み出しクロックK2、読み出し制御信号C2、およびFIFO2から出力されるデジタル映像信号S3を示すものである。図において、FIFO2への読み出し制御信号C2がHighであり、かつFIFO2への読み出しクロックK2の立ち上がりでFIFO2からデジタル映像信号S3が映像表示装置9に出力される。
【0026】
次に、図3により書き込み制御信号C1と読み出し制御信号C2の時間関係について説明する。
【0027】
映像表示装置の動作周波数に合わせるために、デジタル映像信号S2の信号周波数を変換して、低減された信号周波数で映像表示装置9に出力する場合、FIFO2の書き込みクロックK1の周波数fwとFIFO2の読み出しクロックK2の周波数frを比較したとき、
fw>fr
の関係式が成立する。その場合に、FIFO2への映像信号S2を1画素以上書き込んだ後であれば、FIFO2への読み出し制御信号C2をHighにしてもデジタル映像信号S3は正しく読み出され、かつFIFO2の読み出しが書き込みを追い越すことはない。
【0028】
なお、入力される映像信号S1が例えばXGA規格の表示データであることが判明している場合には、FIFO2の書き込み制御信号C1がHighとなる書き込み時間Twを、1024クロックの有効映像期間に対応した一定期間に設定できる。ここでは、書き込み制御信号C1を書き込みクロックK1の1024クロック幅分だけHighにしている。同様に、FIFO2に供給される読み出し制御信号C2の幅も、読み出しクロックK2の1024クロック幅分だけHighにすればよい。但し、上述したように、読み出しクロックK2の周波数は書き込みクロックK1とは異なるものである。
【0029】
このように実施の形態1の映像信号周波数変換装置では、上記書き込み制御信号C1と読み出し制御信号C2がHighとなる時点(立ち上がりのタイミング)を、互いに1画素内の範囲まで極力近付けることによって、1水平走査線期間の帰線期間を含めてFIFO2から出力されるデジタル映像信号S3の周波数を落とすように構成している。そのために、図2に示すように、水平同期信号Hsを起点とする、書き込み制御信号C1と読み出し制御信号C2の立ち上がりのタイミングを、それぞれ書き込み開始時刻tws及び読み出し開始時刻trsとしてマイコン8により可変設定している。
【0030】
ところで、この実施の形態1では、従来装置と同様に、アナログ映像信号S1をデジタル映像信号S2に変換する際のサンプリング用の書き込みクロックK1を、A/D変換器1によって発生する構成であり、そのためにPLL3が用いられている。この実施の形態1が従来装置と異なる点は、デジタルデータを蓄積する映像蓄積手段としてFIFO2が用いられており、このFIFO2で、水平帰線期間を除いた有効エリアの映像データのみを蓄積するように構成したことである。
【0031】
また、FIFO2に対する書き込みクロックK1と読み出しクロックK2とは、それぞれPLL3とPLL5においてそれぞれ所定の分周比となるように設定され、且つ、それらの分周比はマイコン8により任意な値に変更できる構成となっている。さらに、遅延回路7における遅延時間も読み出しクロックK2を1単位時間としてマイコン8により任意な値に設定できる構成となっている。
【0032】
次に、書き込みクロックK1と読み出しクロックK2の分周比について説明する。
【0033】
一般に、映像信号がXGA規格であれば、その解像度は1024(H)×768(V)ドットであるが、水平周波数、垂直周波数、映像信号の周波数及び映像信号の開始位置は様々である。したがって、XGA規格による映像信号であって、解像度が判明している場合でも、書き込みサンプリング用のPLL発振器3の分周比と映像信号の開始点を知る必要がある。書き込みサンプリング用のPLL3の分周比Nwについては、例えば画面を見ながら、書き込みクロックK1の分周比を映像信号に合わせ、そこに縦ビートが出ない分周比に設定することが可能である。また、書き込み開始時間Twsに対応するクロック数Nwsについても、同様に画面の左端を見て、映像開始点を映像データが欠けない位置に合わせることによって調整が可能である。いずれにしても、PLL3の分周比の設定値を可変とする回路構成であれば容易に実現できる。
【0034】
次に、図2,図3により読み出し制御回路6からFIFO2に供給される読み出し制御信号C2について説明する。
【0035】
FIFO2に格納される表示データを映像表示装置9ですべて表示する場合には、読み出し幅と書き込み幅とが同一であって、例えばXGA規格の表示データであれば、その幅は1024クロックと一定である。ここで、算出する必要があるのは、図2(d)に示す読み出し制御信号C2の位相を規定する読み出し開始時刻trsである。
【0036】
以下に、読み出し制御信号C2の水平同期信号Hsに対する読み出し開始時間Trsを設定する方法について説明する。
【0037】
図3(a)に示すFIFO2にPLL3から供給される書き込みクロックK1の分周比(クロック数)をNwとし、その値が既知であり、また、図3(c)に示すFIFO2への書き込み制御信号C1のTwsに対応する分周比Nwsも既知であるとする。また、書き込みクロックK1のクロック周波数をfw、水平同期信号Hsの周波数をfHとする。
【0038】
PLL3がロックしている場合、その発振周波数fwは水平同期信号Hsの周波数fHにPLL3の分周比Nwを掛けたものとなり、次の(1)式が成り立つ。
【0039】
ここで、
NVL:1垂直同期期間の水平ライン数
TV:1垂直同期期間の周期[sec.]である。
【0040】
(1)式は水平同期信号Hsの周波数fHに代えて、垂直同期信号Vsの周期TVと水平ライン数NVLでも代用できることを示している。
【0041】
図2において、FIFO2への書き込み制御信号C1の書き込み開始時刻tws[sec.]までの時間は、図3(a)に示す書き込みクロックK1のクロック数Nwsによって表現される。したがって、次の(2)式が成り立つ。
【0042】
Tws=Nws・1/fw ・・・(2)
(2)式では、クロック数Nwsが既知であり、(1)式では分周比Nwも既知なので、NVLとTVの値を知ることが出来れば、(1)式の発振周波数fwをここに代入することで開始時間Twsが算出できる。
【0043】
既に述べたように、FIFO2からのデータの読み出し開始位置は、FIFO2へのデータの書き込み開始位置より書き込みクロックK1の1クロック分の遅れがあれば十分である。そこで、読み出し制御信号C2による読み出し開始までの時間Trsは、次の(3)式によって示すことができる。
【0044】
Trs=Tws+1/fw ・・・(3)
なお、この(3)式の右辺第2項の1/fwは、図2(c)に示すオフセット時間Toffsetに対応している。
【0045】
ところで、読み出しクロックK2のクロック周波数frは、PLL5の分周比Nrに水平同期信号Hsの周波数fHを掛けたものであり、また、水平同期信号Hsの周波数fHは垂直同期信号Vsの周期TVを水平ライン数NVLで割ったものに等しい。したがって、次の(4)式が成り立つ。
【0046】
fr=Nr・fH
=Nr・(NVL/TV) ・・・(4)
そこで、読み出し制御信号C2の読み出し開始までの時間Trsに含まれる読み出しクロックK2のクロック数Nrsは、次の(5)式により表現することができる。
【0047】
Nrs=Trs・fr
=(Tws+1/fw)・Nr・(NVL/TV) ・・・(5)
この(5)式により示されるクロック数Nrsが最終的に必要となる値である。すなわち、PLL5の分周比Nr、水平ライン数NVL、及び垂直同期信号Vsの周期TVが決まれば、FIFO2から映像信号を読み出すためのタイミングをクロック数Nrsによって決定することができる。
【0048】
次に、PLL5における読み出しクロックK2の分周比Nrについて説明する。
【0049】
分周比Nrは、映像表示装置9へ出力される表示用のデジタル映像信号S3の読み出し制御信号C2と関係する。この読み出し制御信号C2は、DLP等のデジタル表示素子ではブラウン管を用いた表示装置ほど長い帰線期間を必要とせず、水平画素数に対応するクロック数にわずかに余分なクロック数の帰線期間が設定されていれば良い。例えばXGA規格の映像信号では、その水平解像度(水平方向での表示画素数)が1024ドットとされているが、その場合の帰線期間は6クロックあれば十分であり、したがって、分周比Nrは1030クロック程度に設定することができる。一方、XGA規格の映像信号をブラウン管を用いた表示装置で表示するためには、水平帰線期間は、1水平走査線期間のおおよそ2割程度の割合が必要である。この場合、1水平走査線期間のドットクロック数は1280クロックとなる(1024/0.8=1280)。また、XGA規格の場合、水平解像度は1024ドットと決められているが、その他の数値がばらつくことがあるので、1水平走査期間のドットクロック数はおおよそ1250〜1350クロックとなる。このように、デジタル表示装置に対して設定される読み出し側のクロック数は1030程度にまで低減できるので、(1)式に示すFIFO2の書き込みクロックK1の周波数fwと(4)式に示すFIFO2の読み出しクロックK2の周波数frとの関係から、FIFO2からの読み出し速度を十分に低減できることがわかる。
【0050】
つぎに、垂直同期信号Vsの周期TV及び1垂直同期期間内の水平ライン数NVLを測定する方法について説明する。
【0051】
図4は、垂直同期信号Vs、その1垂直同期期間に含まれる周期測定用の基準クロックK0、及び水平同期信号Hsを示す図である。垂直同期信号Vsの周期TVは、たとえば、図4(b)に示す垂直同期信号Vsの1垂直同期期間に含まれるマイコン8の基準クロックK0を計測すればよい。この基準クロックK0は、図1に示すマイコン8と、図示しない周辺回路を用いて実行される周期測定モードにより測定することができる。また、同図(c)に示す水平ライン数NVLについては、垂直同期信号Vsの1周期に含まれる水平同期信号Hsを計数すればよい。その場合でも、同様にマイコン8とその周辺回路で実行されるイベント測定モードを用いて、水平同期信号Hsを計測することができる。
【0052】
つぎに、実施の形態1におけるFIFO2の画像記憶容量について説明する。
【0053】
図5は、1水平同期期間の書き込みと読み出しの関係を示すタイミング図である。同図(b)の書き込み制御信号は、同図(a)に示す水平同期信号Hsに対してTwsだけ遅れて立ち上がり、同図(b)に示すように書き込み制御信号C1が有効画素分に対応する書き込み時間TwだけHighになる。この書き込み時間Twは、FIFO2の書き込みクロックK1の周波数fwと入力映像信号の1水平同期期間の解像度Hresにより、以下の(6)式で表される。
【0054】
Tw=Hres・(1/fw) ・・・(6)
なお、同図(c)の読み出し制御信号C2は、書き込み制御信号C1に対して1クロック遅れてHighになる。図では、書き込み開始位置と読み出し開始位置は一致しているように見えるが、読み出し制御信号C2の立ち上がり部を拡大してみると、書き込み制御信号C1の立ち上がりに対して1クロック遅らせてある。読み出し制御信号C2の立ち上がりを1クロック遅らせることで、データの書き込みが読み出しを追い越すことはないからである。
【0055】
ここで、図5に示すように、書き込み制御信号C1が終了した後、読み出し制御信号C2が終了するまでの期間(=Tr−Tw)に読み出される映像データが、少なくともFIFO2で記憶されていればよい。また、書き込み時間TwにFIFO2に書き込まれる画素数は、1水平期間の解像度Hresに等しく、同じ時間Twの間にFIFO2から読み出される画素数Rtwは、
Rtw=Tw・fr=Hres・(fr/fw) ・・・(7)
である。したがって、FIFO2に必要なバッファー容量Mは、
となる。
【0056】
したがって、下記(9)式のような蓄積容量Mを有するFIFO2を用いて映像信号周波数変換装置を構成することができる。
【0057】
M≧Hres・(1−fr/fw) ・・・(9)
上記(9)式は、例えばXGA規格の映像信号では、水平解像度1024ドット、書き込み周波数65MHz、読み出し周波数60MHzの時は、1024×(1−60/65)で約80画素分の容量で良いことを示している。
【0058】
以上説明したとおり本実施の形態1では、FIFO2の蓄積容量は1水平映像有効期間の解像度Hresに相当するデータ容量よりも少なくても、映像信号周波数の変換が可能である。
【0059】
実施の形態2.
図6は、この発明の実施の形態2である映像信号周波数変換装置の構成を示すブロック図である。
【0060】
実施の形態2の映像信号周波数変換装置は、図1に示す映像信号周波数変換装置と基本的な構成は同一であるが、入力のインターフェイスがデジタル映像信号であって、且つそれぞれ偶数画素と奇数画素とを2画素並列に入力している点で異なる。ここでは、偶数画素と奇数画素のデジタル映像信号Se2、So2の周波数は互いに等しい。ところが、クロック信号も偶数画素と奇数画素で別々に伝送されるために、偶数画素用の書き込みクロックKeと奇数画素用の書き込みクロックKoとの間には位相差がある。そのため、どちらか一方のクロックだけを用いて映像表示する方法では、映像表示装置9に映像データが誤ったタイミングで取り込まれてしまうおそれがあり、このようなクロック間の位相差を吸収する手段が必要であった。
【0061】
上記問題点を解決するために、実施の形態2の映像信号周波数変換装置は、以下のように構成されている。
【0062】
図6において、2eは偶数画素用のFIFO、2oは奇数画素用のFIFO、4eは偶数画素用の書き込み制御回路、4oは奇数画素用の書き込み制御回路である。このように偶数画素用と奇数画素用でそれぞれ独自のFIFO2e,2oと書き込み制御回路4e,4oを備えた構成としている。その他の構成は、図1と同様である。なお、図6の各ブロックに付けた符号は、実施の形態1の図1に合わせている。また、図6の符号中、FIFO2e,2o等のように、偶数画素に対応する部分にはe(even)、奇数画素に対応する部分にはo(odd)によって区分けをしている。
【0063】
そして、偶数画素用の書き込みクロックKeは、偶数画素用の書き込み制御回路4eと偶数画素用のFIFO2eのみに供給され、同様に、奇数画素用のクロックKoは、奇数画素用の書き込み制御回路4oと奇数画素用のFIFO2oのみに供給されている。これに対して、読み出しクロックK2は、偶数画素用のFIFO2eと奇数画素用のFIFO2oに共通して供給されており、これによって映像信号と同時に供給される偶数画素のクロックと奇数画素のクロックに位相差があっても、FIFO2e,2oにおいて確実に吸収できることになる。
【0064】
つぎに、実施の形態2の動作について説明する。
【0065】
図7は、実施の形態2の動作を説明するタイミング図である。同図(a)〜(d)は、FIFO2eへの偶数画素の映像信号の書き込み動作を説明するものであって、デジタル映像信号Se2は書き込み制御信号Ceが立ち上がった後に、書き込みクロックKeに従ってデータD2,D4,D6…の順序でFIFO2eに書き込まれる。また、同図(e)〜(h)は、FIFO2oへの奇数画素の映像信号の書き込み動作を説明するものであって、書き込みクロックKoはクロックKeに対して任意の位相差を有している。したがって、デジタル映像信号So2は、この位相差分だけずれたタイミングで、データD1,D3,D5…の順序でFIFO2eに書き込まれる。
【0066】
このように、偶数画素用のFIFO2eへの書き込みクロックKeと奇数画素用のFIFO2oへの書き込みクロックKoに位相差がある場合、偶数画素と奇数画素の位相にそれぞれ対応するクロック信号でFIFO2e,2oに書き込むので、デジタル映像信号Se2、So2を書き込むまでは上記実施の形態1で説明した1画素方式と同様の処理となる。
【0067】
図7(i)〜(l)は、FIFO2e,2oからデジタル映像信号Se3,So3を読み出す動作を説明するものである。実施の形態1では、FIFO2からのデータの読み出し開始位置は、上記(3)式に示すように、書き込み開始位置より書き込みクロックK1の1クロック分遅れであれば十分であった。ここでは、読み出し制御信号C2を、書き込みクロックKeの2クロック分の遅れ(2/fw)にすれば、偶数画素と奇数画素の映像データDe,DoをFIFO2e,2oに書き込んだ後、クロック間の時間差を吸収して正確にFIFO2e,2oから読み出すことができる。
【0068】
以上のように、映像表示装置9がデジタル化されてきており、信号源との接続もデジタル化が進んできている中で、デジタルインターフェイスの伝送速度を上げるために偶数画素と奇数画素を並列に送る場合に、上述した方法によれば、クロック信号間の位相差を吸収して、安価に入出力の映像信号間の周波数変換を行うことができる。
【0069】
なお、実施の形態2においてもFIFO2e,2oに必要な蓄積容量は、実施の形態1において説明したのと同じ理由から、1水平映像有効期間のデータ容量よりも少なくても映像信号周波数変換が可能である。
【0070】
【発明の効果】
この発明は、以上に説明したように構成されているので、以下に示すような効果を奏する。
【0071】
請求項1に記載の映像信号周波数変換装置によれば、デジタル映像信号の1水平走査線期間に含まれる水平帰線期間を除いた映像有効期間の容量に対して、入力されるデジタル映像信号の周波数に対する出力周波数の比を1から減算した割合の容量分だけ少ない映像蓄積手段から、1水平走査線期間の映像有効期間と水平帰線期間に跨ってデジタル映像信号を読み出すことにより、従来のフレームメモリーを使用した装置に比べて大幅に蓄積容量を減少でき、大幅なコスト削減が図れる。
【0072】
また、請求項2に記載した映像信号周波数変換装置では、請求項1に記載のデジタル映像信号が、互いに独立したクロック信号を含んだデジタル映像信号として2系統以上の映像蓄積手段に分割して並列に入力された場合でも、映像蓄積手段によって2系統以上のクロック信号を分離することによって、クロック信号間の位相差を吸収できる効果がある。
【0074】
請求項3に記載した装置では、周波数測定をマイコンによって行うようにしたので、読み出し制御信号の位相が正確に設定できる。
【0075】
請求項4に記載した装置では、ラインメモリ構成されたFIFOによって、安価に映像蓄積が行える。
【0076】
請求項5に記載した装置では、PLL発振器によって読み出しクロックの周波数を正確に低減できる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1である映像信号周波数変換装置の構成を示すブロック図である。
【図2】この発明の実施の形態1の動作を説明するタイミング図である。
【図3】この発明の実施の形態1の動作を説明するタイミング図である。
【図4】この発明の実施の形態1の動作を説明するタイミング図である。
【図5】この発明の実施の形態1のバッファ記憶容量を説明するタイミング図である。
【図6】この発明の実施の形態2である映像信号周波数変換装置の構成を示すブロック図である。
【図7】この発明の実施の形態2の動作を説明するタイミング図である。
【図8】従来の映像信号周波数変換装置の構成を示すブロック図である。
【符号の説明】
1 A/D変換器、 2 FIFOメモリ、 2a FIFOメモリ、 2bFIFOメモリ、 3 PLL発振器、 4,4a,4b 書き込み制御回路、 5 PLL発振器、 6 読み出し制御回路、 7 遅延回路、 8 マイコン、 9 映像表示装置、 10 発振素子、 11 フレームメモリ、 12 フレームメモリ、 13,14 切り替えスイッチ、 15 発振器。
Claims (5)
- 入力されるクロック信号を含んだデジタル映像信号の周波数を変換して、低減された信号周波数で映像表示装置に出力する映像信号周波数変換装置において、
前記デジタル映像信号の垂直同期信号の周波数と水平同期信号の周波数を測定する周波数測定手段と、
前記デジタル映像信号の1水平走査線期間に含まれる水平帰線期間を除いた有効映像の容量に対して、前記入力されるデジタル映像信号の周波数に対する出力周波数の比を1から減算した割合の前記容量分だけ少ない映像記憶容量を有する映像蓄積手段と、
前記デジタル映像信号の1水平走査線期間中の映像有効期間と水平帰線期間に跨る信号幅を有する読み出し制御信号により、前記周波数測定手段での測定結果に基づいて前記映像蓄積手段の映像信号を前記映像表示装置へ読み出すタイミングを書き込みのタイミングに対して1クロック以上遅らせて設定する設定手段と
を備えたことを特徴とする映像信号周波数変換装置。 - 前記デジタル映像信号が、互いに独立したクロック信号を含んだデジタル映像信号として2系統以上の映像蓄積手段に分割して並列に入力され、映像信号の周波数変換を行う映像信号周波数変換装置であって、
前記映像蓄積手段は、それぞれのクロック信号に同期した書き込み制御信号に基づいて映像信号を蓄積するものであり、
前記設定手段は、前記クロック信号のいずれかに同期して読み出し制御信号を設定するものであることを特徴とする請求項1記載の映像信号周波数変換装置。 - 前記周波数測定手段は、プログラム処理による周期測定モードとパルス数カウントモードを備えたマイクロコンピュータであって、
前記デジタル映像信号の垂直同期信号の周期、及びその1垂直同期期間内の水平ライン数を測定して前記読み出し制御信号の位相を設定したことを特徴とする請求項1又は2に記載の映像信号周波数変換装置。 - 前記映像蓄積手段は、前記入力映像信号に対してラインメモリ構成されたFIFOであることを特徴とする請求項1乃至請求項3のいずれかに記載の映像信号周波数変換装置。
- 前記設定手段は、前記周波数測定手段での測定結果に基づいて前記映像蓄積手段の書き込みクロック及び読み出しクロックを所定の周波数で出力するPLL発振器を備え、
前記書き込みクロックに対して前記読み出しクロックの周波数を、前記読み出し制御信号により規定される映像有効期間に応じて低減することを特徴とする請求項1乃至請求項4のいずれかに記載の映像信号周波数変換装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31108898A JP3909965B2 (ja) | 1998-10-30 | 1998-10-30 | 映像信号周波数変換装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31108898A JP3909965B2 (ja) | 1998-10-30 | 1998-10-30 | 映像信号周波数変換装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000137468A JP2000137468A (ja) | 2000-05-16 |
JP3909965B2 true JP3909965B2 (ja) | 2007-04-25 |
Family
ID=18012994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31108898A Expired - Lifetime JP3909965B2 (ja) | 1998-10-30 | 1998-10-30 | 映像信号周波数変換装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3909965B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108347599A (zh) * | 2018-01-26 | 2018-07-31 | 郑州云海信息技术有限公司 | 一种基于fpga的视频信号有效性判断方法及系统 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3674488B2 (ja) | 2000-09-29 | 2005-07-20 | セイコーエプソン株式会社 | 表示コントロール方法、表示コントローラ、表示ユニット及び電子機器 |
JP2006106533A (ja) * | 2004-10-08 | 2006-04-20 | Victor Co Of Japan Ltd | 画像処理回路 |
WO2018116049A1 (en) * | 2016-12-23 | 2018-06-28 | Semiconductor Energy Laboratory Co., Ltd. | Data conversion circuit and display device |
-
1998
- 1998-10-30 JP JP31108898A patent/JP3909965B2/ja not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108347599A (zh) * | 2018-01-26 | 2018-07-31 | 郑州云海信息技术有限公司 | 一种基于fpga的视频信号有效性判断方法及系统 |
CN108347599B (zh) * | 2018-01-26 | 2019-07-30 | 郑州云海信息技术有限公司 | 一种基于fpga的视频信号有效性判断方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
JP2000137468A (ja) | 2000-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0794525B1 (en) | Pixel conversion apparatus | |
JP2557862B2 (ja) | ビデオ画像収録装置 | |
US4961071A (en) | Apparatus for receipt and display of raster scan imagery signals in relocatable windows on a video monitor | |
JPS62102671A (ja) | 2画面テレビ受像機 | |
JPH0267883A (ja) | ビデオプリンタ信号処理回路 | |
JP3909965B2 (ja) | 映像信号周波数変換装置 | |
KR950009698B1 (ko) | 엔티에스씨/에치디티브이(ntsc/hdtvm) 듀얼 리시버의 라인 트리플러 | |
JP3154190B2 (ja) | 汎用走査周期変換装置 | |
JPS5816381B2 (ja) | コウカイゾウドテレビジヨンジユゾウキ | |
JP3259627B2 (ja) | 走査線変換装置 | |
US20080002065A1 (en) | Image processing circuit, image processing system and method therefor | |
KR100227425B1 (ko) | 1픽셀 오차를 제거한 이중화면 표시장치 | |
US8145029B2 (en) | Apparatus and method for interlace scanning video signal frequency multiplication | |
JP2005338498A (ja) | 表示メモリ装置 | |
KR100297816B1 (ko) | 포맷 컨버터 주변회로 | |
JPS6222506B2 (ja) | ||
JP3573784B2 (ja) | 映像信号処理装置 | |
JP3217820B2 (ja) | 映像合成方法および外部同期表示装置 | |
JP3804893B2 (ja) | 映像信号処理回路 | |
KR100196845B1 (ko) | 컴퓨터와텔레비젼의영상신호인터페이스장치 | |
JPS608930A (ja) | 表示装置 | |
JPH03505275A (ja) | 制御信号生成装置および方法 | |
JPS59135977A (ja) | テレビ画像拡大方法及び装置 | |
JP2000305538A (ja) | 映像拡大方法及び映像拡大回路 | |
JPH087546B2 (ja) | 画像処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050720 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060929 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061024 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070123 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070123 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100202 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110202 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120202 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130202 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130202 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140202 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |