JP3906767B2 - Electronic control unit for automobile - Google Patents

Electronic control unit for automobile Download PDF

Info

Publication number
JP3906767B2
JP3906767B2 JP2002257241A JP2002257241A JP3906767B2 JP 3906767 B2 JP3906767 B2 JP 3906767B2 JP 2002257241 A JP2002257241 A JP 2002257241A JP 2002257241 A JP2002257241 A JP 2002257241A JP 3906767 B2 JP3906767 B2 JP 3906767B2
Authority
JP
Japan
Prior art keywords
circuit board
base member
electronic
flexible printed
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002257241A
Other languages
Japanese (ja)
Other versions
JP2004095974A (en
Inventor
光泰 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002257241A priority Critical patent/JP3906767B2/en
Priority to US10/639,636 priority patent/US7439452B2/en
Priority to EP03018651A priority patent/EP1396885B1/en
Priority to DE60321630T priority patent/DE60321630D1/en
Publication of JP2004095974A publication Critical patent/JP2004095974A/en
Application granted granted Critical
Publication of JP3906767B2 publication Critical patent/JP3906767B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • H05K3/0061Laminating printed circuit boards onto other substrates, e.g. metallic substrates onto a metallic substrate, e.g. a heat sink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/49531Additional leads the additional leads being a wiring board
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/068Thermal details wherein the coefficient of thermal expansion is important
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10742Details of leads
    • H05K2201/10886Other details
    • H05K2201/10924Leads formed from a punched metal foil
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/284Applying non-metallic protective coatings for encapsulating mounted components

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車用電子制御装置に係わり、特に電子制御回路の封止構造に関する。
【0002】
【従来の技術】
従来、エンジンや自動変速機の電子制御装置(以下コントロールユニット)は車室内に設置されていたが、車室内のコントロールユニットの増加に伴い、車室外に設置されることが要求されるようになってきている。また、コントロールユニットとその制御対象が離れていると配線の引き回しが複雑になり、配線敷設コストもその大きな要因となり、コントロールユニットと制御対象の一体化、所謂モジュール化の要求が高まっている。
【0003】
つまり、エンジン用電子制御装置はエンジンルーム内、好ましくはエンジンそのものに取付け、自動変速機用制御装置も同様に自動変速機直付けあるいは自動変速機内部設置というニーズを実現させる必要がある。しかし前記設置場所は非常に過酷な温度環境(−40〜130℃)であると共に、水,エンジン油またはAT油に曝される可能性があり、セラミックのような耐熱性と放熱性を兼ね備えた基板上に電子部品を実装し、完全気密ケース内に収めることが必要になる。
【0004】
また、その気密ケースも信頼性と放熱性を考慮すると、一般的に金属製のハーメチックシールケースが考えられるが、コスト面から採用が困難であった。そこで、廉価で信頼性が高く半導体のパッケージ技術として実績のあるトランスファモールド封止構造が、例えば、特開平6−61372号に開示されている。
【0005】
【発明が解決しようとする課題】
しかしながら、上述の従来技術のようなトランスファモールド封止構造によれば、トランスファモールド樹脂,耐熱性を有する回路基板および放熱性を確保するためのヒートスプレッダとなる部材の積層構造となっている。トランスファモールドに適したエポキシ樹脂の線膨張係数は10〜20ppm/℃ 、耐熱・高密度実装に適したセラミック基板の線膨張係数5〜7ppm/℃ 、放熱性に優れたヒートスプレッダとして銅系合金材の線膨張係数16〜18ppm/℃ と差が大きいことにより、繰り返しの温度変化において発生する熱応力により、封止部分の密着性劣化ひいては界面剥離・樹脂クラック等に至るという問題がある。例えば、上記材料によるトランスファモールド封止構造の各部材の熱膨張特性を図1に示すが、ガラス転移点前後で樹脂の線膨張係数が変わる為、高温域ではヒートスプレッダの線膨張係数がセラミック基板と樹脂の間にあり、低温域では樹脂がセラミック基板の線膨張係数より僅かに大きくヒートスプレッダは両者よりかなり大きい値となり、温度条件により非常に複雑な熱応力が発生していることが判る。その中でも、電子回路の放熱の目的から、回路基板とヒートスプレッダ間は極力接近させなければならず、線膨張係数差による過大な熱応力で界面剥離が発生してしまうという問題があった。
【0006】
【課題を解決するための手段】
上記課題を解決するため、本発明では、トランスファモールド封止構造を構成する部材、例えば、三部材の中で、回路基板とベース部材の線膨張係数を見かけ上一致させることを特徴とする。
具体的には、電子回路を構成する電子部品が実装される回路基板と、上記回路基板に接触し、上記回路基板の放熱を行うベース部材と、上記電子回路が上記回路基板を介して外部と信号の入出力を行う外部接続用端子と、上記電子回路,上記回路基板,上記ベース部材を含んで封止する封止樹脂とを有し、上記回路基板は可撓性を有し、上記ベース部材上に接着されており、上記封止樹脂の線膨張係数は、上記回路基板および上記ベース部材の線膨張係数よりも大きいことを特徴とする自動車用電子制御装置である
【0007】
また、回路基板とベース部材がトランスファモールド封止構造の中央に位置する構成とすることを特徴とする。また、封止樹脂の線膨張係数を、回路基板とベース部材の線膨張係数より大きくし、内部部材である回路基板とベース部材への前記樹脂の圧縮応力を生じることを特徴とする。
【0008】
【発明の実施の形態】
上記課題を解決するため、本発明では、トランスファモールド封止構造を構成する部材、例えば、三部材の中で、回路基板とベース部材の線膨張係数を見かけ上一致させ、両者間での過大応力の発生を抑える構造としている。また、回路基板とベース部材がトランスファモールド封止構造の中央に位置する構成とすることで、熱応力発生を対称にするとともに、歪み量を抑え、界面剥離・樹脂クラックを防止している。また、封止樹脂の線膨張係数を、回路基板とベース部材の線膨張係数より大きく取ることで、内部部材である回路基板とベース部材への前記樹脂の圧縮応力が発生し、界面剥離防止することを特徴としている。
【0009】
以下、本発明の実施例を図面を用いて説明する。図2は第一の実施例を示す自動変速機用電子制御装置を含むシステムブロック図であり、図3は前記電子制御装置の回路基板への電子回路実装レイアウト図であり、図4はリードフレーム構造図であり、図5はリードフレームに電子回路基板を実装した図であり、図6は図5をトランスファモールド封止した図である。また図7はトランスファモールド封止後に後処理した製品形状図であり、図8はその断面図である。
【0010】
図9は第二の実施例であり、外部接続端子への接続を兼ね備えた回路基板への電子回路実装レイアウト図である。図10はリードフレームに図9の電子回路基板を実装した図であり、図11は図10をトランスファモールド封止した状態での断面図である。
【0011】
図12以降は第三の実施例を示す。図12は主回路基板上に部分的に副回路基板を用いた場合の電子回路実装レイアウト図であり、図13はリードフレームに図12の電子回路基板を実装した図である。図14は図13をトランスファモールド封止した状態での断面図である。
【0012】
図2において、自動変速機制御システム1内には自動変速機用電子制御装置2とセンサ・スイッチ類およびソレノイドバルブ類が載置されている。また前記自動変速機制御システム1から外部には、記載されていないIGNキーに連動したバッテリ電源10とCAN通信バス11が接続されている。
【0013】
前記自動変速機用電子制御装置2には前記バッテリ電源10が接続されており、定電圧電源回路4経由でCPU3に電圧が印加されると同時に発振子7によりクロックが生成され、前記CPU3に内蔵されたプログラムに従って制御を実行する。
【0014】
また、前記定電圧電源回路4は前記CPU3のプログラム実行の正当性を監視する機能,所謂ウォッチドッグ機能も備えており、前記CPU3の状態をモニタしながら前記プログラムの実行異常を検出した場合は前記CPU3にリセット信号を出力するなどの処理を行う。回転センサ12とレンジセレクトSW13,サーミスタで構成された油温センサ14が入力段回路5に取込まれ、前記CPU3で演算処理後、出力信号は出力段回路6を介し、シフトソレノイドA28およびシフトソレノイドB29,ライン圧ソレノイド30,ロックアップソレノイド
31を制御することで、自動変速機を最適状態に維持している。
【0015】
なお、変速機制御に必要なエンジン回転信号やスロットル開度信号は前記CAN通信バス11,CAN通信駆動回路9経由で外部から取込んでいる。
【0016】
次に電子回路の具体的な実装レイアウトについて図3を用いて説明する。本実施例では、回路基板としてフレキシブルプリント基板15を用いている。前記フレキシブルプリント基板15は銅パターンをフィルムで挟んだ構造となっており、ヤング率が非常に低いことから、後述するように剛性の高いベース部材に貼り付けることで、見かけ上の線膨張係数をベース部材に一致させることが可能になる。また耐熱性に関しては、使用温度環境に応じポリエステルまたはポリイミドを用いることが出来るが本実施例では使用温度環境が120℃を超えるケースがあることから、ポリイミド材を選定している。
【0017】
前記フレキシブルプリント基板15への実装は、素子発熱の分散を考慮して、まず前記定電圧電源回路4と前記出力段回路6を分散し、次に信号の流れがスムーズに繋がるような配置を選択している。具体的に説明すると、前記フレキシブルプリント基板15には前記定電圧電源回路4の主要素であるパワーIC4−1をベアチップ実装し、周辺とはワイヤボンディングにて接続されている。同様に前記出力段回路6の主要素であるパワーIC6−1,6−2,6−3,6−4も外部接続部位に極力近づけた位置にベアチップ状態で実装されており、周辺とはワイヤボンディングにて接続されている。また前記フレキシブルプリント基板
15には、前記CPU3,前記発振子7,前記CAN通信駆動回路9,前記入力段回路5等が実装されており、IC群はベアチップをワイヤボンディングにて接続し、それ以外の電子部品は半田リフローで接続されている。但し、ICの実装方法は、フリップチップ実装やパッケージ実装等であっても良い。また、半田リフローの代わりに導電性接着剤等の材料を使用しても構わない。
【0018】
加えて、外部接続端子との間をアルミワイヤで接続する構造においては、前記フレキシブルプリント基板15の外周にはボンディング性確保の為、専用のボンディングパッド16を実装している。
【0019】
図4は前記フレキシブルプリント基板15が載置されるリードフレーム17を示す。
【0020】
一般的に前記リードフレーム17の材質は、電気抵抗,熱抵抗の観点から銅合金系が好まれる。但し、線膨張係数を低く抑えたい場合は、42アロイ系のものも用いても良い。
【0021】
本実施例では、トランスファモールド内部と外部を接続するための接続用端子である17−1部および17−2部と、前記フレキシブルプリント基板15の固定および放熱を助けるためのベース部材17−3部(今後インナータブと呼ぶ)を一体で17として構成している。なお、通常17−1部および17−2部はアルミワイヤのボンディング性向上のため、必要に応じてNiメッキ処理が施される。
【0022】
図5は、電子部品を実装した前記フレキシブルプリント基板15を前記リードフレーム17上に載置した状態を示す。図面に記載はないが、前記フレキシブルプリント基板15の裏面は、前記インナータブ17−3に接着部材を用いて固定されている。また、前記フレキシブルプリント基板15と前記リードフレーム
17の接続用端子17−1および17−2はワイヤボンディングにて接続されている。ここでは電流容量およびワイヤ長さの関係からアルミワイヤ18を用いている。
【0023】
図6は図5に示したものをトランスファモールド封止した図である。前記フレキシブルプリント基板15はトランスファモールド樹脂で封止されている。ここでは前記トランスファモールド樹脂としてエポキシ系熱硬化樹脂19を用いている。また、明確な図示が無いが、シール性の確保のため前記エポキシ系熱硬化樹脂19によりフルモールドされる構造をとっており、前記リードフレーム17の接続用端子17−1および17−2のワイヤボンディング部は完全に衣包まれる構造となっているが、特に前記接続用端子17−1および17−2と前記エポキシ系熱硬化樹脂19との接着界面は気密性能に密接に関連しているので、十分な沿面距離を確保する必要がある。また、後述するが前記フレキシブルプリント基板15は前記エポキシ系熱硬化樹脂19の中心部に配置されることで、偏った熱応力が発生しないような構造を採用している。
【0024】
図7は図6で示したトランスファモールド成形品の後処理後の形態を示したものである。
【0025】
一般的には、前記リードフレーム17の不要部分を切断する工程(タイバカット)、成形時の樹脂バリを取る工程(バリ取り)を行うことになる。また外部に露出している前記リードフレーム17の接続用端子17−1および17−2は、腐食防止の観点で適当なメッキ処理が施される場合もある。
【0026】
本図では電気的な接続を目的とした前記接続用端子17−1および17−2以外に前記フレキシブルプリント基板15の固定および放熱用の前記インナータブ17−3をタイバカットした面21が確認できる。本図には記載しないが、アプリケーションにより放熱性能が満足できない場合は前記インナータブのタイバカット部21を延長し、熱容量の大きいものに接続することで更に放熱性能を改善することも可能である。
【0027】
図8は、図7をA−Aから見た断面図である。電気的な接続を目的とした前記接続用端子17−1および17−2、電子回路が実装された前記フレキシブルプリント基板15,前記インナータブ17−3が、前記エポキシ系熱硬化樹脂19で衣包まれているのが確認できる。なお、電子回路が実装された前記フレキシブルプリント基板15と前記インナータブ17−3は接着部材20を介して接着されている。接着材として接着力の強いエポキシ系材料を用いているが、放熱性を考慮すると接着部材の厚さ管理を100μm程度に抑えることが重要である。なお、前記管理を容易にする為に、接着シートを用いることも可能である。
【0028】
第二の実施例を図9から図11を用い説明する。これは第一の実施例において、前記フレキシブルプリント基板15の前記接続用端子17−1および17−2と接続する辺を短冊状に延長したものである。
【0029】
図9において、この短冊状の部分15−1および15−2は前記接続用端子
17−1および17−2に直接接続可能なように裏面の銅箔パターンが露出しており、対抗する前記接続用端子17−1および17−2に一対一で重なる形状となっている。これにより、ボンディングパッド16の領域が不要となり、実際に電子回路を実装できる部分15−3を拡大出来る。
【0030】
図10は、第一の実施例と同様に、電子部品を実装した前記フレキシブルプリント基板15を前記リードフレーム17上に載置した状態を示している。前記フレキシブルプリント基板15の短冊状の部分15−1および15−2は、対抗する前記接続用端子17−1および17−2に部分的にオーバーラップするように配置される。図面に記載はないが、前記フレキシブルプリント基板15の電子回路実装部15−3は、前記インナータブ17−3に接着部材を用いて固定されている。
【0031】
図11は図10に示したものをトランスファモールド封止した後、B−Bから見た断面図を示す。本実施例では、オーバーラップしている前記フレキシブルプリント基板15の短冊状の部分15−1および15−2は、対抗する前記接続用端子17−1および17−2と半田22により電気的に接続されている。なお、アプリケーションによっては導電性接着剤を用いて両者の電気的接続をとることも可能である。
【0032】
また、電子回路が実装された前記フレキシブルプリント基板の電子回路実装部15−3と前記インナータブ17−3が接着部材20を介して接着されているのは、図8と同様である。
【0033】
従来であれば、実使用条件下での温度変化により電気的接続部に応力がかからぬようにワイヤボンディング等を用いざるを得なかったが、本実施例では回路基板として低ヤング率のフレキシブルプリント基板を用いることにより、接続用端子への直接接続が可能となっている。
【0034】
更に第三の実施例を図12から図14を用い説明する。これは前記図9から図11の実施例において、前記フレキシブルプリント基板15のサイズでは、電子回路の実装が困難な場合の一実施例である。フレキシブルプリント基板は民生用にも多用されており、一般的には廉価な材料であるが、本アプリケーションのようにポリイミドの耐熱フィルムなどを使った場合、二層以上の多層化はコスト面から非経済的になる。そこで、前記フレキシブルプリント基板15は二層に留めておき、部分的に高集積基板を積層することで、最小限の費用で高密度実装が可能となる。
【0035】
図12は前記フレキシブルプリント基板15の中心部に実装されていたCPU3から周辺回路への配線が二層では困難である為多層セラミック基板23を介することにより、再配線を行った例である。図9と同一形状の前記フレキシブルプリント基板15の中心部には、前記多層セラミック基板23が載置されており、更にその上に前記CPU3が実装されている。この実施例においては、前記CPU3と前記多層セラミック基板23との電気的接続はワイヤボンディングによっている。一方、前記多層セラミック基板23と前記フレキシブルプリント基板15の電気的接続は、図面に記載は無いが、ボールグリッドアレイ等の既知の接続技術にて行われている。本構造によれば、ヤング率が高く、前記インナータブ17−3との線膨張係数差が大きな前記多層セラミック基板23のようなものでも、局所的な使用でかつ一番熱歪みの小さい場所に配置することで、熱応力の影響を最小限に抑えることが可能となる。
【0036】
図13は図12記載の電子部品を実装した前記フレキシブルプリント基板15を前記リードフレーム17上に載置した状態を示している。図10と同様に、前記フレキシブルプリント基板15の短冊状の部分15−1および15−2は、対抗する前記接続用端子17−1および17−2に部分的にオーバーラップするように配置される。図面に記載はないが、前記フレキシブルプリント基板15の電子回路実装部15−3は、前記インナータブ17−3に接着部材を用いて固定されている。
【0037】
図14は図13に示したものをトランスファモールド封止した後、C−Cから見た断面図を示す。本実施例においても、オーバーラップしている前記フレキシブルプリント基板15の短冊状の部分15−1および15−2は、対抗する前記接続用端子17−1および17−2と半田22により電気的に接続されている。なお、アプリケーションによっては導電性接着剤を用いて両者の電気的接続をとることも可能である。
【0038】
また、電子回路が実装された前記フレキシブルプリント基板15−3と前記インナータブ17−3が接着部材20を介して接着されているのは、図11と同様である。
【0039】
更に図示していないが、前記多層セラミック基板23と前記フレキシブルプリント基板15も前記接着部材20と同様な材料によって接着されている。
【0040】
なお、以上の実施例では、トランスファモールド封止用前記エポキシ系熱硬化樹脂19の線膨張係数について記載をしていないが、全体の線膨張係数比率においては、内蔵された回路基板およびインナータブ等の線膨張係数より、前記エポキシ系熱硬化樹脂の線膨張係数が大きい方が好ましい。理由は二つあり、低温側ではエポキシ系熱硬化樹脂の線膨張係数が大きい為、前記回路基板およびインナーリードを外部から圧縮する方向に働き、部材間の剥離を防止できる。また高温側は逆のケースが考えられるが、前記エポキシ系熱硬化樹脂は高温側では、ヤング率が低くなり、剥離に至るような応力が発生しないためである。
【0041】
【発明の効果】
本発明によれば、放熱性と耐剥離性を両立しうるトランスファモールド封止電子制御装置を提供することができる。また、実装効率を上げる場合に、多層セラミック基板のような高密度回路基板を部分的に採用し、フレキシブル基板の中心部に配置することで、熱応力の増加を最小限にすることを可能とする。
【0042】
更に、フレキシブルプリント基板と外部接続用端子の接続を半田または導電性接着剤により実現可能なため、アルミワイヤのボンディング工程を省略できる。
【図面の簡単な説明】
【図1】トランスファモールド封止構造の各部材の熱膨張特性。
【図2】自動変速機用電子制御装置を含む第一実施例のシステムブロック図。
【図3】第一実施例における電子回路の実装レイアウト図。
【図4】第一実施例におけるリードフレーム構造図。
【図5】第一実施例におけるリードフレームへの電子回路基板実装図。
【図6】第一実施例におけるトランスファモールド封止後の外観図。
【図7】図6の後処理後の製品外観図。
【図8】図7の断面図。
【図9】第二実施例における電子回路の実装レイアウト図。
【図10】第二実施例におけるリードフレームへの電子回路基板実装図。
【図11】第二実施例におけるトランスファモールド封止後の断面図。
【図12】第三実施例における電子回路の実装レイアウト図。
【図13】第三実施例におけるリードフレームへの電子回路基板実装図。
【図14】第三実施例におけるトランスファモールド封止後の断面図。
【符号の説明】
1…自動変速機制御システム、2…自動変速機用電子制御装置、3…CPU、4…定電圧電源回路、4−1,6−1,6−2,6−3,6−4…パワーIC、5…入力段回路、6…出力段回路、7…発振子、9…CAN通信駆動回路、10…バッテリ電源、11…CAN通信バス、12…回転センサ、13…レンジセレクトSW、14…油温センサ、15…フレキシブルプリント基板、15−1,15−2…フレキシブルプリント基板の外部接続用短冊部、15−3…フレキシブルプリント基板の電子回路実装部、16…ボンディングパッド、17…リードフレーム、17−1,17−2…接続用端子、17−3…インナータブ、18…アルミワイヤ、19…エポキシ系熱硬化樹脂、20…接着部材、21…インナータブのタイバカット部、22…半田、23…多層セラミック基板、28…シフトソレノイドA、29…シフトソレノイドB、30…ライン圧ソレノイド、31…ロックアップソレノイド。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an automotive electronic control device, and more particularly to a sealing structure for an electronic control circuit.
[0002]
[Prior art]
Conventionally, electronic control devices (hereinafter referred to as control units) for engines and automatic transmissions have been installed in the vehicle interior. However, as the number of control units in the vehicle interior has increased, it has been required to be installed outside the vehicle interior. It is coming. Further, if the control unit and the control target are separated from each other, the routing of the wiring becomes complicated, and the wiring laying cost becomes a major factor, and the demand for integration of the control unit and the control target, so-called modularization, is increasing.
[0003]
That is, it is necessary to realize the need for the engine electronic control device to be installed in the engine room, preferably the engine itself, and the automatic transmission control device to be directly attached to the automatic transmission or to be installed inside the automatic transmission. However, the installation location is in a very severe temperature environment (-40 to 130 ° C.) and may be exposed to water, engine oil or AT oil, and has both heat resistance and heat dissipation like ceramics. It is necessary to mount electronic components on the board and place them in a completely airtight case.
[0004]
Further, considering the reliability and heat dissipation, the hermetic case is generally considered to be a metal hermetic seal case, but it has been difficult to adopt from the viewpoint of cost. Therefore, a transfer mold sealing structure that is inexpensive, highly reliable, and has a proven track record as a semiconductor packaging technology is disclosed in, for example, Japanese Patent Laid-Open No. 6-61372.
[0005]
[Problems to be solved by the invention]
However, according to the transfer mold sealing structure as in the above-described prior art, a transfer mold resin, a heat-resistant circuit board, and a member that becomes a heat spreader for ensuring heat dissipation are laminated. The linear expansion coefficient of epoxy resin suitable for transfer mold is 10-20ppm / ° C, the linear expansion coefficient of ceramic substrate suitable for heat-resistant and high-density mounting is 5-7ppm / ° C, and the copper alloy material is a heat spreader with excellent heat dissipation. Due to the large difference between the linear expansion coefficient of 16 to 18 ppm / ° C., there is a problem that the thermal stress generated by repeated temperature changes leads to the deterioration of the adhesion of the sealing portion and further to the interfacial peeling / resin cracking. For example, the thermal expansion characteristics of each member of the transfer mold sealing structure made of the above materials are shown in FIG. 1. Since the linear expansion coefficient of the resin changes before and after the glass transition point, the linear expansion coefficient of the heat spreader is Between the resins, in the low temperature range, the resin is slightly larger than the linear expansion coefficient of the ceramic substrate, and the heat spreader is considerably larger than both, and it can be seen that very complicated thermal stress is generated depending on the temperature conditions. Among them, for the purpose of heat dissipation of the electronic circuit, there is a problem that the circuit board and the heat spreader must be brought as close as possible, and interface peeling occurs due to excessive thermal stress due to a difference in linear expansion coefficient.
[0006]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention is characterized in that the linear expansion coefficients of the circuit board and the base member are apparently matched among members constituting the transfer mold sealing structure, for example, three members.
Specifically, a circuit board on which electronic components constituting an electronic circuit are mounted, a base member that contacts the circuit board and radiates heat from the circuit board, and the electronic circuit is connected to the outside via the circuit board. An external connection terminal for inputting / outputting signals; and a sealing resin for sealing including the electronic circuit, the circuit board, and the base member, the circuit board having flexibility, and the base The electronic control device for an automobile is characterized in that the linear expansion coefficient of the sealing resin is bonded to a member and is larger than that of the circuit board and the base member .
[0007]
Further, the circuit board and the base member are configured to be positioned at the center of the transfer mold sealing structure. Further, the linear expansion coefficient of the sealing resin is made larger than the linear expansion coefficients of the circuit board and the base member, and a compressive stress of the resin to the circuit board and the base member as internal members is generated.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In order to solve the above-mentioned problems, in the present invention, among the members constituting the transfer mold sealing structure, for example, among the three members, the linear expansion coefficients of the circuit board and the base member are apparently matched to each other, and excessive stress is generated between the two. It has a structure that suppresses the occurrence of Further, by adopting a configuration in which the circuit board and the base member are positioned at the center of the transfer mold sealing structure, the generation of thermal stress is made symmetric, the amount of distortion is suppressed, and interface peeling / resin cracking is prevented. Further, by taking the linear expansion coefficient of the sealing resin larger than the linear expansion coefficient of the circuit board and the base member, compressive stress of the resin is generated on the circuit board and the base member, which are internal members, to prevent interface peeling. It is characterized by that.
[0009]
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a system block diagram including an electronic control unit for an automatic transmission according to the first embodiment, FIG. 3 is a layout diagram of an electronic circuit mounted on a circuit board of the electronic control unit, and FIG. 4 is a lead frame. FIG. 5 is a diagram in which an electronic circuit board is mounted on a lead frame, and FIG. 6 is a diagram in which FIG. 5 is sealed by transfer molding. FIG. 7 is a view showing the shape of a product after the transfer mold is sealed, and FIG. 8 is a cross-sectional view thereof.
[0010]
FIG. 9 is a layout diagram of an electronic circuit mounted on a circuit board having a connection to an external connection terminal according to the second embodiment. FIG. 10 is a diagram in which the electronic circuit board of FIG. 9 is mounted on a lead frame, and FIG. 11 is a cross-sectional view of FIG.
[0011]
FIG. 12 and subsequent figures show a third embodiment. FIG. 12 is a layout diagram of an electronic circuit when a sub circuit board is partially used on the main circuit board. FIG. 13 is a diagram in which the electronic circuit board of FIG. 12 is mounted on a lead frame. FIG. 14 is a cross-sectional view of FIG. 13 in a state where the transfer mold is sealed.
[0012]
In FIG. 2, an automatic transmission electronic control unit 2, sensors / switches, and solenoid valves are mounted in an automatic transmission control system 1. A battery power supply 10 and a CAN communication bus 11 linked to an IGN key not shown are connected to the outside from the automatic transmission control system 1.
[0013]
The battery power source 10 is connected to the electronic control unit 2 for automatic transmission, and a voltage is applied to the CPU 3 via the constant voltage power circuit 4 and at the same time, a clock is generated by the oscillator 7 and built in the CPU 3. The control is executed according to the programmed program.
[0014]
The constant voltage power supply circuit 4 also has a function of monitoring the legitimacy of the program execution of the CPU 3, that is, a so-called watchdog function, and when the execution abnormality of the program is detected while monitoring the state of the CPU 3, Processing such as outputting a reset signal to the CPU 3 is performed. An oil temperature sensor 14 comprising a rotation sensor 12, a range select SW 13, and a thermistor is taken into the input stage circuit 5, and after the arithmetic processing by the CPU 3, the output signal passes through the output stage circuit 6, the shift solenoid A 28 and the shift solenoid. By controlling B29, the line pressure solenoid 30, and the lockup solenoid 31, the automatic transmission is maintained in an optimum state.
[0015]
An engine rotation signal and a throttle opening signal necessary for transmission control are taken from the outside via the CAN communication bus 11 and the CAN communication drive circuit 9.
[0016]
Next, a specific mounting layout of the electronic circuit will be described with reference to FIG. In this embodiment, a flexible printed circuit board 15 is used as a circuit board. The flexible printed circuit board 15 has a structure in which a copper pattern is sandwiched between films and has a very low Young's modulus. Therefore, by attaching it to a highly rigid base member as described later, an apparent linear expansion coefficient can be obtained. It is possible to match the base member. Regarding heat resistance, polyester or polyimide can be used depending on the operating temperature environment, but in this embodiment, the operating temperature environment exceeds 120 ° C., and therefore a polyimide material is selected.
[0017]
For mounting on the flexible printed circuit board 15, in consideration of dispersion of element heat generation, the constant voltage power supply circuit 4 and the output stage circuit 6 are first distributed, and then an arrangement is selected so that the signal flow is smoothly connected. is doing. More specifically, a power IC 4-1 which is a main element of the constant voltage power supply circuit 4 is bare-chip mounted on the flexible printed circuit board 15 and connected to the periphery by wire bonding. Similarly, the power ICs 6-1, 6-2, 6-3, and 6-4, which are the main elements of the output stage circuit 6, are also mounted in a bare chip state at positions as close as possible to the external connection portions. Connected by bonding. Further, the CPU 3, the oscillator 7, the CAN communication drive circuit 9, the input stage circuit 5 and the like are mounted on the flexible printed circuit board 15. The IC group connects bare chips by wire bonding, and the others. These electronic components are connected by solder reflow. However, the IC mounting method may be flip-chip mounting or package mounting. Further, instead of solder reflow, a material such as a conductive adhesive may be used.
[0018]
In addition, in the structure in which the external connection terminals are connected with aluminum wires, a dedicated bonding pad 16 is mounted on the outer periphery of the flexible printed circuit board 15 in order to ensure bonding properties.
[0019]
FIG. 4 shows a lead frame 17 on which the flexible printed circuit board 15 is placed.
[0020]
In general, the material of the lead frame 17 is preferably a copper alloy system from the viewpoint of electrical resistance and thermal resistance. However, when it is desired to keep the linear expansion coefficient low, a 42 alloy type may be used.
[0021]
In this embodiment, 17-1 part and 17-2 part which are connecting terminals for connecting the inside and outside of the transfer mold, and a base member 17-3 part for helping to fix and dissipate the flexible printed circuit board 15 (Hereinafter referred to as an inner tab) is integrally configured as 17. Usually, the 17-1 part and the 17-2 part are subjected to Ni plating treatment as necessary to improve the bonding property of the aluminum wire.
[0022]
FIG. 5 shows a state where the flexible printed board 15 on which electronic components are mounted is placed on the lead frame 17. Although not shown in the drawings, the back surface of the flexible printed circuit board 15 is fixed to the inner tab 17-3 using an adhesive member. The flexible printed circuit board 15 and the connection terminals 17-1 and 17-2 of the lead frame 17 are connected by wire bonding. Here, the aluminum wire 18 is used from the relationship between the current capacity and the wire length.
[0023]
FIG. 6 is a view showing the transfer mold seal of what is shown in FIG. The flexible printed circuit board 15 is sealed with a transfer mold resin. Here, an epoxy thermosetting resin 19 is used as the transfer mold resin. Although not clearly shown, it has a structure in which it is fully molded by the epoxy thermosetting resin 19 in order to ensure sealing performance, and the wires of the connection terminals 17-1 and 17-2 of the lead frame 17 are used. The bonding part has a structure that is completely wrapped, but in particular, the bonding interface between the connection terminals 17-1 and 17-2 and the epoxy thermosetting resin 19 is closely related to the hermetic performance. It is necessary to secure a sufficient creepage distance. Further, as will be described later, the flexible printed circuit board 15 is arranged at the center of the epoxy thermosetting resin 19 so that a biased thermal stress is not generated.
[0024]
FIG. 7 shows a form after post-processing of the transfer molded product shown in FIG.
[0025]
Generally, a step of cutting unnecessary portions of the lead frame 17 (tie bar cutting) and a step of removing resin burrs during molding (burr removal) are performed. Further, the connection terminals 17-1 and 17-2 of the lead frame 17 exposed to the outside may be subjected to an appropriate plating process from the viewpoint of preventing corrosion.
[0026]
In this figure, in addition to the connection terminals 17-1 and 17-2 for the purpose of electrical connection, a surface 21 obtained by tie-cutting the inner tab 17-3 for fixing and heat dissipation of the flexible printed circuit board 15 can be confirmed. Although not shown in this figure, if the heat dissipation performance cannot be satisfied depending on the application, it is possible to further improve the heat dissipation performance by extending the tie bar cut portion 21 of the inner tab and connecting it to one having a large heat capacity.
[0027]
8 is a cross-sectional view of FIG. 7 as seen from AA. The connection terminals 17-1 and 17-2 for electrical connection, the flexible printed circuit board 15 on which an electronic circuit is mounted, and the inner tab 17-3 are covered with the epoxy thermosetting resin 19. You can see that. The flexible printed circuit board 15 on which the electronic circuit is mounted and the inner tab 17-3 are bonded via an adhesive member 20. Although an epoxy material having a strong adhesive force is used as the adhesive, it is important to suppress the thickness management of the adhesive member to about 100 μm in consideration of heat dissipation. In order to facilitate the management, an adhesive sheet can be used.
[0028]
A second embodiment will be described with reference to FIGS. In the first embodiment, the sides of the flexible printed circuit board 15 connected to the connection terminals 17-1 and 17-2 are extended in a strip shape.
[0029]
In FIG. 9, the strip-shaped portions 15-1 and 15-2 have exposed copper foil patterns on the back surface so that they can be directly connected to the connection terminals 17-1 and 17-2, and the above-mentioned connection The terminals 17-1 and 17-2 are overlapped on a one-to-one basis. Thereby, the area | region of the bonding pad 16 becomes unnecessary and the part 15-3 which can actually mount an electronic circuit can be expanded.
[0030]
FIG. 10 shows a state where the flexible printed circuit board 15 on which electronic components are mounted is placed on the lead frame 17 as in the first embodiment. The strip-like portions 15-1 and 15-2 of the flexible printed circuit board 15 are arranged so as to partially overlap the opposing connection terminals 17-1 and 17-2. Although not shown in the drawings, the electronic circuit mounting portion 15-3 of the flexible printed board 15 is fixed to the inner tab 17-3 using an adhesive member.
[0031]
FIG. 11 shows a cross-sectional view taken along the line BB after the transfer mold sealing of the one shown in FIG. In the present embodiment, the overlapping strip-like portions 15-1 and 15-2 of the flexible printed circuit board 15 are electrically connected to the connecting terminals 17-1 and 17-2 to be opposed by the solder 22. Has been. Depending on the application, it is possible to electrically connect the two using a conductive adhesive.
[0032]
Further, the electronic circuit mounting portion 15-3 of the flexible printed circuit board on which the electronic circuit is mounted and the inner tab 17-3 are bonded via the adhesive member 20 as in FIG.
[0033]
Conventionally, wire bonding or the like had to be used so that the electrical connection portion would not be stressed due to temperature changes under actual use conditions. However, in this embodiment, the circuit board is flexible with a low Young's modulus. By using a printed circuit board, direct connection to the connection terminal is possible.
[0034]
Further, a third embodiment will be described with reference to FIGS. This is an embodiment in the case where it is difficult to mount an electronic circuit with the size of the flexible printed circuit board 15 in the embodiments of FIGS. Flexible printed circuit boards are also widely used for consumer use and are generally inexpensive materials. However, when using a heat-resistant polyimide film as in this application, it is not cost effective to make two or more layers. Become economical. Thus, the flexible printed circuit board 15 is kept in two layers, and a highly integrated substrate is partially stacked, so that high-density mounting can be achieved at a minimum cost.
[0035]
FIG. 12 shows an example in which rewiring is performed through the multilayer ceramic substrate 23 because wiring from the CPU 3 mounted on the central portion of the flexible printed board 15 to the peripheral circuit is difficult in two layers. The multilayer ceramic substrate 23 is placed at the center of the flexible printed circuit board 15 having the same shape as that of FIG. 9, and the CPU 3 is further mounted thereon. In this embodiment, the electrical connection between the CPU 3 and the multilayer ceramic substrate 23 is by wire bonding. On the other hand, the electrical connection between the multilayer ceramic substrate 23 and the flexible printed circuit board 15 is performed by a known connection technique such as a ball grid array although not shown in the drawing. According to this structure, even the multi-layer ceramic substrate 23 having a high Young's modulus and a large linear expansion coefficient difference with the inner tab 17-3 can be used locally and in a place with the smallest thermal strain. By arranging, the influence of thermal stress can be minimized.
[0036]
FIG. 13 shows a state where the flexible printed circuit board 15 on which the electronic component shown in FIG. 12 is mounted is placed on the lead frame 17. Similarly to FIG. 10, the strip-like portions 15-1 and 15-2 of the flexible printed circuit board 15 are arranged so as to partially overlap the opposing connection terminals 17-1 and 17-2. . Although not shown in the drawings, the electronic circuit mounting portion 15-3 of the flexible printed board 15 is fixed to the inner tab 17-3 using an adhesive member.
[0037]
FIG. 14 shows a cross-sectional view taken along the line CC after sealing the transfer mold shown in FIG. Also in the present embodiment, the overlapping strip-like portions 15-1 and 15-2 of the flexible printed circuit board 15 are electrically connected by the connecting terminals 17-1 and 17-2 and the solder 22 that oppose each other. It is connected. Depending on the application, it is possible to electrically connect the two using a conductive adhesive.
[0038]
Further, the flexible printed circuit board 15-3 on which the electronic circuit is mounted and the inner tab 17-3 are bonded through the bonding member 20, as in FIG.
[0039]
Further, although not shown, the multilayer ceramic substrate 23 and the flexible printed circuit board 15 are also bonded by the same material as the bonding member 20.
[0040]
In the above embodiment, the linear expansion coefficient of the epoxy-based thermosetting resin 19 for transfer mold sealing is not described. However, in the overall linear expansion coefficient ratio, a built-in circuit board, inner tab, etc. The linear expansion coefficient of the epoxy thermosetting resin is preferably larger than the linear expansion coefficient. There are two reasons. Since the linear expansion coefficient of the epoxy thermosetting resin is large on the low temperature side, the circuit board and the inner lead work in the direction of compression from the outside, and separation between members can be prevented. Further, the reverse case is conceivable on the high temperature side, but the epoxy thermosetting resin has a low Young's modulus on the high temperature side, and stress that causes peeling is not generated.
[0041]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the transfer mold sealing electronic control apparatus which can make heat dissipation and peeling resistance compatible can be provided. In addition, when increasing mounting efficiency, it is possible to minimize the increase in thermal stress by partially adopting a high-density circuit board such as a multilayer ceramic substrate and placing it in the center of the flexible substrate. To do.
[0042]
Furthermore, since the connection between the flexible printed circuit board and the external connection terminal can be realized by solder or a conductive adhesive, the aluminum wire bonding step can be omitted.
[Brief description of the drawings]
FIG. 1 shows thermal expansion characteristics of each member of a transfer mold sealing structure.
FIG. 2 is a system block diagram of a first embodiment including an electronic control unit for an automatic transmission.
FIG. 3 is a mounting layout diagram of the electronic circuit in the first embodiment.
FIG. 4 is a structural diagram of a lead frame in the first embodiment.
FIG. 5 is an electronic circuit board mounting diagram on a lead frame in the first embodiment.
FIG. 6 is an external view after sealing a transfer mold in the first embodiment.
7 is an external view of the product after the post-processing in FIG. 6;
8 is a cross-sectional view of FIG.
FIG. 9 is a mounting layout diagram of an electronic circuit in a second embodiment.
FIG. 10 is an electronic circuit board mounting diagram on a lead frame in the second embodiment.
FIG. 11 is a sectional view after sealing a transfer mold in the second embodiment.
FIG. 12 is a mounting layout diagram of an electronic circuit in a third embodiment.
FIG. 13 is an electronic circuit board mounting diagram on a lead frame in the third embodiment.
FIG. 14 is a cross-sectional view after sealing a transfer mold in the third embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Automatic transmission control system, 2 ... Electronic control apparatus for automatic transmissions, 3 ... CPU, 4 ... Constant voltage power supply circuit, 4-1, 6-1, 6-2, 6-3, 6-4 ... Power IC: 5 ... Input stage circuit, 6 ... Output stage circuit, 7 ... Oscillator, 9 ... CAN communication drive circuit, 10 ... Battery power supply, 11 ... CAN communication bus, 12 ... Rotation sensor, 13 ... Range select SW, 14 ... Oil temperature sensor, 15 ... flexible printed circuit board, 15-1, 15-2 ... strip portion for external connection of flexible printed circuit board, 15-3 ... electronic circuit mounting part of flexible printed circuit board, 16 ... bonding pad, 17 ... lead frame 17-1, 17-2 ... connection terminals, 17-3 ... inner tab, 18 ... aluminum wire, 19 ... epoxy thermosetting resin, 20 ... adhesive member, 21 ... tie bar cut part of inner tab, 2 ... solder, 23 ... multilayer ceramic substrate, 28 ... shift solenoid A, 29 ... shift solenoid B, 30 ... line pressure solenoid 31 ... lock-up solenoid.

Claims (8)

電子部品によって構成される電子回路と、
上記電子回路に接続され配線回路を構成する回路基板と、
上記回路基板に接触し、上記回路基板の放熱を行うベース部材と、
上記電子回路が上記回路基板を介して外部と信号の入出力を行う外部接続用端子と、
上記電子回路,上記回路基板,上記ベース部材を含んで封止する封止樹脂とを有し、
前記回路基板の線膨張係数を前記ベース部材の線膨張係数に見かけ上一致するように上記回路基板を上記ベース部材上に配置し、上記封止樹脂の線膨張係数を上記回路基板および上記ベース部材の線膨張係数より大きくして、上記回路基板と上記ベース部材への上記封止樹脂の圧縮応力を有することを特徴とする自動車用電子制御装置。
An electronic circuit composed of electronic components;
A circuit board connected to the electronic circuit and constituting a wiring circuit;
A base member that contacts the circuit board and radiates heat from the circuit board;
An external connection terminal through which the electronic circuit inputs and outputs signals to and from the outside via the circuit board;
The electronic circuit, the circuit board, and a sealing resin for sealing including the base member,
The circuit board is disposed on the base member so that the linear expansion coefficient of the circuit board is apparently coincident with the linear expansion coefficient of the base member, and the linear expansion coefficient of the sealing resin is set to the circuit board and the base member. An electronic control device for an automobile having a compressive stress of the sealing resin on the circuit board and the base member greater than the linear expansion coefficient .
請求項1において、上記圧縮応力は、上記回路基板及び上記ベース部材へ与えられ、上記回路基板又は上記ベース部材の界面剥離を抑えることを特徴とする自動車用電子制御装置。  2. The automotive electronic control device according to claim 1, wherein the compressive stress is applied to the circuit board and the base member to suppress interface peeling between the circuit board and the base member. 請求項1において、
上記回路基板と上記ベース部材は接着部材を介して固定されることを特徴とする自動車用電子制御装置。
In claim 1,
An electronic control device for an automobile, wherein the circuit board and the base member are fixed via an adhesive member.
電子回路を構成する電子部品が実装される回路基板と、
上記回路基板に接触し、上記回路基板の放熱を行うベース部材と、
上記電子回路が上記回路基板を介して外部と信号の入出力を行う外部接続用端子と、
上記電子回路,上記回路基板,上記ベース部材を含んで封止する封止樹脂とを有し、
上記回路基板はフレキシブルプリント基板であり、上記ベース部材上に接着されており、
上記封止樹脂の線膨張係数は、上記回路基板および上記ベース部材の線膨張係数よりも大きいことを特徴とする自動車用電子制御装置。
A circuit board on which electronic components constituting the electronic circuit are mounted;
A base member that contacts the circuit board and radiates heat from the circuit board;
An external connection terminal through which the electronic circuit inputs and outputs signals to and from the outside via the circuit board;
The electronic circuit, the circuit board, and a sealing resin for sealing including the base member,
The circuit board is a flexible printed circuit board, and is bonded onto the base member.
The automotive electronic control device, wherein the sealing resin has a linear expansion coefficient larger than that of the circuit board and the base member.
請求項1〜4のいずれか一項において、
上記回路基板はフレキシブルプリント基板であり、上記ベース部材は銅系合金材料を含むことを特徴とする自動車用電子制御装置。
In any one of Claims 1-4,
The automotive electronic control device, wherein the circuit board is a flexible printed board, and the base member includes a copper-based alloy material.
請求項5において、
上記フレキシブルプリント基板上に少なくとも一つ以上の電子回路が配置されていることを特徴とする自動車用電子制御装置。
In claim 5,
At least one electronic circuit is disposed on the flexible printed circuit board.
請求項5において、
上記フレキシブルプリント基板と上記外部接続用端子の接続は、半田または導電性接着剤によって接続されていることを特徴とする自動車用電子制御装置。
In claim 5,
The automotive electronic control device, wherein the flexible printed circuit board and the external connection terminal are connected by solder or a conductive adhesive.
請求項1〜4のいずれか一項において、
上記回路基板と上記ベース部材は、上記封止用樹脂の中心部に載置されたことを特徴とする自動車用電子制御装置。
In any one of Claims 1-4,
The electronic control device for an automobile according to claim 1, wherein the circuit board and the base member are mounted on a central portion of the sealing resin.
JP2002257241A 2002-09-03 2002-09-03 Electronic control unit for automobile Expired - Fee Related JP3906767B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002257241A JP3906767B2 (en) 2002-09-03 2002-09-03 Electronic control unit for automobile
US10/639,636 US7439452B2 (en) 2002-09-03 2003-08-13 Multi-chip module packaging with thermal expansion coefficiencies
EP03018651A EP1396885B1 (en) 2002-09-03 2003-08-20 Resin moulded automotive electronic control unit
DE60321630T DE60321630D1 (en) 2002-09-03 2003-08-20 Electronic vehicle control unit made of resin molding compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002257241A JP3906767B2 (en) 2002-09-03 2002-09-03 Electronic control unit for automobile

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005322660A Division JP2006060257A (en) 2005-11-07 2005-11-07 Automobile electronic control device

Publications (2)

Publication Number Publication Date
JP2004095974A JP2004095974A (en) 2004-03-25
JP3906767B2 true JP3906767B2 (en) 2007-04-18

Family

ID=31712273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002257241A Expired - Fee Related JP3906767B2 (en) 2002-09-03 2002-09-03 Electronic control unit for automobile

Country Status (4)

Country Link
US (1) US7439452B2 (en)
EP (1) EP1396885B1 (en)
JP (1) JP3906767B2 (en)
DE (1) DE60321630D1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179942A (en) * 2003-12-17 2005-07-07 Denso Corp Automobile wireless transmitter-receiver
DE102005016830A1 (en) * 2004-04-14 2005-11-03 Denso Corp., Kariya Semiconductor device and method for its production
CN1849052A (en) * 2005-04-05 2006-10-18 鸿富锦精密工业(深圳)有限公司 Electromagnetic interference screen packaging body and producing process thereof
JP2008270455A (en) * 2007-04-19 2008-11-06 Hitachi Ltd Power semiconductor module
US20100327421A1 (en) * 2009-06-30 2010-12-30 Stmicroelectronics Asia Pacific Pte. Ltd. Ic package design with stress relief feature
JP5051189B2 (en) * 2009-07-10 2012-10-17 アイシン・エィ・ダブリュ株式会社 Electronic circuit equipment
US8869775B2 (en) * 2010-02-09 2014-10-28 Denso Corporation Fuel supply apparatus
US10111333B2 (en) * 2010-03-16 2018-10-23 Intersil Americas Inc. Molded power-supply module with bridge inductor over other components
DE102010030528A1 (en) 2010-06-25 2011-12-29 Robert Bosch Gmbh Encapsulated control module for a motor vehicle
DE102010039118A1 (en) 2010-08-10 2012-02-16 Robert Bosch Gmbh Control module, in particular transmission or engine control module for a motor vehicle
DE102010039189A1 (en) 2010-08-11 2012-02-16 Robert Bosch Gmbh Flexfolienkontaktierung
CN103097775B (en) 2010-09-09 2015-06-03 株式会社自动网络技术研究所 Electronic circuit unit to be mounted on automatic transmission for vehicle, and method of manufacturing thereof
US9723766B2 (en) 2010-09-10 2017-08-01 Intersil Americas LLC Power supply module with electromagnetic-interference (EMI) shielding, cooling, or both shielding and cooling, along two or more sides
JP5441956B2 (en) * 2011-05-26 2014-03-12 三菱電機株式会社 Resin-sealed electronic control device and manufacturing method thereof
US9645163B2 (en) * 2011-08-24 2017-05-09 Continental Teves Ag & Co. Ohg Sensor with a single electrical carrier means
DE102011083002A1 (en) 2011-09-20 2013-03-21 Robert Bosch Gmbh Electrical control unit with housing
DE102011088969A1 (en) * 2011-12-19 2013-06-20 Robert Bosch Gmbh Transmission control module
DE102013201424B4 (en) * 2013-01-29 2021-08-05 Robert Bosch Gmbh Control unit
DE102013215365A1 (en) 2013-08-05 2015-02-05 Zf Friedrichshafen Ag Electric transmission control device and manufacturing method
JP2015156423A (en) * 2014-02-20 2015-08-27 ローム株式会社 semiconductor device
WO2015162010A1 (en) * 2014-04-24 2015-10-29 Continental Teves Ag & Co. Ohg Sensor circuit wired to leadframe via circuit board
DE102014209283A1 (en) 2014-05-16 2015-11-19 Zf Friedrichshafen Ag Electrical circuit arrangement with positioning aid for cable strands
DE102014209282A1 (en) 2014-05-16 2015-11-19 Zf Friedrichshafen Ag Electrical circuit arrangement with positioning aid for cable strands
JP2016021469A (en) * 2014-07-14 2016-02-04 日立金属株式会社 Transmission module and circuit board used for the same
DE102014226062A1 (en) 2014-12-16 2016-06-16 Zf Friedrichshafen Ag Positioning device and component with the same
DE102015219947A1 (en) 2015-10-14 2017-04-20 Zf Friedrichshafen Ag Circuit carrier and method for producing the same
JP6693441B2 (en) * 2017-02-27 2020-05-13 オムロン株式会社 Electronic device and manufacturing method thereof
JP6888434B2 (en) * 2017-06-16 2021-06-16 株式会社オートネットワーク技術研究所 Circuit unit
DE102022200168A1 (en) 2022-01-10 2023-03-09 Magna powertrain gmbh & co kg Power module device

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041249A (en) 1983-08-17 1985-03-04 Nec Corp Hybrid integrated circuit device
US4829403A (en) * 1987-01-20 1989-05-09 Harding Ade Yemi S K Packaging arrangement for energy dissipating devices
JPH064595Y2 (en) * 1988-02-24 1994-02-02 日本電気株式会社 Hybrid IC
US5096852A (en) 1988-06-02 1992-03-17 Burr-Brown Corporation Method of making plastic encapsulated multichip hybrid integrated circuits
US5015803A (en) * 1989-05-31 1991-05-14 Olin Corporation Thermal performance package for integrated circuit chip
US5173766A (en) * 1990-06-25 1992-12-22 Lsi Logic Corporation Semiconductor device package and method of making such a package
JPH0653277A (en) * 1992-06-04 1994-02-25 Lsi Logic Corp Semiconductor device assembly and its assembly method
US5367196A (en) * 1992-09-17 1994-11-22 Olin Corporation Molded plastic semiconductor package including an aluminum alloy heat spreader
JPH0661372A (en) 1992-08-11 1994-03-04 Toshiba Corp Hybrid ic
US5369056A (en) 1993-03-29 1994-11-29 Staktek Corporation Warp-resistent ultra-thin integrated circuit package fabrication method
US5958100A (en) * 1993-06-03 1999-09-28 Micron Technology, Inc. Process of making a glass semiconductor package
EP0775716B1 (en) * 1995-01-11 1999-07-28 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Novel heat-fusible copolymer, and powder, film, laminated heat insulator, electronic module, and capacitor produced from said copolymer, and process for producing the same
US5808874A (en) * 1996-05-02 1998-09-15 Tessera, Inc. Microelectronic connections with liquid conductive elements
KR100230515B1 (en) * 1997-04-04 1999-11-15 윤종용 Method for producting lead frame with uneven surface
GB2338827B (en) 1998-06-27 2002-12-31 Motorola Gmbh Electronic package assembly
JP3674333B2 (en) * 1998-09-11 2005-07-20 株式会社日立製作所 Power semiconductor module and electric motor drive system using the same
EP1167559B1 (en) * 1998-12-07 2006-03-08 Hitachi, Ltd. Composite material and use thereof
US6492204B1 (en) * 1999-01-26 2002-12-10 Jp Ox Engineering Electronic devices having thermodynamic encapsulant portions predominating over thermostatic encapsulant portions
US6492202B1 (en) * 1999-12-28 2002-12-10 Motorola, Inc. Method of assembling components onto a circuit board
US6346743B1 (en) * 2000-06-30 2002-02-12 Intel Corp. Embedded capacitor assembly in a package
US6731486B2 (en) * 2001-12-19 2004-05-04 Fairchild Semiconductor Corporation Output-powered over-voltage protection circuit

Also Published As

Publication number Publication date
US7439452B2 (en) 2008-10-21
DE60321630D1 (en) 2008-07-31
US20040055783A1 (en) 2004-03-25
JP2004095974A (en) 2004-03-25
EP1396885B1 (en) 2008-06-18
EP1396885A1 (en) 2004-03-10

Similar Documents

Publication Publication Date Title
JP3906767B2 (en) Electronic control unit for automobile
JP5051189B2 (en) Electronic circuit equipment
US7679914B2 (en) Electronic controller
JP2001308261A (en) Semiconductor device
JP2004281722A (en) Electronic circuit device and its manufacturing method
WO1999023696A1 (en) Semiconductor device and method for manufacturing the same______
JP2000353767A (en) Board for mounting electronic component, package, mounting method, and method for housing integrated circuit chip in package
JP5129472B2 (en) Power circuit package and manufacturing method thereof
JP2001308260A (en) Semiconductor device
US7432131B2 (en) Stacked memory and manufacturing method thereof
US20120080801A1 (en) Semiconductor device and electronic component module using the same
JP3569585B2 (en) Semiconductor device
JP2006060257A (en) Automobile electronic control device
JP2006190725A (en) Resin-sealing engine controller and its manufacturing method
JP4600130B2 (en) Semiconductor device and manufacturing method thereof
JP2003037241A (en) Electrical circuit board package item and manufacturing method for the electric circuit board package item
JP2010219093A (en) Electronic circuit device
JP2004096015A (en) Semiconductor device and its fabricating process
JPH10303363A (en) Electronic component and manufacture therefor
JPH0974149A (en) Small package and manufacture
JP5164780B2 (en) Shift control device and electronic circuit sealing device
JP4260766B2 (en) Semiconductor device
JP2006135361A (en) Electronic circuit device and method of manufacturing the same
JPH03161957A (en) Semiconductor device
KR100233865B1 (en) Ball grid array of heat sink mount and semiconductor package method for manufacture of the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070108

R151 Written notification of patent or utility model registration

Ref document number: 3906767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees