JP3906742B2 - Joint structure and joining method of main girder and reinforced concrete pier - Google Patents

Joint structure and joining method of main girder and reinforced concrete pier Download PDF

Info

Publication number
JP3906742B2
JP3906742B2 JP2002148472A JP2002148472A JP3906742B2 JP 3906742 B2 JP3906742 B2 JP 3906742B2 JP 2002148472 A JP2002148472 A JP 2002148472A JP 2002148472 A JP2002148472 A JP 2002148472A JP 3906742 B2 JP3906742 B2 JP 3906742B2
Authority
JP
Japan
Prior art keywords
steel
girder
pier
main
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002148472A
Other languages
Japanese (ja)
Other versions
JP2003336215A (en
Inventor
克佳 中西
勝昭 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2002148472A priority Critical patent/JP3906742B2/en
Publication of JP2003336215A publication Critical patent/JP2003336215A/en
Application granted granted Critical
Publication of JP3906742B2 publication Critical patent/JP3906742B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、桁と鉄筋コンクリート橋脚との接合構造及び接合方法に関するものである。
【0002】
【従来の技術】
桁と鉄筋コンクリート橋脚とを剛結合した橋梁の一例として、特開平8−302919号公報に記載された発明がある。この発明に係る複合部材の接合構造は、鋼構造梁部材の接合端を形成する鋼製主桁と、鉄筋コンクリート橋脚の頂部から鋼製主桁内に延在するように設けられた鉄筋コンクリート梁の接合端とを直接相互に一体的に接合したものである。
【0003】
そして、施工にあたっては、鉄筋を配筋しコンクリートを打設して鉄筋コンクリート橋脚の一部を建設し、その頂部に仮受け材を設置してさらにこの仮受け材上に鋼製主桁を設置し、この仮受け材の下端部より上方の部分に鉄筋を配筋してこの部分にコンクリートを打設し、鉄筋コンクリート橋脚の完成と共に橋脚と鋼製主桁を一体化するようにしたものであり、鉄筋コンクリート橋脚から鋼製主桁への力の伝達は、鋼製主桁に設けたスタッドを介して行われる。
【0004】
【発明が解決しようとする課題】
上記のような従来の接合構造においては、鋼製主桁と鉄筋コンクリート橋脚とをスタッドを介して接合するため、スタッドの設置に付随して多量の鉄筋が必要となり、配筋が面倒でコストアップになるばかりでなく、コンクリートの施工性が悪いという問題がある。また、鋼製主桁の下フランジあるいは横桁ウエブと、鉄筋コンクリート橋脚との接合面のコンクリートに過大な支圧応力が発生するため、この部分のコンクリートが圧壊して剥離するおそれがある。
【0005】
本発明は、上記の課題を解決するためになされたもので、桁と鉄筋コンクリート橋脚との剛結部に配筋する鉄筋を省略し、かつコンクリートの施工性を向上し、桁と鉄筋コンクリート橋脚との接合面のコンクリートの圧壊を防止することのできる桁と鉄筋コンクリート橋脚との接合構造及び接合方法を提供することを目的としたものである。
【0006】
【課題を解決するための手段】
(1)本発明に係る桁と鉄筋コンクリート橋脚との接合構造は、前記橋脚は上部が下部橋脚から突出し、橋軸直角方向に対向配置されかつ橋軸方向に所定の間隔で設けられた主鉄骨を有し、前記主桁を構成する対向配置された鋼桁には前記橋脚に設けた主鉄骨に対応して鋼管が一体に設けられ、前記鋼管を前記主鉄骨の突出部にこれを覆うように嵌合し、前記下部橋脚と主桁との間にコンクリートを打設すると共に、前記鋼管内にコンクリートを充填して、前記主桁を橋脚に剛結合したものである。
【0007】
(2)上記(1)の鋼桁に一体に設けた鋼管に代えて、対向配置された鋼桁を連結する連結板に鋼管を設けた。
(3)上記(1)の鋼桁をI形断面の鋼桁又は鋼箱桁で構成した。
【0008】
(4)また、本発明に係る桁と鉄筋コンクリート橋脚との接合構造は、橋脚は上部が下部橋脚から突出し、橋軸直角方向に対向配置されかつ橋軸方向に所定の間隔で設けられた主鉄骨を有し、前記主桁を構成する対向配置された鋼桁の間には前記主鉄骨に対応してセル室が設けられた多室セル横桁が対向して接合され、前記多室セル横桁のセル室を前記主鉄骨の突出部にこれを覆うように嵌合し、前記下部橋脚と主桁との間にコンクリートを打設すると共に、前記セル室内にコンクリートを充填して前記主桁を橋脚に剛結合したものである。
【0009】
(5)上記(1)〜(4)のいずれかの鋼桁の下フランジの支圧応力卓越部に弾性体を設置した。
【0010】
(6)本発明に係る桁と鉄筋コンクリート橋脚との接合方法は、下部が下部橋脚に埋設された主鉄の上部に、鋼桁に又は鋼箱桁に前記主鉄骨に対応して設けた鋼管を嵌合して前記鋼桁又は鋼箱桁を対向配置し、連結板で連結して主桁を構成する工程と、前記下部橋脚と主桁との間にコンクリートを打設して両者を一体化する工程と、前記鋼管内にコンクリートを充填する工程とを含み、前記主桁を橋脚に剛結合するようにしたものである。
【0011】
(7)本発明に係る桁と鉄筋コンクリート橋脚との接合方法は、下部が下部橋脚に埋設された主鉄の上部に、連結板が設けられた鋼管を嵌合する工程と、前記鋼管の両側に鋼桁を設置して該鋼桁と前記連結板とを接合して主桁を構成する工程と、前記下部橋脚と主桁との間にコンクリートを打設して両者を一体化する工程と、前記鋼管内にコンクリートを打設する工程とを含み、前記主桁を橋脚に剛結合するようにしたものである。
【0012】
(8)また、本発明に係る桁と鉄筋コンクリート橋脚との接合方法は、下部が下部橋脚に埋設された主鉄骨の上方に鋼桁を対向配置する工程と、該対向配置された鋼桁を、セル室を前記下部橋脚から突出した主鉄骨に嵌合した多室セル横桁で連結して主桁を構成する工程と、前記下部橋脚と主桁との間にコンクリートを打設して両者を一体化する工程と、前記セル室にコンクリートを充填する工程とを含み、前記主桁を橋脚に剛結合するようにしたものである。
【0013】
【発明の実施の形態】
図18は本発明に係る橋梁における桁と鉄筋コンクリート橋脚との接合構造の基本的構成を示す模式図である。図において、Pは鉄筋コンクリート橋脚(以下、単に橋脚という)、Aはアバット、Sは沓、Gは橋脚P上に設けた主桁、Dは主桁G上に設置した床版で、これら主桁Gと床版Dとにより上部構造Bを構成し、橋脚Pと主桁Gは剛結合されている。
本発明は、上記のような桁と橋脚との接合構造及び接合方法に関するもので、以下にその実施の形態を説明する。
【0014】
実施の形態1
図1は本発明の実施の形態1に係る桁と橋脚との接合構造の正面模式図、図2は図1の平面図、図3は図1の側面図である。
図において、50は例えばI形断面の鋼材からなり、下部が橋脚頂部を除いて建設された橋脚Pの一部をなす鉄筋コンクリート(以下下部橋脚P1という)に埋没された主鉄骨で、橋軸直角方向に対向し、橋軸方向に所定の間隔で設けられている。
【0015】
Gは橋軸方向に対向配置された一対の鋼桁1等からなる主桁で、図4に示すよに、I形断面からなる鋼桁1のウエブ1aの内側面の上下方向の中央部よりやや上方には、ほぼM字状の鋼板からなる横桁上フランジ2aがウエブ1aと直交して溶接により接合されており、また、鋼桁1の下フランジ1cには、横桁上フランジ2aと対向してほぼM字状の鋼板からなる横桁下フランジ2bが溶接により接合されている。なお、この横桁上フランジ2a及び横桁下フランジ2bはそれぞれ1枚の鋼板で形成してもよく、あるいは、図4に示すように、それぞれ複数枚の鋼板を溶接接合して形成してもよい。
【0016】
3a,3bは横桁上フランジ2aと横桁下フランジ2bの両端部近傍において、鋼桁1のウエブ1aと直交して両者の間に配設され、両者及びウエブ1aに溶接接合された鋼板からなる横フランジである。
10は主鉄骨50に嵌合しうる内径の鋼管で、横桁上フランジ2aと横桁下フランジ2bの横フランジ3a,3bの内側に設けた貫通穴2cを貫通し、上端部は横桁上フランジ2aの上面とほぼ同一平面上に位置し、下部は横桁下フランジ2bから下方に突出して、横桁上フランジ2aと横桁下フランジ2bに溶接又は添接により接合されている。なお、鋼管10の間隔は、下部橋脚P1の橋軸方向に立設した主鉄骨50の間隔と等しくなっている。
【0017】
主桁Gは、鋼桁1と一体化された鋼管10を橋軸方向に隣接する主鉄骨50にそれぞれ嵌合して対向配置し、対向する横桁上フランジ2aと横桁下フランジ2bとの間にそれぞれ横桁連結板4a,4bを配設し、上下に設けた添接板7aにより一体に接合する。また、同様にして、横フランジ3a,3bの間にそれぞれ横フランジ連結板5a,5bを配設し、前後に設けた添接板7bにより一体に接合して構成される。
【0018】
これにより、両鋼桁1の間には、鋼桁1のウエブ1a、横桁上フランジ2a、横桁下フランジ2b、横桁連結板4a,4b、横フランジ3a,3b及び横フランジ連結板5a,5bで囲まれた空間領域Spが形成される。8は鋼桁1の下部フランジ1cの下面の支圧応力卓越部に設けられた弾性体、9は鋼桁1と横桁上フランジ2aとの間に、スムーズに応力が伝達するように設けた補剛材である。
【0019】
51は下部橋脚P1と主桁Gの下面との間に打設されて橋脚頂部を構成するコンクリートで、下部橋脚P1と一体化されて橋脚Pが構成される。52は鋼管10内に充填されたコンクリート、53は空間領域Spに打設されたコンクリートである。
【0020】
次に、上記のような桁と橋脚との接合構造の施工手順の一例について説明する。
この場合、鋼桁1には、あらかじめ工場等において、図4に示すように、横桁上フランジ2a、横桁下フランジ2b、横フランジ3a,3b及び鋼管10が剛接合されて組立てられており、トラック等により工事現場に輸送されるものとする。なお、輸送上の問題等によっては、鋼管10を接合しない状態で輸送し、工事現場において横桁上フランジ2a及び横桁下フランジ2bに鋼管10を剛接合してもよい。
【0021】
先ず、図5に示すように、主鉄骨50の下部を所定の間隔で埋設して立設し、下部橋脚P1を施工する。
次に、下部橋脚P1から突出した橋軸方向の一対の主鉄骨50に、鋼桁1に設けた鋼管10を嵌合する。このとき、下部橋脚P1の上面に鋼管10の下端部が当接することにより、鋼桁1が位置決めされて下部橋脚P1上に載っている状態になる。同様にして、この主鉄骨50と橋軸直角方向に対向して設けられた主鉄骨50に鋼管10を嵌合して鋼桁1を設置し、一対の鋼桁1を対向配置する。なお、必要に応じて、下部橋脚P1と鋼管10の下端部との間にスペーサ等を挿入し、対向する鋼桁1が同じ高さ位置になるように調整する。
【0022】
この状態で、対向設置された鋼桁1の前後の横フランジ3a,3bの間に横フランジ連結板5a,5bを配設し、添接板7bにより一体に接合する。また、左右の横桁上フランジ2aと横桁下フランジ2bとの間に横桁連結板4a,4bを配設し、添接板7aにより一体に接合して主桁Gを構成する。また、これらにより空間領域Spが形成される。
【0023】
次に、図6に示すように、下部橋脚P1と主桁Gの下面との間に鉄筋を配筋し、コンクリート51を打設して橋脚頂部を形成し、両者を一体化して橋脚Pを構築する。このとき、鋼桁1の下フランジ1cの下面に設けた弾性体8の一部は、コンクリート51、したがって橋脚Pに埋設される。ついで、鋼管10内に上部開口部からコンクリート52を充填し、さらに、鋼桁1の間に形成された空間領域Spに、横桁上フランジ2aの上面とほぼ同一平面になるまでコンクリート53を打設して橋脚Pと一体化し、主桁Gを橋脚Pに剛結合する。
【0024】
この場合、必要に応じて、鋼桁1と横桁上フランジ2aとの間に補剛材9を接合する。なお、図示してないが、主桁Gの上部には床版Dが設けられ、その上に舗装が施工される。
以上により主桁Gが橋脚Pに剛結合される。なお、上記の施工手順は一例を示すもので、橋梁の規模、工事現場の状況等により適宜変更することができる。
【0025】
上記のような本実施の形態において、鋼管10の外面に突起を設け、また、必要に応じて鋼管10の内面にも突起を設けてコンクリートとの付着力を増大させれば、橋脚Pと鋼管10、したがって、橋脚Pと主桁Gとの結合力をさらに向上させることができ、負荷を鋼管10、充填コンクリート52、主鉄骨50を介して確実に橋脚Pに伝達することができる(以下の実施の形態においても同様である)。なお、鋼桁1の下部のみに主鉄骨50を設けた場合を示したが、これら主鉄骨50の間に1本又は複数本の主鉄骨50を設けてもよい(以下の実施の形態においても同様である)。
【0026】
上記のように構成した本実施の形態によれば、鋼桁1と橋脚Pとの剛結部が鋼殻で被覆され、かつスタッドを設けないため剛結部の帯鉄筋を省略することができ、また、これにより、コンクリート打設の施工性を向上させることができる。
また、図7に示すように、鋼桁1の下フランジ1cにより橋脚Pに過大な支圧応力が発生する部分に弾性体8を介在させたので、橋脚Pに作用する支圧応力を弾性体8により柔軟に受けることができ、弾性体8が完全に圧漬する前に支圧力を鋼管10の付着抵抗によって受けることができるので、限界値を越える支圧応力が橋脚面に作用するのを防止できる。さらに、主桁Gを橋脚Pに付着接合するため、橋脚Pの施工誤差をある程度吸収することができる。
【0027】
実施の形態2
図8は本発明の実施の形態2に係る桁と橋脚の接合構造の模式的正面図、図9は図8の平面図で、本実施の形態は多数の鋼桁と橋脚との接合構造に関するものである。なお、実施の形態1と同じ部分にはこれと同じ符号を付し、説明を省略し又は簡単に行う。
【0028】
図において、11は横軸直角方向の両側に設置された主桁Gを構成する外側鋼桁、11Aは外側鋼桁11の間に設置された主桁Gを構成する内側鋼桁である。
外側鋼桁11は、図10に示すように、I形断面からなる鋼材のウエブ11aの内側面の上下方向の中央部よりやや上方には、長方形状の鋼板からなる一対の横桁上フランジ12aがウエブ11aと直交し、かつ橋軸方向に所定の間隔を隔てて溶接により接合されており、また、鋼桁11の下フランジ11cには、横桁上フランジ12aと対向してこれとほぼ同じ形状、同じ材料からなる横桁下フランジ12bが溶接により接合されている。
【0029】
13a,13bは横桁上フランジ12aと横桁下フランジ12bの両外端部近傍において、両者の間に鋼桁11のウエブ11aと直交して配設され、横桁上フランジ12a、横桁下フランジ12b及び鋼桁11のウエブ11aに溶接接合された鋼板からなる横フランジである。
【0030】
内側鋼桁11Aは、外側鋼桁11とほぼ同じ構造であるが、ウエブ11aの両面の対応する位置に、横桁上フランジ12a、横桁下フランジ12b及び横フランジ13a,13bがそれぞれ設けられている。
8は鋼桁11,11Aの下部フランジ11cの下面の支圧応力卓越部に設けられた弾性体である。
【0031】
14a,14bは対向配置された外側鋼桁11と内側鋼桁11A、内側鋼桁11Aと11A、内側鋼桁11Aと外側鋼桁11の横桁上フランジ12aと横桁下フランジ12bとの間にそれぞれ配設され、添接板7aにより一体に接合された横桁連結板である。
この横桁連結板14a,14bには、図11に示すように、同一鉛直線上に貫通穴14cが設けられており、この貫通穴14cを主鉄骨20に嵌合しうる内径の鋼管10に嵌合し、上部の横桁連結板14aを鋼管10の上端部に溶接接合すると共に、下部の横桁連結板14bを横桁下フランジ12bと対応した位置において、鋼管10に溶接接合したものである。
【0032】
15は鋼桁11,11Aの横フランジ13a,13bに対応して、横桁連結板14a,14bの間に溶接接合された横フランジ連結板である。
Spは各隣接する鋼桁11と11A、11Aと11Aのウエブ1a、横桁上フランジ12a、横桁下フランジ12b、横桁連結板14a,14b、及び横フランジ13a,13b、横桁連結板15a,15bで囲まれた空間領域である。
51は下部橋脚P1と主桁Gの下面との間に打設されたコンクリートで、下部橋脚P1と一体化されて橋脚Pが構築される。52は鋼管10内に充填されたコンクリート、53は空間領域Spに打設されたコンクリートである。
【0033】
次に、上記のような本実施の形態の施工手順の一例について説明する。
この場合、外側鋼桁11及び内側鋼桁11Aには、あらかじめ工場等において、図10に示すように横桁上フランジ12a、横桁下フランジ12b及び横フランジ13a,13bが接合されて組立てられており、また、鋼管10には図11に示すように横桁フランジ14a,14b及び横フランジ連結板15が接合されているものとする。
【0034】
先ず、図8に示すように、主鉄骨50の下部を所定の間隔で埋設し、下部橋脚P1を施工する。
次に、下部橋脚P1から突出した橋軸方向の一対の主鉄骨50に、横桁連結板14a,14b及び横フランジ連結板15が設けられた鋼管10を嵌合する。このとき、下部橋脚P1の上面に鋼管10の下端部が当接することにより、位置決めされる。なお、必要に応じて下部橋脚P1と鋼管10の下端部との間にスペーサ等を挿入し、各鋼管10の上端部、したがって上部の横桁連結板14a,14bの上面が同一平面になるように調整する。
【0035】
ついで、一方の外側鋼桁11を例えばクレーンで吊上げて、その横桁上フランジ12a、横桁下フランジ12b及び横フランジ13a,13bを、橋軸方向に設置した一対の鋼管10に設けた上下の横桁連結板14a,14b及び横フランジ連結板15とそれぞれ整合させ、添接板7a,7bにより一体に接合する。同様にして、他方の外側鋼桁11及び内側鋼桁11Aの横桁上フランジ12a、横桁下フランジ12b及び横フランジ13a,13bを、鋼管10に設けた上下の横桁連結板14a,14b及び横フランジ15に、それぞれ添接板7a,7bにより一体に接合し、主桁Gを構成する。この場合、内側鋼桁11Aを先に鋼管10に連結してもよい。
【0036】
そして、実施の形態1の場合と同様に、下部橋脚P1と主桁Gの下面との間、鋼管10内及び空間領域Spにそれぞれコンクリート51,52,53を打設し、主桁Gを橋脚Pに剛結合する。
以上により、主桁Gが橋脚Pに剛結合される。なお、上記の施工手順は一例を示すもので、橋梁の規模、工事現場の状況等により適宜変更することができる。
本実施の形態によれば、実施の形態1の場合と同様の効果を得ることができる。
【0037】
実施の形態3
図12は本発明の実施の形態3に係る桁と橋脚との接合構造の模式的正面図、図13はその平面図である。本実施の形態は、鋼桁として鋼箱桁を使用し、この鋼箱桁と橋脚とを剛結合したものである。なお、実施の形態1と同じ部分にはこれと同じ符号を付し、説明を省略し又は簡単に行う。
【0038】
図において、21は横軸直角方向に対向設置した主桁Gを構成する一対の鋼箱桁で、図14に示すように、上鋼板22aと下鋼板22bの間には、前後(橋軸方向)の端部より内側に鋼板からなるダイヤフラム23a,23bが溶接により接合されており、このダイヤフラム23a,23bの両側(橋軸直角方向)には鋼板からなる側板24a,24bが溶接により接合されている。25はダイヤフラム23a,23bと側板24a,24bで囲まれた領域内において、上鋼板22aよりやや下方に上鋼板22aと平行に配設された中鋼板で、その周辺がダイヤフラム23a,23bと側板24a,24bの内壁に溶接接合されている。
【0039】
26aは一方の側板(この場合は24b)の外面の中鋼板25に対応した位置に、側板24bと直交して溶接接合された鋼板からなる横桁上フランジ、26bは下鋼板22bに横桁上フランジ26aと対向して溶接接合された鋼板からなる横桁下フランジ、27a,27bは横桁上フランジ26aと横桁下フランジ26bの両端部に溶接合された鋼板からなる横フランジである。
【0040】
25aはダイヤフラム23a,23bの近傍おいて中鋼板25に設けた複数の貫通穴(図には、橋軸直角方向にそれぞれ3個ずつ設けた場合が示してある)、25bは下鋼板22bに貫通穴25aと対向して設けた貫通穴である。
そして、鋼管10がこの貫通穴25b,25aに貫挿され、上端部は中鋼板25に、下部は下鋼板22bにそれぞれ溶接により剛接合されている。
【0041】
28a,28bは横桁連結板、29a,29bは横フランジ連結板で、添接板7a,7bにより対向設置された鋼箱桁21の横桁上フランジ26a、横桁下フランジ26b、横フランジ27a,27bに一体に接合されている。
30は上下の横桁連結板28a、28bに設けられ、下部橋脚P1と主桁Gとの間にコンクリートを打設するための1個又は複数個のコンクリート打設穴、31は上鋼板22aの鋼管10と対向する位置に設けられ、鋼管10内にコンクリートを充填するためのコンクリート打設穴、32は上鋼板22aに設けられて鋼箱桁21内にコンクリートを投入するためのコンクリート打設穴、33は中鋼板25に設けられて内部にコンクリートを投入するためのコンクリート打設穴である。
【0042】
次に、本実施の形態の施工手順の一例について説明する。この場合、図14に示すような鋼箱桁21はあらかじめ工場等で組立てられているものとする。
先ず、図12に示すように、下部橋脚P1から突出した橋軸方向の一対(各3本で一対となる)の主鉄骨50に鋼箱桁21に設けた鋼管10を嵌合する。このとき、下部橋脚P1の上面に鋼管10の下端部が当接し、鋼箱桁21が位置決めされて下部橋脚P1上に載っている状態になる。同様にして、この主鉄骨50と橋軸直角方向に対向して設けられた主鉄骨50に鋼管10を嵌合して他方の鋼箱桁21を設置し、一対の鋼箱桁21を対向配置する。なお、必要に応じて下部橋脚P1と鋼管10の下端部との間にスペーサ等を挿入し、対向する鋼箱桁21の上鋼板22aの上面が同一平面上に位置するように調整する。
【0043】
この状態で、対向設置された鋼箱桁21の前後の横フランジ27a,27bに添接板7bにより横フランジ連結板29a,29bを接合し、また、左右の横桁上フランジ26aと横桁下フランジ26bに、添接板7aにより横桁連結板28a,28bを接合する。
【0044】
次に、コンクリート打設穴30から下部橋脚P1と主桁Gの下面との間にコンクリート51を投入して打設し、両者を一体化して橋脚Pを構築する。ついで、上鋼板22aに設けたコンクリート打設穴31から鋼管10内にコンクリート53を充填し、さらに上鋼板22a及び中鋼板25に設けたコンクリート打設穴32,33から鋼箱桁21内にコンクリート54を投入して打設し、主桁Gと橋脚Pを一体化して剛結合する。
以上により、鋼箱桁21からなる主桁Gが橋脚Pに剛結合される。なお、上記の施工手順は一例を示すもので、橋梁の規模、工事現場の状況等により適宜変更することができる。
本実施の形態によれば、実施の形態1の場合とほぼ同様の効果を得ることができる。
【0045】
実施の形態4
図15は本発明の実施の形態4に係る桁と橋脚の接合構造の模式的正面図、図16はその平面図である。本実施の形態は、鋼桁と多室セル構造の横桁とにより主桁を構成し、この主桁を橋脚に接合するようにしたものである。なお、実施の形態1と同じ部分にはこれと同じ符号を付し、説明を省略し又は簡単に行う。
【0046】
図において、41は橋軸直角方向に対向設置され、主桁Gを構成するH形断面の鋼桁で、図17に示すように、ウエブ41aの内側面の両端部から若干内側には、上下方向の中央部よりやや上方から下フランジ1cにかけて、ウエブ41aと直交しかつ所定の間隔で、2枚の鋼板43a,43bと43c,43dがそれぞれ溶接接合され、鋼板43aと43b、43cと43dの間にはそれぞれ鋼板からなる隔壁44が溶接接合された固定セル42a,42bが設けられており、鋼桁41のウエブ41aと隔壁44と間には、それぞれセル室45a,46aが形成されている。
【0047】
47a,47bは対向設置された鋼桁41の固定セル42a,42bの間を連結する連結セルで、固定セル42a,42bの鋼板43a〜43dと同じ高さ、同じ間隔に配設された鋼板からなる2枚の連結板48a,48b及び48c,48dと、両連結板48a,48b及び48c,48dの間にそれぞれ溶接接合された隔壁44とからなり、これらにより複数のセル室45b,45c,45d及び46b,46c,46dが形成されている(図には、2枚の隔壁により各3個のセル室を設けた場合が示してある)。
【0048】
また、本実施の形態においては、下部橋脚P1に設けた主鉄骨50のうち、鋼桁41の下に位置する主鉄骨50の上端部は、鋼桁41を設置したときのその下面(弾性体8を含む)より若干低い位置にあり、その間に設けられた複数の主鉄骨50a〜50eは、鋼桁41を設置したときの固定セル42a,42bの上端部とほぼ等しい位置まで延設されている。
【0049】
次に、本実施の形態の施工手順の一例について説明する。なお、鋼桁41にはあらかじめ工場等で固定セル42a,42bが接合されて組立てられており、連結セル47a,47bも工場等において組立てられているものとする。また、下部橋脚P1には主鉄骨50,50a〜50eが埋込まれて立設されているものとする。
【0050】
先ず、一方の鋼桁41をクレーン等で吊上げて、そのセル室45a,46aを橋軸方向の2本の主鉄骨50aに挿入し、下フランジ41cをこの主鉄骨50aの外側に隣接する主鉄骨50上に位置させる。このとき、鋼桁41の下フランジ41c(弾性体8を含む)の下面と主鉄骨50の上端部との間には、若干のすき間を形成する。同様にして、他方の鋼桁41のセル室45e,46eを主鉄骨50eに挿入し、その下フランジ41cをこの主鉄骨50eの外側に隣接する主鉄骨50上に位置させる。
【0051】
次に、一方の連結セル47aのセル室45b,45c,45dを主鉄骨50b,50c,50dに挿入して両鋼桁41の固定セル42aの間に配設し、位置決めしたのち添接板7bにより一体に接合する。同様にして他方の連結セル47bを添接板7bにより固定セル42bに接合し、主桁Gを構成する。これにより、両鋼桁41の間には多室セル横桁40a,40bが構成される。
【0052】
次に、両鋼桁41と多室セル横桁40a,40bの間から、下部橋脚P1と主桁Gとの間にコンクリート51を打設して両者を一体化し、橋脚Pを構築する。ついで、両鋼桁41と多室セル横桁40a,40bとによって形成された空間領域Spに、その上面が多室セル横桁40a,40aの上端部とほぼ等しくなるまでコンクリート53を打設する。さらに、各セル室45a〜45e、46e〜46e内にコンクリート55を充填してこれらを一体化し、主桁Gを橋脚Pに剛結合する。
【0053】
上記の説明では、多室セル横桁40a,40bの各セル室45a〜45e、46a〜46eにそれぞれ主鉄骨50a〜50eを挿入した場合を示したが、これらに挿入する主鉄骨50a〜50eの一部を省略してもよい。また、多室セル横桁40a,40bの内面には、コンクリートの付着力を増すために突起を設けることが望ましい。なお、鋼桁41と多室セル横桁40a,40bによって形成された空間領域Spにコンクリート53を打設した場合を示したが、この部分のコンクリート打設を省略してもよい。
本実施の形態によれば、実施の形態1の場合とほぼ同様の効果を得ることができる。
【0054】
以上、本発明の実施の形態1〜4について説明したが、これらはそれぞれ単独で実施してもよく、適宜組合わせて実施してもよい。
【0055】
【実施例】
次に、実施の形態1の実施例(主として各部の寸法関係)について説明する。鋼桁1は、高さ2.5m、ウエブ1aの板厚25mm、上下のフランジ1b,1cの幅0.65m、板厚50mmのH形断面の鋼材を用い、鋼桁1間の距離は5.5mであった。また、鋼板1のウエブ1aに設けた横桁上フランジ2aの幅は0.5m、板厚25mmm、横桁下フランジ2bの幅は0.285m、板厚25mmで、両者の上下の間隔は2mであり、横フランジ3a,3bの板の板厚は19mmであった。
【0056】
また、鋼管10は、外径0.5m、板厚6mm、高さ2mで、内外面に突起が設けられているものを用いた。添接板7a,7bの板厚は8mm、弾性体8はクロロプレンゴムにより構成され、その板厚は5mmであった。
橋脚Pの断面は橋軸直角方向が7.5m、橋軸方向が3mで、主鉄骨50はH350×350×12×19で、高さは30mであった。
上記のような寸法の各部材を溶接結合して鋼桁1を作成し、下部が下部橋脚P1に埋設された主鉄骨50に鋼管10を挿入し、それぞれコンクリート51〜53を打設して一対の鋼桁1等からなる主桁Gを橋脚Pに剛結合した結果、短時間でズムーズに施工することができた。
【0057】
【発明の効果】
本発明に係る桁と鉄筋コンクリート橋脚との接合構造及び接合方法によれば、橋脚と桁との剛結部が鋼管(又は多室セル横桁)を含む鋼殻で被覆され、かつスタッドを用いないめ、剛結部の帯鉄筋を省略することができ、このため配筋の手間を省けるばかりでなく、コンクリート打設時の施工性を向上することができる。
【0058】
また、橋脚に作用する支圧応力を鋼桁の下面に設けた弾性体によって柔かく受け、弾性体が完全に圧漬する前に鋼管(又は多室セル横桁)の付着抵抗により支圧力を受けるため、限界値を越える支圧応力が橋脚面に作用することがなく、この部分のコンクリートが剥離することもない。
さらに桁と橋脚とを付着接合するため、橋脚の施工誤差をある程度吸収することができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1に係る鋼桁と鉄筋コンクリート橋脚との接合構造の模式的正面図である。
【図2】 図1の平面図である。
【図3】 図1の側面図である。
【図4】 図1の鋼桁の斜視図である。
【図5】 実施の形態1の施工手順の説明図である。
【図6】 実施の形態1の施工手順の説明図である。
【図7】 図1のA−A断面図である。
【図8】 本発明の実施の形態2に係る鋼桁と鉄筋コンクリート橋脚との接合構造の模式的正面図である。
【図9】 図8の平面図である。
【図10】 図8の鋼桁の斜視図である。
【図11】 図8の鋼管の斜視図である。
【図12】 本発明の実施の形態3に係る鋼桁と鉄筋コンクリート橋脚との接合構造の模式的正面図である。
【図13】 図12の平面図である。
【図14】 図12の鋼箱桁の斜視図である。
【図15】 本発明の実施の形態4に係る鋼桁と鉄筋コンクリート橋脚との接合構造の正面模式図である。
【図16】 図15の平面図である。
【図17】 図15の鋼桁及び連結セルの斜視図である。
【図18】 本発明を実施する橋梁の説明図である。
【符号の説明】
1 鋼桁
2a 横桁上フランジ
2b 横桁下フランジ
3a 横フランジ
4a 横桁連結板
4b 横フランジ連結板
7a,7b 添接板
8 弾性体
10 鋼管
11 外側鋼桁
11A 内側鋼桁
21 鋼箱桁
40a,40b 多室セル横桁
42a,42b 固定セル
45a〜45e、46a〜46e セル室
47a,47b 連結セル
50 主鉄骨
P1 下部橋脚
P 橋脚
G 主桁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a joining structure and a joining method of a main girder and a reinforced concrete bridge pier.
[0002]
[Prior art]
As an example of a bridge in which a main girder and a reinforced concrete pier are rigidly connected, there is an invention described in JP-A-8-302919. The composite member joining structure according to the present invention includes a steel main girder that forms a joining end of a steel structural beam member, and a reinforced concrete beam provided so as to extend from the top of the reinforced concrete bridge pier into the steel main girder. The ends are directly joined together.
[0003]
In the construction, rebars are placed and concrete is laid to construct a part of the reinforced concrete pier, a temporary support material is installed on the top, and a steel main girder is installed on the temporary support material. The rebar is placed in the part above the lower end of the temporary support material, and concrete is placed in this part, and the pier and the steel main girder are integrated with the completion of the reinforced concrete pier, The transmission of force from the reinforced concrete pier to the steel main girder is performed via studs provided on the steel main girder.
[0004]
[Problems to be solved by the invention]
In the conventional joint structure as described above, the steel main girder and the reinforced concrete bridge pier are joined via the studs, so a large amount of reinforcing bars are required to accompany the installation of the studs. In addition to this, there is a problem that the workability of concrete is poor. In addition, since an excessive bearing stress is generated in the concrete at the joint surface between the lower flange or the horizontal girder web of the main steel girder and the reinforced concrete bridge pier, there is a possibility that the concrete in this portion may be collapsed and peeled off.
[0005]
The present invention has been made to solve the above problems, it is omitted rebar Haisuji to rigidly portion of the main beam and the reinforced concrete pier, and to improve the workability of the concrete, the main girder and reinforced concrete pier it is intended to provide a bonding structure and bonding method of the main beam and the reinforced concrete pier which can prevent the concrete crushing the junction plane between.
[0006]
[Means for Solving the Problems]
(1) The main girder and reinforced concrete pier structure according to the present invention is such that the upper part of the pier protrudes from the lower pier, is opposed to the direction perpendicular to the bridge axis, and is provided at predetermined intervals in the bridge axis direction. A steel pipe is integrally provided corresponding to the main steel frame provided on the bridge pier, and the steel pipe is covered with the projecting portion of the main steel frame. fitted in, while concrete is between the lower abutment and main girder, and filled with concrete in said steel pipe, the main beam is obtained by rigidly coupled to the pier.
[0007]
(2) Instead of the steel pipe provided integrally with the steel girder of (1) above, a steel pipe was provided on a connecting plate that connects the steel girder arranged opposite to each other.
(3) The steel girder of the above (1) was composed of a steel girder or a steel box girder having an I-shaped cross section.
[0008]
(4) Moreover, the joining structure of the main girder and the reinforced concrete pier according to the present invention is such that the pier protrudes from the lower pier in the upper part, is opposed to the direction perpendicular to the bridge axis, and is provided at predetermined intervals in the bridge axis direction. A multi-chamber cell cross beam provided with a cell chamber corresponding to the main steel frame is opposed to and joined between steel beams arranged opposite to each other, each having a steel frame and constituting the main girder. A cell room of a cross beam is fitted to the projecting portion of the main steel frame so as to cover it, and concrete is placed between the lower pier and the main girder, and the cell room is filled with concrete and the main steel frame is filled. Girder is rigidly connected to the pier.
[0009]
(5) The elastic body was installed in the bearing stress excellence part of the lower flange of the steel girder in any one of said (1)-(4).
[0010]
(6) method of joining the main beam and the reinforced concrete pier according to the present invention, the upper part of Shutetsu bone bottom is embedded in the lower piers, provided corresponding to the main steel to steel girder or steel box girder The steel girder or the steel box girder is placed opposite to each other by fitting a steel pipe, and a step of connecting a connecting plate to form a main girder, and placing concrete between the lower pier and the main girder , a step of integrating, viewing including the step of filling concrete into said steel pipe, the main beam is obtained so as to rigidly coupled to the pier.
[0011]
(7) method of joining the main beam and the reinforced concrete pier according to the present invention, the upper part of the bone Shutetsu the lower is embedded in the lower piers, a step of fitting the steel tube connecting plate is provided, said steel tube A step of installing a steel girder on both sides and joining the steel girder and the connecting plate to form a main girder; and a step of placing concrete between the lower pier and the main girder to integrate the two When, viewed including the step of pouring concrete into said steel pipe, the main beam is obtained so as to rigidly coupled to the pier.
[0012]
(8) Moreover, the joining method of the main girder and the reinforced concrete bridge pier according to the present invention includes a step of disposing a steel girder above a main steel frame whose lower part is embedded in the lower pier, and the steel girder arranged oppositely. Connecting the cell chamber with a multi-chamber cell girder fitted to the main steel frame protruding from the lower pier, and constructing a main girder, and placing concrete between the lower pier and the main girder And a step of filling the cell chamber with concrete, and the main girder is rigidly coupled to the pier .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Figure 18 is a schematic view showing a basic structure of a joint structure between the main beam and the reinforced concrete pier in bridges according to the present invention. In the figure, P is a reinforced concrete pier (hereinafter simply referred to as a pier), A is an abut, S is a ridge, G is a main girder installed on the pier P, D is a floor slab installed on the main girder G, these main girder The superstructure B is constituted by G and the floor slab D, and the pier P and the main girder G are rigidly coupled.
The present invention relates to a joining structure and joining method between the main girder and the bridge pier as described above, and an embodiment thereof will be described below.
[0014]
Embodiment 1
1 is a schematic front view of a joining structure between a main girder and a pier according to Embodiment 1 of the present invention, FIG. 2 is a plan view of FIG. 1, and FIG. 3 is a side view of FIG.
In the figure, 50 is a main steel frame made of steel material having an I-shaped cross section, the lower part of which is buried in reinforced concrete (hereinafter referred to as the lower pier P 1 ) that forms part of the pier P except for the top of the pier. They are opposed to each other at a right angle, and are provided at predetermined intervals in the bridge axis direction.
[0015]
G is a main girder made up of a pair of steel girders 1 and the like arranged opposite to each other in the bridge axis direction, as shown in FIG. 4, from the vertical center of the inner surface of the web 1a of the steel girder 1 having an I-shaped cross section. Slightly above, a transverse girder upper flange 2a made of a substantially M-shaped steel plate is joined by welding perpendicularly to the web 1a, and a transverse girder upper flange 2a is connected to the lower flange 1c of the steel girder 1 Oppositely, a transverse girder lower flange 2b made of a substantially M-shaped steel plate is joined by welding. The cross beam upper flange 2a and the cross beam lower flange 2b may each be formed of a single steel plate, or may be formed by welding a plurality of steel plates, respectively, as shown in FIG. Good.
[0016]
Reference numerals 3a and 3b denote steel plates disposed between and perpendicular to the web 1a of the steel beam 1 in the vicinity of both ends of the upper beam 2a and the lower beam flange 2b, and welded to both and the web 1a. It is a horizontal flange.
10 is a steel pipe having an inner diameter that can be fitted to the main steel frame 50, and penetrates through holes 2c provided inside the horizontal flanges 3a and 3b of the horizontal beam upper flange 2a and the horizontal beam lower flange 2b, and the upper end is the horizontal beam The upper part of the flange 2a is located on substantially the same plane, and the lower part protrudes downward from the lower beam lower flange 2b, and is joined to the upper beam flange 2a and the lower beam flange 2b by welding or attachment. The distance between the steel pipe 10 is equal to the spacing of the main steel 50 provided upright in the bridge axis direction of the lower piers P 1.
[0017]
The main girder G is configured by fitting the steel pipe 10 integrated with the steel girder 1 to the main steel frames 50 adjacent to each other in the bridge axis direction so as to face each other. The cross beam connecting plates 4a and 4b are respectively disposed between them, and are joined together by the attachment plates 7a provided at the top and bottom. Similarly, the horizontal flange connecting plates 5a and 5b are disposed between the horizontal flanges 3a and 3b, respectively, and are integrally joined by the front and rear attachment plates 7b.
[0018]
As a result, between the steel beams 1, the web 1 a of the steel beam 1, the cross beam upper flange 2 a, the cross beam lower flange 2 b, the cross beam connection plates 4 a and 4 b, the horizontal flanges 3 a and 3 b, and the horizontal flange connection plate 5 a. , 5b is formed. 8 is an elastic body provided at the supporting stress dominant portion of the lower surface of the lower flange 1c of the steel girder 1, and 9 is provided so that stress is smoothly transmitted between the steel girder 1 and the upper girder upper flange 2a. It is a stiffener.
[0019]
51 is concrete that is placed between the lower pier P 1 and the lower surface of the main girder G to form the pier top, and is integrated with the lower pier P 1 to form the pier P. 52 is concrete filled in the steel pipe 10, and 53 is concrete placed in the space region Sp.
[0020]
Next, an example of the construction procedure of the joint structure between the main girder and the pier as described above will be described.
In this case, the steel girder 1 is assembled in advance at a factory or the like, as shown in FIG. 4, with the cross girder upper flange 2 a, the cross girder lower flange 2 b, the lateral flanges 3 a and 3 b, and the steel pipe 10 being rigidly joined. , And transported to the construction site by trucks. Depending on transportation problems, the steel pipe 10 may be transported without being joined, and the steel pipe 10 may be rigidly joined to the cross beam upper flange 2a and the cross beam lower flange 2b at the construction site.
[0021]
First, as shown in FIG. 5, the lower part of the main steel frame 50 is erected and buried at a predetermined interval, and the lower pier P 1 is constructed.
Next, the steel pipe 10 provided in the steel beam 1 is fitted to the pair of main steel frames 50 in the bridge axis direction protruding from the lower pier P 1 . At this time, the lower end of the steel pipe 10 is brought into contact with the upper surface of the lower pier P 1 , whereby the steel girder 1 is positioned and placed on the lower pier P 1 . Similarly, the steel girder 1 is installed by fitting the steel pipe 10 to the main steel frame 50 provided to face the main steel frame 50 in the direction perpendicular to the bridge axis, and the pair of steel girders 1 are arranged to face each other. If necessary, inserting a spacer or the like between the lower end portion of the lower pier P 1 and the steel pipe 10, steel girder 1 facing is adjusted to be at the same height.
[0022]
In this state, the horizontal flange connecting plates 5a and 5b are disposed between the front and rear horizontal flanges 3a and 3b of the oppositely installed steel girders 1 and are integrally joined by the attachment plate 7b. Further, horizontal girder connecting plates 4a and 4b are disposed between the left and right horizontal girder upper flanges 2a and the lower girder lower flanges 2b, and the main girder G is configured by being integrally joined by the attachment plate 7a. In addition, the space region Sp is formed by these.
[0023]
Next, as shown in FIG. 6, a reinforcing bar is arranged between the lower pier P 1 and the lower surface of the main girder G, concrete 51 is placed to form a pier top, and both are integrated to form a pier P Build up. At this time, a part of the elastic body 8 provided on the lower surface of the lower flange 1c of the steel girder 1 is embedded in the concrete 51, and hence the pier P. Next, the concrete 52 is filled into the steel pipe 10 from the upper opening, and the concrete 53 is applied to the space region Sp formed between the steel girders 1 until it is substantially flush with the upper surface of the horizontal girder upper flange 2a. It is installed and integrated with the pier P, and the main girder G is rigidly connected to the pier P.
[0024]
In this case, the stiffener 9 is joined between the steel beam 1 and the cross beam upper flange 2a as necessary. Although not shown, a floor slab D is provided above the main girder G, and pavement is constructed thereon.
Thus, the main girder G is rigidly coupled to the pier P. In addition, said construction procedure shows an example and can be suitably changed with the scale of a bridge, the condition of a construction site, etc.
[0025]
In the present embodiment as described above, if the protrusion is provided on the outer surface of the steel pipe 10 and the protrusion is also provided on the inner surface of the steel pipe 10 as necessary to increase the adhesion to concrete, the pier P and the steel pipe 10. Therefore, the coupling force between the pier P and the main girder G can be further improved, and the load can be reliably transmitted to the pier P via the steel pipe 10, the filled concrete 52, and the main steel frame 50 (the following). The same applies to the embodiment). In addition, although the case where the main steel frame 50 was provided only in the lower part of the steel girder 1 was shown, you may provide the one or several main steel frames 50 between these main steel frames 50 (in the following embodiment also) The same).
[0026]
According to the present embodiment configured as described above, the rigid connection portion of the steel girder 1 and the pier P is covered with the steel shell and no stud is provided, so that the reinforcing bar of the rigid connection portion can be omitted. In addition, this makes it possible to improve the workability of concrete placement.
Further, as shown in FIG. 7, since the elastic body 8 is interposed in a portion where excessive supporting stress is generated on the pier P by the lower flange 1c of the steel girder 1, the supporting stress acting on the pier P is elastic. 8 can be received flexibly, and since the supporting pressure can be received by the adhesion resistance of the steel pipe 10 before the elastic body 8 is completely indented, the supporting stress exceeding the limit value can act on the pier surface. Can be prevented. Furthermore, since the main girder G is adhered and joined to the pier P, construction errors of the pier P can be absorbed to some extent.
[0027]
Embodiment 2
8 is a schematic front view of a joining structure of a main girder and a pier according to Embodiment 2 of the present invention, FIG. 9 is a plan view of FIG. 8, and this embodiment is a joining structure of a number of steel girders and piers. It is about. The same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted or simply performed.
[0028]
In the figure, 11 is an outer steel girder constituting the main girder G installed on both sides in the direction perpendicular to the horizontal axis, and 11A is an inner steel girder constituting the main girder G installed between the outer steel girders 11.
As shown in FIG. 10, the outer steel girder 11 has a pair of horizontal girder upper flanges 12a made of a rectangular steel plate slightly above the central part in the vertical direction of the inner surface of the steel web 11a having an I-shaped cross section. Is orthogonal to the web 11a and joined by welding at a predetermined interval in the bridge axis direction, and the lower flange 11c of the steel girder 11 faces the upper flange 12a of the horizontal girder and is substantially the same as this. A cross beam lower flange 12b made of the same material as the shape is joined by welding.
[0029]
13a and 13b are arranged in the vicinity of both outer end portions of the cross beam upper flange 12a and the cross beam lower flange 12b so as to be orthogonal to the web 11a of the steel beam 11 between them, and the cross beam upper flange 12a and the cross beam lower It is a horizontal flange made of a steel plate welded to the flange 12b and the web 11a of the steel girder 11.
[0030]
The inner steel girder 11A has substantially the same structure as that of the outer steel girder 11. However, a horizontal girder upper flange 12a, a horizontal girder lower flange 12b, and horizontal flanges 13a and 13b are respectively provided at corresponding positions on both surfaces of the web 11a. Yes.
Reference numeral 8 denotes an elastic body provided in the supporting stress dominant portion on the lower surface of the lower flange 11c of the steel girders 11 and 11A.
[0031]
14a and 14b are between the outer steel girder 11 and the inner steel girder 11A, the inner steel girder 11A and 11A, and the inner steel girder 11A and the outer steel girder 11 between the upper girder flange 12a and the lower girder lower flange 12b. These are cross-girder connecting plates that are respectively disposed and joined together by the attachment plate 7a.
As shown in FIG. 11, the cross beam connecting plates 14 a and 14 b are provided with through holes 14 c on the same vertical line, and the through holes 14 c are fitted to the steel pipe 10 having an inner diameter that can be fitted to the main steel frame 20. The upper cross beam connecting plate 14a is welded to the upper end of the steel pipe 10, and the lower cross beam connecting plate 14b is welded to the steel pipe 10 at a position corresponding to the lower beam lower flange 12b. .
[0032]
Reference numeral 15 denotes a horizontal flange connecting plate corresponding to the horizontal flanges 13a and 13b of the steel beams 11 and 11A and welded between the horizontal beam connecting plates 14a and 14b.
Sp is a web 1a of each adjacent steel girder 11 and 11A, 11A and 11A, a cross girder upper flange 12a, a cross girder lower flange 12b, a cross girder connecting plates 14a and 14b, and a side flange 13a and 13b, and a cross girder connecting plate 15a. , 15b.
51 is concrete cast between the lower pier P 1 and the lower surface of the main girder G, and is integrated with the lower pier P 1 to construct the pier P. 52 is concrete filled in the steel pipe 10, and 53 is concrete placed in the space region Sp.
[0033]
Next, an example of the construction procedure of the present embodiment as described above will be described.
In this case, the outer steel girder 11 and the inner steel girder 11A are assembled in advance in a factory or the like by joining a horizontal girder upper flange 12a, a horizontal girder lower flange 12b, and horizontal flanges 13a and 13b as shown in FIG. Further, as shown in FIG. 11, it is assumed that cross beam flanges 14 a and 14 b and a horizontal flange connecting plate 15 are joined to the steel pipe 10.
[0034]
First, as shown in FIG. 8, the lower part of the main steel frame 50 is embedded at a predetermined interval, and the lower pier P 1 is constructed.
Then, the bridge axis direction of the pair of main steel 50 protruding from the lower piers P 1, cross beams connecting plate 14a, is 14b and the horizontal flange connecting plate 15 fitted to the steel pipe 10 provided. At this time, the lower end of the steel pipe 10 is brought into contact with the upper surface of the lower pier P 1 for positioning. If necessary, a spacer or the like is inserted between the lower pier P 1 and the lower end portion of the steel pipe 10, and the upper end portions of the respective steel pipes 10, and therefore the upper surfaces of the upper cross beam connecting plates 14a and 14b are flush with each other. Adjust as follows.
[0035]
Next, one outer steel girder 11 is lifted by a crane, for example, and the upper girder upper flange 12a, the lower girder lower flange 12b, and the horizontal flanges 13a and 13b are provided on a pair of steel pipes 10 installed in the bridge axis direction. The cross beam connecting plates 14a and 14b and the horizontal flange connecting plate 15 are aligned with each other, and are joined together by the connecting plates 7a and 7b. Similarly, the upper and lower cross-girder connecting plates 14a and 14b provided on the steel pipe 10 are connected to the cross-girder upper flange 12a, the cross-girder lower flange 12b, and the horizontal flanges 13a and 13b of the other outer steel girder 11 and inner steel girder 11A. The main girder G is formed by integrally joining the horizontal flange 15 by means of the attachment plates 7a and 7b. In this case, the inner steel beam 11A may be connected to the steel pipe 10 first.
[0036]
As in the case of the first embodiment, concrete 51, 52, 53 is placed between the lower pier P 1 and the lower surface of the main girder G, in the steel pipe 10 and in the space region Sp, respectively. It is rigidly connected to the pier P.
Thus, the main girder G is rigidly coupled to the pier P. In addition, said construction procedure shows an example and can be suitably changed with the scale of a bridge, the condition of a construction site, etc.
According to the present embodiment, the same effect as in the first embodiment can be obtained.
[0037]
Embodiment 3
FIG. 12 is a schematic front view of a joint structure between a main girder and a pier according to Embodiment 3 of the present invention, and FIG. 13 is a plan view thereof. In the present embodiment, a steel box girder is used as a steel girder, and the steel box girder and a bridge pier are rigidly coupled. The same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted or simply performed.
[0038]
In the figure, 21 is a pair of steel box girders constituting a main girder G opposed to each other in the direction perpendicular to the horizontal axis. As shown in FIG. 14, there is a front and rear (bridge axis direction) between the upper steel plate 22a and the lower steel plate 22b. The diaphragms 23a and 23b made of a steel plate are joined by welding to the inner side from the ends of the steel plate), and the side plates 24a and 24b made of steel plate are joined by welding to both sides (in the direction perpendicular to the bridge axis) of the diaphragms 23a and 23b. Yes. Reference numeral 25 denotes a middle steel plate disposed in parallel with the upper steel plate 22a slightly below the upper steel plate 22a in an area surrounded by the diaphragms 23a, 23b and the side plates 24a, 24b, and the periphery thereof is the diaphragms 23a, 23b and the side plates 24a. , 24b are welded to the inner walls.
[0039]
26a is a horizontal girder upper flange made of a steel plate welded and joined at right angles to the side plate 24b at a position corresponding to the middle steel plate 25 on the outer surface of one side plate (24b in this case), and 26b is a horizontal girder on the lower steel plate 22b. The transverse girder lower flanges 27a and 27b made of steel plates welded and joined to the flange 26a are transverse flanges made of steel plates welded to both ends of the transverse girder upper flange 26a and the transverse girder lower flange 26b.
[0040]
Reference numeral 25a denotes a plurality of through holes provided in the middle steel plate 25 in the vicinity of the diaphragms 23a and 23b (in the figure, three holes are provided in the direction perpendicular to the bridge axis), and 25b passes through the lower steel plate 22b. This is a through hole provided to face the hole 25a.
The steel pipe 10 is inserted into the through holes 25b and 25a, and the upper end portion is rigidly joined to the middle steel plate 25 and the lower portion is rigidly joined to the lower steel plate 22b by welding.
[0041]
28a and 28b are cross beam connecting plates, and 29a and 29b are horizontal flange connecting plates. The cross beam upper flange 26a, the cross beam lower flange 26b, and the horizontal flange 27a of the steel box girder 21 which are opposed to each other by the attachment plates 7a and 7b. , 27b are integrally joined.
30 and below the horizontal girder the connecting plate 28a, arranged to 28b, the lower piers P 1 and one or more concrete for pouring concrete between the main girder G設穴, the upper steel plate 22a 31 A concrete placement hole 32 is provided in a position opposite to the steel pipe 10 to fill the steel pipe 10 with concrete, and a concrete placement hole 32 is provided in the upper steel plate 22 a to put the concrete into the steel box girder 21. A hole 33 is a concrete placement hole provided in the middle steel plate 25 for pouring concrete into the inside.
[0042]
Next, an example of the construction procedure of this embodiment will be described. In this case, it is assumed that the steel box girder 21 as shown in FIG. 14 is assembled in advance at a factory or the like.
First, as shown in FIG. 12, fitting the steel pipe 10 provided in the steel box girder 21 in the main steel 50 of the bridge axis protruding from the bottom pier P 1 pair (a pair in each three). At this time, a state where the lower end portion of the steel pipe 10 on the upper surface of the lower pier P 1 abuts the steel box girder 21 is positioned resting on the lower piers P 1. Similarly, the other steel box girder 21 is installed by fitting the steel pipe 10 to the main steel frame 50 provided opposite to the main steel frame 50 in the direction perpendicular to the bridge axis, and the pair of steel box girders 21 are arranged to face each other. To do. If necessary, a spacer or the like is inserted between the lower pier P 1 and the lower end of the steel pipe 10 so that the upper surface of the upper steel plate 22a of the opposing steel box girder 21 is positioned on the same plane.
[0043]
In this state, the horizontal flange connecting plates 29a and 29b are joined to the front and rear horizontal flanges 27a and 27b of the oppositely installed steel box girders 21 by the attachment plate 7b, and the left and right horizontal girder upper flanges 26a and the lower girder are joined. The cross beam connecting plates 28a and 28b are joined to the flange 26b by the attachment plate 7a.
[0044]
Next, the concrete 51 is thrown in between the lower concrete pier P 1 and the lower surface of the main girder G through the concrete placement hole 30, and the two are integrated to construct the pier P. Next, the concrete 53 is filled into the steel pipe 10 through the concrete placement hole 31 provided in the upper steel plate 22a, and the concrete is placed in the steel box girder 21 from the concrete placement holes 32 and 33 provided in the upper steel plate 22a and the middle steel plate 25. The main girder G and the pier P are integrated and rigidly connected.
As described above, the main girder G made of the steel box girder 21 is rigidly coupled to the pier P. In addition, said construction procedure shows an example and can be suitably changed with the scale of a bridge, the condition of a construction site, etc.
According to the present embodiment, substantially the same effect as in the first embodiment can be obtained.
[0045]
Embodiment 4
15 is a schematic front view of a joining structure of a main girder and a pier according to Embodiment 4 of the present invention, and FIG. 16 is a plan view thereof. In this embodiment, a main girder is constituted by a steel girder and a cross girder of a multi-chamber cell structure, and this main girder is joined to a bridge pier. The same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted or simply performed.
[0046]
In the figure, 41 is a steel girder having an H-shaped cross section, which is oppositely installed in the direction perpendicular to the bridge axis, and constitutes the main girder G. As shown in FIG. Two steel plates 43a, 43b and 43c, 43d are welded and joined at a predetermined interval from the upper part of the direction slightly upward to the lower flange 1c, and the steel plates 43a and 43b, 43c and 43d, respectively. Between the web 41a of the steel girder 41 and the partition wall 44, cell chambers 45a and 46a are respectively formed. .
[0047]
47a and 47b are connecting cells that connect between the fixed cells 42a and 42b of the steel girder 41 that are installed opposite to each other. From the steel plates that are disposed at the same height and the same interval as the steel plates 43a to 43d of the fixed cells 42a and 42b. The two connecting plates 48a, 48b and 48c, 48d and the partition wall 44 welded and joined between the connecting plates 48a, 48b and 48c, 48d, respectively, thereby providing a plurality of cell chambers 45b, 45c, 45d. , 46b, 46c, and 46d (in the figure, three cell chambers are provided by two partition walls).
[0048]
Further, in the present embodiment, among the main steel 50 provided in the lower piers P 1, the upper end portion of the main steel 50 is located under the steel girder 41 has its lower surface (elastic when installed steel girder 41 A plurality of main steel frames 50a to 50e provided between the upper ends of the fixed cells 42a and 42b when the steel girders 41 are installed. ing.
[0049]
Next, an example of the construction procedure of this embodiment will be described. It is assumed that fixed cells 42a and 42b are joined to the steel girder 41 in advance at the factory or the like and assembled, and the connecting cells 47a and 47b are also assembled at the factory or the like. Further, it assumed to be erected main steel 50,50a~50e is embedded in the lower piers P 1.
[0050]
First, one steel girder 41 is lifted by a crane or the like, its cell chambers 45a, 46a are inserted into two main steel frames 50a in the bridge axis direction, and the lower flange 41c is a main steel frame adjacent to the outside of the main steel frame 50a. 50. At this time, a slight gap is formed between the lower surface of the lower flange 41 c (including the elastic body 8) of the steel beam 41 and the upper end portion of the main steel frame 50. Similarly, the cell chambers 45e and 46e of the other steel beam 41 are inserted into the main steel frame 50e, and the lower flange 41c is positioned on the main steel frame 50 adjacent to the outside of the main steel frame 50e.
[0051]
Next, the cell chambers 45b, 45c, and 45d of one of the connection cells 47a are inserted into the main steel frames 50b, 50c, and 50d, arranged between the fixed cells 42a of the steel girders 41, positioned, and then the attachment plate 7b. Are joined together. Similarly, the other connecting cell 47b is joined to the fixed cell 42b by the attachment plate 7b to constitute the main girder G. Thereby, the multi-chamber cell cross beam 40a, 40b is comprised between the both steel beams 41. FIG.
[0052]
Next, concrete 51 is cast between the lower steel pier P 1 and the main girder G between the steel girders 41 and the multi-chamber cell horizontal girders 40a and 40b, and the two are integrated to construct the pier P. Next, concrete 53 is placed in the space region Sp formed by the steel beams 41 and the multi-chamber cell cross beams 40a and 40b until the upper surface thereof becomes substantially equal to the upper ends of the multi-chamber cell cross beams 40a and 40a. . Furthermore, each cell chamber 45a-45e, 46e-46e is filled with concrete 55, these are integrated, and the main girder G is rigidly connected to the pier P.
[0053]
In the above description, the case where the main steel frames 50a to 50e are inserted into the cell chambers 45a to 45e and 46a to 46e of the multi-chamber cell cross beams 40a and 40b, respectively, is shown. Some may be omitted. Moreover, it is desirable to provide protrusions on the inner surfaces of the multi-chamber cell cross beams 40a and 40b in order to increase the adhesion of concrete. In addition, although the case where the concrete 53 was poured in the space area | region Sp formed of the steel beam 41 and the multi-chamber cell horizontal beam 40a, 40b was shown, you may abbreviate | omit concrete placement of this part.
According to the present embodiment, substantially the same effect as in the first embodiment can be obtained.
[0054]
As mentioned above, although Embodiment 1-4 of this invention was demonstrated, these may each be implemented independently and may be implemented in combination suitably.
[0055]
【Example】
Next, an example of the first embodiment (mainly dimensional relationship of each part) will be described. The steel girder 1 is made of H-shaped steel with a height of 2.5 m, a web 1 a thickness of 25 mm, upper and lower flanges 1 b and 1 c of 0.65 m, and a thickness of 50 mm. The distance between the steel girders 1 is 5 0.5 m. Further, the width of the cross beam upper flange 2a provided on the web 1a of the steel plate 1 is 0.5 m, the plate thickness is 25 mm, the width of the cross beam lower flange 2b is 0.285 m, the plate thickness is 25 mm, and the vertical distance between them is 2 m. The plate thickness of the lateral flanges 3a and 3b was 19 mm.
[0056]
Further, the steel pipe 10 was used having an outer diameter of 0.5 m, a plate thickness of 6 mm, and a height of 2 m, and protrusions provided on the inner and outer surfaces. The plate thickness of the attachment plates 7a and 7b was 8 mm, the elastic body 8 was made of chloroprene rubber, and the plate thickness was 5 mm.
The cross section of the pier P was 7.5 m in the direction perpendicular to the bridge axis, 3 m in the bridge axis direction, the main steel frame 50 was H350 × 350 × 12 × 19, and the height was 30 m.
The steel girder 1 is created by welding and joining the members having the above dimensions, the steel pipe 10 is inserted into the main steel frame 50 whose lower part is embedded in the lower pier P 1, and concretes 51 to 53 are respectively placed. As a result of rigidly connecting the main girder G composed of a pair of steel girders 1 and the like to the pier P, it was possible to construct it in a short time.
[0057]
【The invention's effect】
According to the joining structure and method of joining the main beam and the reinforced concrete pier according to the present invention, rigid connection portion between the pier and the main girder is covered with a steel shell containing steel (or multi-chamber cell crossbeam), and a stud Since it is not used, it is possible to omit the band reinforcement of the rigid connection portion, so that not only the labor of arranging the bars can be saved, but also the workability at the time of placing the concrete can be improved.
[0058]
Also, the supporting stress acting on the pier is softly received by the elastic body provided on the lower surface of the steel girder, and the supporting pressure is received by the adhesion resistance of the steel pipe (or multi-chamber cell girder) before the elastic body is completely crushed. Therefore, the bearing stress exceeding the limit value does not act on the pier surface, and the concrete in this portion does not peel off.
To further deposited joined main beam and the pier, it is possible to absorb some of the construction errors of the piers.
[Brief description of the drawings]
FIG. 1 is a schematic front view of a joint structure between a steel girder and a reinforced concrete pier according to Embodiment 1 of the present invention.
FIG. 2 is a plan view of FIG.
FIG. 3 is a side view of FIG. 1;
FIG. 4 is a perspective view of the steel girder of FIG.
FIG. 5 is an explanatory diagram of a construction procedure according to the first embodiment.
6 is an explanatory diagram of a construction procedure according to Embodiment 1. FIG.
7 is a cross-sectional view taken along the line AA in FIG.
FIG. 8 is a schematic front view of a joint structure between a steel girder and a reinforced concrete pier according to Embodiment 2 of the present invention.
9 is a plan view of FIG. 8. FIG.
FIG. 10 is a perspective view of the steel girder of FIG.
11 is a perspective view of the steel pipe of FIG. 8. FIG.
FIG. 12 is a schematic front view of a joint structure between a steel girder and a reinforced concrete pier according to Embodiment 3 of the present invention.
FIG. 13 is a plan view of FIG.
14 is a perspective view of the steel box girder of FIG. 12. FIG.
FIG. 15 is a schematic front view of a joint structure between a steel girder and a reinforced concrete pier according to Embodiment 4 of the present invention.
16 is a plan view of FIG. 15. FIG.
FIG. 17 is a perspective view of the steel beam and connection cell of FIG.
FIG. 18 is an explanatory diagram of a bridge for carrying out the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Steel girder 2a Horizontal girder upper flange 2b Horizontal girder lower flange 3a Horizontal flange 4a Horizontal girder connecting plate 4b Horizontal flange connecting plate 7a, 7b Connecting plate 8 Elastic body 10 Steel pipe 11 Outer steel girder 11A Inner steel girder 21 Steel box girder 40a , 40b Multi-chamber cell cross beams 42a, 42b Fixed cells 45a-45e, 46a-46e Cell chambers 47a, 47b Connection cell 50 Main steel frame P1 Lower bridge pier P Bridge pier G Main beam

Claims (8)

橋梁の主桁と鉄筋コンクリートからなる橋脚との接合構造であって、
前記橋脚は上部が下部橋脚から突出し、橋軸直角方向に対向配置されかつ橋軸方向に所定の間隔で設けられた主鉄骨を有し、
前記主桁を構成する対向配置された鋼桁には前記橋脚に設けた主鉄骨に対応して鋼管が一体に設けられ、
前記鋼管を前記主鉄骨の突出部にこれを覆うように嵌合し、前記下部橋脚と主桁との間にコンクリートを打設すると共に、前記鋼管内にコンクリートを充填して、前記主桁を橋脚に剛結合したことを特徴とする主桁と鉄筋コンクリート橋脚との接合構造。
It is a joint structure between the main girder of the bridge and the pier made of reinforced concrete,
The pier has a main steel frame whose upper portion protrudes from the lower pier, is opposed to the direction perpendicular to the bridge axis, and is provided at predetermined intervals in the bridge axis direction,
A steel pipe is integrally provided corresponding to the main steel frame provided on the pier in the steel girders arranged to face the main girder,
The steel pipe is fitted to the projecting portion of the main steel frame so as to cover the steel pipe , concrete is placed between the lower pier and the main girder, and the steel pipe is filled with concrete, and the main girder is A joint structure between a main girder and a reinforced concrete pier, characterized by being rigidly connected to the pier.
前記鋼桁に一体に設けた鋼管に代えて、対向配置された鋼桁を連結する連結板に鋼管を設けたことを特徴とする請求項1記載の主桁と鉄筋コンクリート橋脚との接合構造。  The joining structure of a main girder and a reinforced concrete bridge pier according to claim 1, wherein a steel pipe is provided on a connecting plate that connects steel girders arranged opposite to each other in place of the steel pipe integrally provided on the steel girder. 前記鋼桁がI形断面の鋼桁又は鋼箱桁であることを特徴とする請求項1記載の主桁と鉄筋コンクリート橋脚との接合構造。  The joining structure of a main girder and a reinforced concrete bridge pier according to claim 1, wherein the steel girder is a steel girder or a steel box girder having an I-shaped cross section. 橋梁の主桁と鉄筋コンクリートからなる橋脚との接合構造であって、
前記橋脚は上部が下部橋脚から突出し、橋軸直角方向に対向配置されかつ橋軸方向に所定の間隔で設けられた主鉄骨を有し、
前記主桁を構成する対向配置された鋼桁の間には前記主鉄骨に対応してセル室が設けられた多室セル横桁が対向して接合され、
前記多室セル横桁のセル室を前記主鉄骨の突出部にこれを覆うように嵌合し、前記下部橋脚と主桁との間にコンクリートを打設すると共に、前記セル室内にコンクリートを充填して前記主桁を橋脚に剛結合したことを特徴とする主桁と鉄筋コンクリート橋脚との接合構造。
It is a joint structure between the main girder of the bridge and the pier made of reinforced concrete,
The pier has a main steel frame whose upper part protrudes from the lower pier, is opposed to the direction perpendicular to the bridge axis, and is provided at predetermined intervals in the bridge axis direction,
A multi-chamber cell cross beam provided with a cell chamber corresponding to the main steel frame is oppositely joined between the steel beams arranged opposite to each other constituting the main beam,
The cell chamber of the multi-chamber cell cross beam is fitted to the projecting portion of the main steel frame so as to cover it, and concrete is placed between the lower pier and the main girder, and the cell chamber is filled with concrete. And the joining structure of the main girder and the reinforced concrete pier characterized by rigidly connecting the main girder to the pier.
前記鋼桁の下フランジの支圧応力卓越部に弾性体を設置したことを特徴とする請求項1〜4のいずれかに記載の主桁と鉄筋コンクリート橋脚との接合構造。  The joint structure of the main girder and the reinforced concrete bridge pier according to any one of claims 1 to 4, wherein an elastic body is installed at the bearing stress dominant portion of the lower flange of the steel girder. 橋梁の主桁と鉄筋コンクリートからなる橋脚との接合方法であって、
下部が下部橋脚に埋設された主鉄骨の上部に、鋼桁又は鋼箱桁に前記主鉄骨に対応して設けられた鋼管を嵌合して前記鋼桁又は鋼箱桁を対向配置し、連結板で連結して主桁を構成する工程と、
前記下部橋脚と主桁との間にコンクリートを打設して両者を一体化する工程と、
前記鋼管内にコンクリートを充填する工程とを含み、
前記主桁を橋脚に剛結合することを特徴とする主桁と鉄筋コンクリート橋脚との接合方法。
A method of joining a bridge main girder and a pier made of reinforced concrete,
The steel girder or steel box girder is placed opposite to the steel girder or steel box girder by fitting a steel pipe provided corresponding to the main steel frame to the upper part of the main steel frame with the lower part embedded in the lower pier. Connecting the plates to form the main girder;
Placing the concrete between the lower pier and the main girder and integrating them ;
Filling the steel pipe with concrete,
A method for joining a main girder to a reinforced concrete pier, wherein the main girder is rigidly coupled to the pier.
橋梁の主桁と鉄筋コンクリートからなる橋脚との接合方法であって、
下部が下部橋脚に埋設された主鉄骨の上部に、連結板が設けられた鋼管を嵌合する工程と、
前記鋼管の両側に鋼桁を設置して該鋼桁と前記連結板とを接合して主桁を構成する工程と、
前記下部橋脚と主桁との間にコンクリートを打設して両者を一体化する工程と、
前記鋼管内にコンクリートを充填する工程とを含み、
前記主桁を橋脚に剛結合することを特徴とする主桁と鉄筋コンクリート橋脚との接合方法。
A method of joining a bridge main girder and a pier made of reinforced concrete,
Fitting the steel pipe provided with the connecting plate on the upper part of the main steel frame with the lower part embedded in the lower pier;
Installing a steel girder on both sides of the steel pipe and joining the steel girder and the connecting plate to form a main girder;
Placing the concrete between the lower pier and the main girder and integrating them ;
Filling the steel pipe with concrete,
A method for joining a main girder to a reinforced concrete pier, wherein the main girder is rigidly coupled to the pier.
橋梁の主桁と鉄筋コンクリートからなる橋脚との接合方法であって、
下部が下部橋脚に埋設された主鉄骨の上方に鋼桁を対向配置する工程と、
該対向配置された鋼桁を、セル室を前記下部橋脚から突出した主鉄骨に嵌合した多室セル横桁で連結して主桁を構成する工程と、
前記下部橋脚と主桁との間にコンクリートを打設して両者を一体化する工程と、
前記セル室にコンクリートを充填する工程とを含み、
前記主桁を橋脚に剛結合することを特徴とする主桁と鉄筋コンクリート橋脚との接合方法。
A method of joining a bridge main girder and a pier made of reinforced concrete,
A step of placing a steel girder facing the upper part of the main steel frame with the lower part buried in the lower pier,
Connecting the steel girders arranged opposite to each other with a multi-chamber cell cross beam fitted to a main steel frame protruding from the lower pier, and constituting a main girder;
Placing the concrete between the lower pier and the main girder and integrating them;
Filling the cell chamber with concrete,
A method of joining a main girder and a reinforced concrete pier, wherein the main girder is rigidly coupled to the pier.
JP2002148472A 2002-05-23 2002-05-23 Joint structure and joining method of main girder and reinforced concrete pier Expired - Lifetime JP3906742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002148472A JP3906742B2 (en) 2002-05-23 2002-05-23 Joint structure and joining method of main girder and reinforced concrete pier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002148472A JP3906742B2 (en) 2002-05-23 2002-05-23 Joint structure and joining method of main girder and reinforced concrete pier

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006292112A Division JP4086079B2 (en) 2006-10-27 2006-10-27 Joint structure and joining method of main girder and reinforced concrete pier

Publications (2)

Publication Number Publication Date
JP2003336215A JP2003336215A (en) 2003-11-28
JP3906742B2 true JP3906742B2 (en) 2007-04-18

Family

ID=29706260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002148472A Expired - Lifetime JP3906742B2 (en) 2002-05-23 2002-05-23 Joint structure and joining method of main girder and reinforced concrete pier

Country Status (1)

Country Link
JP (1) JP3906742B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4548311B2 (en) * 2005-11-09 2010-09-22 Jfeエンジニアリング株式会社 Abutment structure of composite ramen bridge
KR102105680B1 (en) * 2017-12-19 2020-04-28 에스오씨기술지주 주식회사 Integrated junction structure of continuous type girder and pier
CN108532448A (en) * 2018-07-04 2018-09-14 深圳市市政设计研究院有限公司 A kind of concrete circular stub consolidates connecting structure with girder steel

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142405B2 (en) * 1972-10-06 1976-11-16
JPH0355610Y2 (en) * 1987-02-25 1991-12-11
JPH0718130B2 (en) * 1990-08-03 1995-03-01 首都高速道路公団 Compound pier
JPH05311746A (en) * 1992-05-07 1993-11-22 Nippon Steel Corp Concrete-filled steel pipe structure
JPH06313303A (en) * 1993-04-30 1994-11-08 Toshiaki Ota Bridge pier structure
JP3022107B2 (en) * 1993-12-06 2000-03-15 株式会社大林組 Lap joint structure of steel pipe in steel pipe / concrete composite column
JPH08302619A (en) * 1995-04-30 1996-11-19 Nippon Steel Corp Joint structure for composite members
JPH08302919A (en) * 1995-05-02 1996-11-19 Kubota Corp Insulating panel with ventilating function
JPH09177030A (en) * 1995-12-26 1997-07-08 Sumitomo Heavy Ind Ltd Bridge of vertically integrated mixed rigid frame structure
JPH10121451A (en) * 1996-10-16 1998-05-12 Tadaaki Toriyama Structure
JP4136049B2 (en) * 1998-02-23 2008-08-20 前田建設工業株式会社 Concrete pier construction method
JP3660826B2 (en) * 1999-05-12 2005-06-15 新日本製鐵株式会社 Rigid structure of upper and lower composite members
JP3832327B2 (en) * 2001-12-04 2006-10-11 Jfeエンジニアリング株式会社 Joint structure of steel girder and reinforced concrete pier
JP2003313815A (en) * 2002-04-19 2003-11-06 Nippon Steel Corp Rigid connecting structure between steel girder and steel pipe pier

Also Published As

Publication number Publication date
JP2003336215A (en) 2003-11-28

Similar Documents

Publication Publication Date Title
KR101600845B1 (en) The horizontal structural frame and the underground construction methods using it
KR100839439B1 (en) Moment connection structure combining a superstructure with substructure in the prefabricated rahmen bridge and method constructing rahmen bridge with the structure
KR20200143987A (en) Reinforcement unit for support point of steel girder and construction method thereof
JP4086079B2 (en) Joint structure and joining method of main girder and reinforced concrete pier
JP4002771B2 (en) Continuous girder structure of existing simple girder bridges
JPH03250130A (en) Constructing method using reinforced steel framed reinforced half-precast concrete beam without main reinforcing steel
JP3906742B2 (en) Joint structure and joining method of main girder and reinforced concrete pier
JP2004027609A (en) Construction method for subterranean structure and subterranean structure
KR101426155B1 (en) The hybrid rahmen structure which can add prestress on steel girder of horizontal member by gap difference of connection face between vertical member and steel girder of horizontal member
JP3994873B2 (en) Joining structure and joining method of steel main girder and pier
JPH0431573A (en) Reinforced concrete anti-seismic wall construction
JP3230305B2 (en) Construction method of steel plate concrete wall
KR102330481B1 (en) Semiconductor factory structure using grill beam structure
JP2001172917A (en) Upper structure of bridge or the like, and its construction method
JP3967953B2 (en) Construction method of steel solid ramen viaduct
JP2003041516A (en) Integral structure of upper and lower parts of continuous girder bridge and method of constructing it
JPH0762740A (en) Joint method for precast steel framed reinforced concrete construction pillar and beam
CN113668931B (en) Prefabricated self-adaptive vertical deformation concrete structure system and construction method thereof
KR20100038545A (en) Steel concrete composite crossbeam and construction method using the same
JPH056322Y2 (en)
JP2001200608A (en) Upper structure of bridge or the like and construction method therefor
JP2713139B2 (en) Floor method using steel assembly as beam form
JP3749935B2 (en) Column and beam construction method and enclosure
JPH11172689A (en) Anchoring method of leg section of steel-framed column
JPH02236328A (en) Construction method for super-highrice building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070108

R150 Certificate of patent or registration of utility model

Ref document number: 3906742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

EXPY Cancellation because of completion of term
R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370