JP3906549B2 - 液体金属イオンスラスタ - Google Patents

液体金属イオンスラスタ Download PDF

Info

Publication number
JP3906549B2
JP3906549B2 JP03714498A JP3714498A JP3906549B2 JP 3906549 B2 JP3906549 B2 JP 3906549B2 JP 03714498 A JP03714498 A JP 03714498A JP 3714498 A JP3714498 A JP 3714498A JP 3906549 B2 JP3906549 B2 JP 3906549B2
Authority
JP
Japan
Prior art keywords
ion
electrode
needle
heater
liquid metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03714498A
Other languages
English (en)
Other versions
JPH11230024A (ja
Inventor
敏之 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP03714498A priority Critical patent/JP3906549B2/ja
Publication of JPH11230024A publication Critical patent/JPH11230024A/ja
Application granted granted Critical
Publication of JP3906549B2 publication Critical patent/JP3906549B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0006Details applicable to different types of plasma thrusters
    • F03H1/0012Means for supplying the propellant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/26Ion sources; Ion guns using surface ionisation, e.g. field effect ion sources, thermionic ion sources

Description

【0001】
【発明の属する技術分野】
この発明は、宇宙航行体に搭載して推力を発生する液体金属イオンスラスタに関するものである。
【0002】
【従来の技術】
図15は宇宙航行体に搭載して推力を発生する従来のイオンスラスタを示す図であり、図において、1はイオンスラスタ、2はプラズマ生成室、3はガス供給口、4はイオン化されるガス、5はヒーター用電源、6は陰極、7はヒーター、8は電子、9は陰極点火放電維持用電源、10は陰極点火放電維持用電極、11はプラズマ生成室点火放電維持用電源、12は陽極、13は磁石、14はポールピース、15は磁力線、16はプラズマ、17はプラズマ生成室用電源、18は加速グリッド用電源、19は加速グリッド電極、20はスクリーングリッド電極、21はイオン電流である。
【0003】
次に動作について、図15を用いて説明する。まずプラズマ生成室2内にガス供給口3からキセノン等のイオン化されるガス4を導入し、プラズマ生成室2をガス雰囲気とする。次にヒーター用電源5をオンし、陰極6をヒーター7で加熱し、電子8を放出させる。なお陰極には中空陰極を用いることが多い。その場合には中空陰極にもイオン化されるガスを供給し、陰極加熱と同時に陰極点火放電維持用電源9をオンし、陰極点火放電維持用電極10に高電圧を印加する。放電発生と共にプラズマが生成し、陰極が点火する。点火後は陰極中空部に生成したプラズマにより陰極加熱が行われるため、ヒーター7による加熱は停止する。なお陰極点火放電維持用電源9は放電を誘起するために点火前は定電圧モードで動作し、点火後はプラズマ密度を一定とするため定電流モードで動作させる。陰極が点火した後、プラズマ生成室点火放電維持用電源11をオンし、陽極12に高電圧を印加し、放電を発生させる。放電に係る電子電流は陰極6から発生した電子8からなる。電子8は磁石13とポールピース14によってプラズマ生成室2に形成された磁力線15に拘束され、いわゆるラーマー運動をしながら、プラズマ生成室2内のガス密度とガス−電子間の衝突断面積によって決まる平均自由行程程度飛行するとガス粒子4と衝突し、プラズマ16が生成する。なお衝突断面積は電子のエネルギーの関数である。またプラズマ生成室点火放電維持用電源11をプラズマ生成前は定電圧モードで動作させ、プラズマ生成後は定電流モードで動作させることは陰極点火放電維持用電源9と同様である。また、プラズマ生成室2の構造が同じ時、プラズマ密度はほぼガス密度、放電に係る電子のエネルギー、電子密度の積で決まる。プラズマが生成した後、プラズマ生成室用高圧電源17をオンし、プラズマ生成室2全体を1kV程度の正の高電位に浮かし、かつ加速グリッド用高圧電源18をオンし、加速グリッド電極19に負の高電位を印加する。この時プラズマ生成室2と同電位のスクリーングリッド電極20と加速グリッド電極19からなる引出系が形成する正電界によりプラズマ16からイオン電流21が引き出される。推力はイオン電流が噴出することで発生し、その大きさはイオン電流×(2×イオン質量/イオン電荷×引出電圧)1/2 である。ここで引出電圧はスクリーングリッド電極20と加速グリッド電極19に印加される電圧の差である。
【0004】
さて、従来のイオンスラスタでは推力の大きさを変更するためにプラズマ生成室2内のプラズマ密度を変化させたり、引出電圧を変化することで実施していた。イオン電流21はプラズマ密度に比例するため、プラズマ密度を制御することで、イオン電流21すなわち推力を制御できる。プラズマ密度を変化させるには、放電に係る電子電流を増減することで電子密度を増減したり、ガス4の流量を変更してプラズマ生成室2のガス密度を変化することで実施する。また引出電圧を変更することでも推力を変更することができる。スクリーングリッド電極20及び加速グリッド電極19の印加電圧を変更すると、プラズマのイオン放出面に印加される電界強度が変化するため、イオン電流すなわち推力を制御できる。また従来、推力ベクトルの方向を変更するためには、イオンスラスタ1をジンバル機構に設置し、ジンバルを機械的に動かしてイオンスラスタ1の向きを変更することで実施してきた。それは従来のイオンスラスタ1は一枚の電極に多数の孔を開けたイオン電流引出系を用いており、推力ベクトルの方向が一方向であるためである。
【0005】
【発明が解決しようとする課題】
ところがこのように構成されたイオンスラスタ1は推力を発生する際、プラズマからイオンを抽出するため、また一枚の電極に多数の孔を開けたグリッド電極19,20でイオンを抽出するため、宇宙航行体の推進装置として利用するためには次のような問題があった。宇宙航行体に搭載される推進装置は推力が可変であることを要求されることが多い。その時、プラズマ生成室2内のプラズマ密度を変化させたり、グリッド電極19,20に印加する電圧を変化させたりして、イオン電流21を制御する。ところが、低推力に制御する時にガス流量一定で放電電流を低下するとガス利用効率が低下し、イオン電流発生に寄与しない無駄なガス量が増加する。また、放電電流一定でガス流量を低下するとイオン電流に対する放電電力が上昇、すなわち、電力効率が悪化し、電力を有効利用することができない。
【0006】
また、宇宙航行体は推力方向制御を必要とする場合があるが、従来のイオンスラスタは単一のグリッド電極を利用してイオン電流を引き出すため、引出方向を制御することができない。そこで、イオンスラスタ本体をジンバル等に設置し、イオンスラスタの向きを機械的に変更する必要がある。このことはイオンスラスタ以外にジンバル駆動機構、駆動用動力源、制御系等の追加が必要となり、システムの複雑化を招く。
【0007】
この発明は上記のような課題を改善するためになされたものであり、電力効率やガス利用効率を低下させずに推力を可変とし、ジンバル機構を利用すること無しに推力ベクトル方向の変更を可能とするイオンスラスタを提供するものである。
【0008】
【課題を解決するための手段】
第1の発明による液体金属イオンスラスタは、推力を可変にできるように、また、推力ベクトルの方向を変更できるように、イオン化する金属を貯蔵する貯蔵部と、供給孔を有する貯蔵部封止蓋と、貯蔵部封止蓋から突出した針状電極と、貯蔵部に接したヒーターと、貯蔵部封止蓋と対向する位置に針状電極に電界を形成する有孔電極を配したイオン源をマトリックス状に並べたイオン発生部と、ヒーターに電力を供給する電源と、有孔電極に電圧を印加する電源と、ヒーターとヒーター用電源を繋ぐ電気的経路の間にヒーターを選択するスイッチとを具備したものである。
【0009】
第2の発明による液体金属イオンスラスタは、推力を可変にできるように、また、推力ベクトルの方向を変更できるように、イオン化する金属を貯蔵する貯蔵部と、供給孔を有する貯蔵部封止蓋と、貯蔵部封止蓋から突出した針状電極と、貯蔵部に接したヒーターと、貯蔵部封止蓋と対向する位置に針状電極に電界を形成する有孔電極を配したイオン源をマトリックス状に並べたイオン発生部と、ヒーターに電力を供給する電源と、有孔電極及び貯蔵部封止蓋に電圧を印加しイオンを引き出す電源と、貯蔵部封止蓋とイオン引出電源の正極とを繋ぐ電気的経路の間に貯蔵部封止蓋を選択するスイッチと、有孔電極とイオン引出電源の負極とを繋ぐ電気的経路の間に有孔電極を選択するスイッチを具備したものである。
【0010】
第3の発明による液体金属イオンスラスタは、推力を可変にできるように、また、推力ベクトルの方向を変更できるように、イオン化する金属を貯蔵する貯蔵部と、供給孔を有する貯蔵部封止蓋と、貯蔵部封止蓋から突出した針状電極と、貯蔵部封止蓋と対向する位置に針状電極に電界を形成する有孔電極を配したイオン源をマトリックス状に並べたイオン発生部と、有孔電極に電圧を印加する電源と、イオン発生部に電子ビームを照射する電子偏向手段を有した電子発生手段を具備したものである。
【0011】
第4の発明による液体金属イオンスラスタは、推力を可変にできるように、また、推力ベクトルの方向を変更できるように、イオン化する金属を貯蔵する貯蔵部と、供給孔を有する貯蔵部封止蓋と、貯蔵部封止蓋から突出した針状電極と、貯蔵部封止蓋と対向する位置に針状電極に電界を形成する有孔電極を配したイオン源をマトリックス状に並べたイオン発生部と、有孔電極に電圧を印加する電源と、イオン発生部にレーザー光を照射するレーザー偏向手段を有したレーザー発生手段を具備したものである。
【0012】
【発明の実施の形態】
実施の形態1
図1はこの発明の実施の形態1による、イオン化する金属を貯蔵する貯蔵部を独立にヒーター加熱し、イオン化する金属を個々のイオン源の針状電極に供給することで推力可変動作及び推力ベクトル方向変更動作が可能な液体金属イオンスラスタの構成を示す図であり、図において、1はイオンスラスタ、5はヒーター用電源、7はヒーター、21はイオン電流、22はヒーター選択用スイッチ、23は液体金属貯蔵部、25は供給孔を有する貯蔵部封止蓋、26は針状電極、27はイオン引出用電源、28はイオン引出有孔電極である。また図2は液体金属イオン源のイオン発生原理を説明する図であり、24は低融点金属である。また図3は最大推力発生時のヒーター選択用スイッチの設定状態を説明する図である。また図4は推力変更時及び推力ベクトル方向変更時のヒーター選択用スイッチの設定状態を説明する図である。
【0013】
次に動作について図1〜4を用いて説明する。イオンスラスタ1はマトリックス状に配された多数の液体金属イオン源から構成する。個々の液体金属イオン源は液体金属貯蔵部23、貯蔵部封止蓋25、針状電極26、イオン引出有孔電極28、ヒーター7から構成する。ここで貯蔵部封止蓋25とイオン引出有孔電極28はそれぞれの開孔が対向するように配置し、これらは電気的に絶縁している。また針状電極26は貯蔵部封止蓋25の供給孔から突出するように配置し、針状電極26とイオン引出有孔電極28も電気的に絶縁している。マトリックス状に配置された液体金属イオン源の全てのイオン引出有孔電極28は纏めてイオン引出用電源27の負極に接続され、全ての貯蔵部封止蓋25は纏めてイオン引出用電源27の正極に接続する。ヒーター選択スイッチ22の構成は設定と共に後述する。イオンスラスタ1の動作は次のようになる。まずヒーター用電源5をオンし、ヒーター選択用スイッチ22を所定の設定とする。この時イオンを発生する液体金属イオン源のヒーター7のみに通電し、貯蔵部23を加熱する。貯蔵部23に貯蔵された例えばインジウムやガリウム等の低融点金属24は熔融し、貯蔵部封止蓋25の供給孔から針状電極26に供給される。ここでイオン引出用電源27をオンし、イオン引出有孔電極28に負の高電圧、貯蔵部封止蓋25に正の高電圧を印加する。この時貯蔵部封止蓋25と針状電極26は液体金属を介して同電位であるため、針状電極26の針先に高電界が発生する。液体化した金属24は静電力により針先方向に引かれる。一方、液体化した金属には表面張力があり、元の形状を保とうとする。静電力と表面張力とのバランスで、液体化した金属は所謂テーラーコーンと呼ばれる円錐形状を形成する。この時、円錐の頂点部分は更に高電界となり、液体化した金属は電界蒸発し、イオン電流21として引き出される。ここで引き出されるイオン電流は高々数μAである。例えばイオン電流を5μA、引出電圧を1kVとすると、イオンがインジウムであれば18μNに、ガリウムであれば14μNに相当する。この程度の推力は従来のイオンスラスタの数十〜数百mNという推力と比較すると小さいが、液体金属イオン源を数百個×数百個マトリックスに配置することで従来の推力と等価なものを構成できる。
【0014】
次にイオンスラスタのヒーター選択用スイッチ22の設定を図3を用いて説明する。まずヒーター選択用スイッチ22の構成を説明する。ヒーター7には例えば円盤状のカーボンヒーターを用いる。さてヒーター7に通電する電気的経路はヒーター7に電流が流入する経路と電流が流出する経路がある。これら2系統の電気的経路に別個に電流を切断するスイッチを配する。例えばイオン源をN個×N個の液体金属イオン源のマトリックスで形成する場合、電流流入経路に配されるスイッチ、電流流出経路に配されるスイッチは共にN個となる。これらN個の電流流入経路に配されるスイッチとN個の電流流出経路に配されるスイッチをそれぞれ纏めてヒーター選択用スイッチ22a,22bとする。電流流入経路のヒーター選択用スイッチはヒーター用電源5の正極に接続され、電流流出経路のヒーター選択用スイッチはヒーター用電源5の負極に接続される。全イオン源を動作させる場合、ヒーター選択用スイッチ22a及び22bを全閉としておき、ヒーター用電源5をオンする。この時全てのイオン源のヒーター7に通電され貯蔵部が加熱され、全ての針状電極にイオン化する金属が供給される。次にイオン引出用電源27をオンすると全ての針状電極26に高電界が印加され、イオン電流が引き出される。この時がイオンスラスタの最大出力時である。
【0015】
次にイオンスラスタを構成するイオン源を選択的に動作させる場合のヒーター選択用スイッチの設定を図4を用いて説明する。この時が推力可変動作、推力ベクトルの方向変更時である。例えば、7aのヒーターを有する1つのイオン源のみ動作させる場合を説明する。ヒーター選択用スイッチ22aのイ及び22bのロのみ閉とし、その他のスイッチは開としておき、ヒーター用電源5をオンする。この時イオン源7aのヒーターのみ通電されイオン化される金属が針状電極26に供給される。次に引出電源27をオンし、針状電極26に高電界を印加すると7aのヒーターを有するイオン源のみからイオン電流が引き出される。こうした選択動作はヒーター選択用スイッチ22の設定により任意の数のイオン源に対して可能であり、任意の位置に配されたイオン源に対しても可能である。
【0016】
実施の形態2
図5はこの発明の実施の形態2による、イオン引出有孔電極に独立に電圧を印加することで推力可変動作及び推力ベクトルの方向変更動作が可能な液体金属イオンスラスタの構成を示す図であり、図において、1はイオンスラスタ、5はヒーター用電源、7はヒーター、21はイオン電流、23は液体金属貯蔵部、25は供給孔を有する貯蔵部封止蓋、26は針状電極、27はイオン引出用電源、28はイオン引出有孔電極、29は針状電極選択スイッチ、30は引出電極選択スイッチである。また図6は最大推力発生時の針状電極選択スイッチ及び引出電極選択スイッチの設定状態を説明する図である。また図7は推力変更時、推力ベクトルの方向変更時の針状電極選択スイッチ及び引出電極選択スイッチの設定状態を説明する図である。
【0017】
次に動作について図5〜7を用いて説明する。まずイオンスラスタを構成する液体金属イオン源を全て動作させる場合を図5及び図6を用いて説明する。イオンスラスタ1を構成する液体金属イオン源の構成は実施の形態1と同じである。マトリックス状に配置された液体金属イオン源の全てのヒーター7の電流流入経路は纏めてヒーター用電源5の正極に接続し、全ての電流流出経路は纏めてヒーター用電源5の負極に接続する。針状電極選択用スイッチ29と引出電極選択スイッチ30の構成は次のようになる。液体金属イオン源の貯蔵部封止蓋25を行方向に電気的経路で繋ぎ、液体金属イオン源のイオン引出有孔電極28を列方向に電気的経路で繋ぐ。例えばイオン源をN個×N個の液体金属イオン源のマトリックスで形成する場合、貯蔵部封止蓋に係る電気的経路はN本、イオン引出有孔電極に係る電気的経路はN本となる。N×2本の電気的経路は正極、負極を選択するスイッチを介してイオン引出用電源27に接続する。なお針状電極26は液体金属を介して貯蔵部封止蓋25と同電位となる。針状電極26に係る電気的経路の正極/負極選択スイッチを纏めて針状電極選択スイッチ29を構成し、イオン引出有孔電極28に係る電気的経路の正極/負極選択スイッチを纏めて引出電極選択スイッチ30を構成する。イオンスラスタ1の動作は次のようになる。まずヒーター用電源5をオンし、ヒーター7に通電、液体金属貯蔵部23を加熱し、イオン化される金属を溶融し、貯蔵部封止蓋25の供給孔から針状電極26に供給しておく。次に引出用電源27をオンし、イオン引出有孔電極28に高電圧を印加することで針状電極26の先端に高電界を発生させる。この時針状電極選択スイッチ29をイオン引出用電源27の正極に繋ぎ、引出電極選択スイッチ30を引出用電源27の負極に繋ぐ。この時全ての針状電極26に高電界が印加され、イオン電流が引き出される。この時が本スラスタの最大出力時である。
【0018】
次に液体金属イオン源集合体を選択的に動作させる時を図5及び図7を用いて説明する。この時が推力可変動作、推力ベクトルの方向変更時である。まずヒーター電源5をオンし、ヒーター7に通電、液体金属貯蔵部23を加熱し、イオン化される金属を溶融し、溶融した金属が貯蔵部封止蓋25の供給孔から針状電極26に供給するのは最大出力時動作と同様である。例えば、28aのイオン引出有孔電極を有するイオン源のみ動作させる場合を説明する。針状電極選択スイッチ29のイのみをイオン引出用電源27の正極に繋ぎ、その他のスイッチをイオン引出用電源27の負極に繋ぎ、また引出電極選択スイッチ30のロのみをイオン引出用電源27の負極に繋ぎ、その他のスイッチをイオン引出用電源27の正極に繋ぐ。この時イオン引出用電源27をオンすると、イオン引出有孔電極28aを有するイオン源の針状電極26にのみ正の高電界が印加されイオン電流が引き出される。その他のイオン源には負の高電界が印加されるためイオン電流は引き出されない。こうした選択動作は任意の数のイオン源に対して可能であり、また任意の位置に配されたイオン源に対しても可能であることは言う迄もない。
【0019】
実施の形態3
図8はこの発明の実施の形態3による、イオン化する金属を貯蔵する貯蔵部を電子ビームによって独立に加熱することで推力可変動作及び推力ベクトルの方向変更動作が可能な液体金属イオンスラスタの構成を示す図であり、図において、1はイオンスラスタ、21はイオン電流、31は電子ビーム発生装置、32は電子ビーム用陰極、33は引出加速レンズ、34は収束レンズ、35は偏向レンズ、36は電子ビームである。また図9はイオンスラスタの拡大図であり、1はイオンスラスタ、21はイオン電流、23は液体金属貯蔵部、25は貯蔵部封止蓋、26は針状電極、27はイオン引出用電源、28はイオン引出有孔電極である。また図10は偏向レンズを静電偏向レンズで構成した例である。また図11は最大推力発生時の静電偏向レンズ駆動電圧、推力変更時及び推力ベクトルの方向変更時の静電偏向レンズ駆動電圧の例を示す図である。
【0020】
次に動作について図8〜11を用いて説明する。図9でイオンスラスタ1は図1の実施の形態1からヒーター用電源5、ヒーター7及びヒーター選択用スイッチ22を除いたものである。図8で収束レンズ34は電界収束レンズで構成しても電磁収束レンズで構成しても良い。また、偏向レンズ35も静電偏向レンズ、電磁偏向レンズ何れで構成しても良い。収束レンズ34には電子ビーム収束に必要な電場もしくは磁場を形成するため、電界収束レンズの場合は所定の電圧を、電磁収束レンズの場合は所定の電流を印加する。また偏向レンズ35の動作の一例として静電偏向レンズで構成した場合の動作は次のようになる。この時偏向レンズは図10に示すように例えば対向する2組の電極板35a,35bから構成される。さて、電子ビームの偏向距離は偏向板の長さ×偏向板中心からイオンスラスタ迄の距離×偏向板に印加する電圧/(2×偏向板間隔×加速電圧)で表される。従って偏向板35a,35bに印加する電圧を変更することで偏向距離を変更することができ、任意の位置のイオン源に電子ビームを照射、加熱することができる。例えばイオンスラスタ1の全イオン源を加熱するため、図11(A)のように電子ビームを走査する時横方向偏向板35aには図11(a)に示す周期的な駆動電圧波形を印加し、縦方向偏向板35bには横方向偏向板駆動電圧に同期して図11(b)に示す周期的な駆動電圧波形を印加する。ここで電圧VX,VYはそれぞれ横方向偏向距離最大、縦方向偏向距離最大となる位置にあるイオン源に電子ビームを照射するために必要な電圧である。なお偏向距離は偏向板35a,35bに電圧を印加しない時、電子ビームが照射する位置を基準とする。また、イオン源を選択的に動作させる場合には偏向レンズ35の偏向動作を所望のイオン源の貯蔵部のみ走査するようにしておく。例えば図11(B)に示す横方向位置X1からX2、縦方向位置Y1からY2の範囲にあるイオン源を動作させるためには横方向偏向板、縦方向偏向板にそれぞれ図11(c)、図11(d)の駆動電圧を印加する。ここで電圧VX1,VX2,VY1,VY2はそれぞれ横方向偏向距離X1の位置、横方向偏向距離X2の位置、縦方向偏向距離Y1の位置、横方向偏向距離Y2の位置にあるイオン源に電子ビームを照射するために必要な印加電圧である。
【0021】
イオンスラスタ1の全イオン源を動作させる場合の動作は次のようになる。まず電子ビーム発生装置31の電子ビーム用陰極32を加熱し、熱電子がエミッションできる温度とする。また収束レンズ34には所定の電圧もしくは電流を印加し、偏向レンズ35の偏向動作はイオンスラスタ1の全てのイオン源を走査するように設定しておく。ここで引出加速レンズ33に所定の電圧を印加すると、電子ビーム用陰極32から電子ビーム36が引き出される。電子ビーム36は収束レンズ34により加速収束され、偏向レンズ35により全てのイオン源貯蔵部23を加熱するように走査される。電子ビーム照射により、液体金属貯蔵部23が加熱され、イオン化する金属を溶融し、貯蔵部封止蓋25の供給孔から全ての針状電極26に供給される。次に引出用電源27をオンしイオン引出有孔電極28に電圧を印加すると全ての針状電極26に高電界が印加され、イオン電流21が引き出される。また、イオン源を選択的に動作させる場合には偏向レンズ35の偏向動作を所望のイオン源の貯蔵部のみ走査するようにしておく。電子ビーム36は全イオン源を動作させる場合と同様に、加速収束し、偏向レンズを経てイオンスラスタに到達する。この時電子ビームが照射され、液体金属貯蔵部23が加熱されたイオン源のみからイオン電流が引き出される。こうした選択動作は任意の数のイオン源に対して可能であり、任意の位置に配されたイオン源に対しても可能である。
【0022】
実施の形態4
図12はこの発明の実施の形態4による、イオン化する金属を貯蔵する貯蔵部をレーザー光によって独立に加熱することで推力可変動作が可能な液体金属イオンスラスタの構成を示す図であり、図において、1はイオンスラスタ、37はレーザー発生手段、38はレーザー光偏向手段、39はレーザー発振器、40はレーザー光、41は収束レンズである。また図13はレーザー光偏向手段を回転駆動反射鏡で構成した例である。また図14は最大推力発生時の反射鏡駆動角度、推力変更時及び推力ベクトルの方向変更時の反射鏡駆動角度の例を示す図である。
【0023】
次に動作について図9及び図12〜14を用いて説明する。レーザー光偏向手段38は例えば図13に示すように独立に回転駆動することで直交する2軸にレーザー光を照射できる2枚の反射鏡38a,38bで構成する。それぞれの反射鏡の最大回転角度は各軸の最大偏向距離に位置するイオン源にレーザー光を照射するために必要な角度である。イオンスラスタ1の全イオン源を加熱する場合、図14(a)に示す周期的な回転角度で横方向偏向反射鏡38aを回転駆動し、図14(b)に示す周期的な回転角度で縦方向偏向反射鏡38bを回転駆動する。ここで角度Ax,Ayはそれぞれ横方向偏向距離最大、縦方向偏向距離最大となる位置にあるイオン源にレーザー光を照射するために必要な角度である。なお偏向距離は反射鏡38a,38bが共に角度0の時、レーザー光が照射する位置を基準とする。また、イオン源を選択的に動作させる場合にはレーザー偏向手段38の偏向動作を所望のイオン源の貯蔵部のみ走査するようにしておく。例えば横方向位置x1からx2、縦方向位置y1からy2の範囲にあるイオン源を動作させるためには図14(c)の角度で横方向偏向反射鏡、図14(d)の縦方向偏向反射鏡を駆動する。ここで電圧AX1,AX2,AY1,AY2はそれぞれ横方向偏向距離X1の位置、横方向偏向距離X2の位置、縦方向偏向距離Y1の位置、縦方向偏向距離Y2の位置にあるイオン源にレーザー光を照射するために必要な角度である。
【0024】
イオンスラスタ1の全イオン源を動作させる場合の動作は次のようになる。レーザー発生手段37を構成するレーザー偏向手段38の偏向動作はイオンスラスタ1の全てのイオン源を走査するようにしておく。レーザー発振器39から引き出されたレーザー光40は収束レンズ41により収束、レーザー偏向手段38により偏向され、全てのイオン源の貯蔵部23を加熱するように走査される。レーザー光照射により、貯蔵部23は加熱され、イオン化される金属を溶融し、針状電極26に供給される。次にイオン引出用電源27をオンしイオン引出有孔電極28に電圧を印加すると全ての針状電極26に高電界が印加され、イオン電流が引き出される。また、イオン源を選択的に動作させる場合にはレーザー偏向手段37の偏向動作を所望のイオン源の貯蔵部のみ走査するようにしておく。この時はレーザー光が照射され、貯蔵部が加熱されたイオン源のみからイオン電流が引き出される。こうした選択動作は任意の数のイオン源に対して可能であり、任意の位置に配されたイオン源に対しても可能である。
【0025】
【発明の効果】
第1の発明によれば、針状電極と液体金属貯蔵部とヒーターと供給孔を有する貯蔵部蓋とイオン引出有孔電極からなるイオン源を多数並べたイオン発生部と、ヒーター用電源と、イオン引出用電源と、ヒーター選択用スイッチを具備することにより、任意の数および任意の位置のイオン源からイオンビームを発生することが可能となり、電力効率及び推進剤利用効率を低下させることなく、推力を可変にできる効果がある。また、推力発生部の向きを変更する機構を設けなくても推力ベクトルの方向を変更できる効果がある。
【0026】
第2の発明によれば、針状電極と液体金属貯蔵部とヒーターと供給孔を有する貯蔵部封止蓋とイオン引出有孔電極からなるイオン源を多数並べたイオン発生部と、ヒーター用電源と、引出用電源と、針状電極選択スイッチと、引出電極選択スイッチを具備することにより、任意の数および任意の位置のイオン源からイオンビームを発生することが可能となり、電力効率及び推進剤利用効率を低下させることなく、推力を可変にできる効果がある。また、推力発生部の向きを変更する機構を設けなくても推力ベクトルの方向を変更できる効果がある。
【0027】
第3の発明によれば、針状電極と液体金属貯蔵部と供給孔を有する貯蔵部封止蓋とイオン引出有孔電極からなるイオン源を多数並べたイオン発生部と、引出用電源と、電子ビーム偏向手段を有する電子ビーム発生手段を具備することにより、任意の数および任意の位置のイオン源からイオンビームを発生することが可能となり、電力効率及び推進剤利用効率を低下させることなく、推力を可変にできる効果がある。また、推力発生部の向きを変更する機構を設けなくても推力ベクトルの方向を変更できる効果がある。
【0028】
第4の発明によれば、針状電極と液体金属貯蔵部と供給孔を有する貯蔵部封止蓋とイオン引出有孔電極からなるイオン源を多数並べたイオン発生部と、引出用電源と、レーザー偏向手段を有するレーザー発生手段を具備することにより、任意の数および任意の位置のイオン源からイオンビームを発生することが可能となり、電力効率及び推進剤利用効率を低下させることなく、推力を可変にできる効果がある。また、推力発生部の向きを変更する機構を設けなくても推力ベクトルの方向を変更できる効果がある。
【図面の簡単な説明】
【図1】 この発明の実施の形態1を示す液体金属イオンスラスタの構成例を示す図である。
【図2】 この発明の実施の形態1を示す液体金属イオンスラスタの動作原理を説明する図である。
【図3】 この発明の実施の形態1を示す液体金属イオンスラスタの最大推力発生時のヒーター選択スイッチの設定状態を説明する図である。
【図4】 この発明の実施の形態1を示す液体金属イオンスラスタの推力変更時及び推力ベクトルの方向変更時のヒーター選択スイッチの設定状態を説明する図である。
【図5】 この発明の実施の形態2を示す液体金属イオンスラスタの構成例を示す図である。
【図6】 この発明の実施の形態2を示す液体金属イオンスラスタの最大推力発生時の針状電極選択スイッチ、引出電極選択スイッチの設定状態を説明する図である。
【図7】 この発明の実施の形態2を示す液体金属イオンスラスタの推力変更時及び推力ベクトルの方向変更時の針状電極選択スイッチ、引出電極選択スイッチの設定状態を説明する図である。
【図8】 この発明の実施の形態3を示す液体金属イオンスラスタの構成例を示す図である。
【図9】 この発明の実施の形態3を示す液体金属イオンスラスタ部を示す図である。
【図10】 この発明の実施の形態3を示す液体金属イオンスラスタの偏向レンズを静電偏向レンズで構成した液体金属スラスタの構成例を示す図である。
【図11】 この発明の実施の形態3を示す液体金属イオンスラスタの最大推力発生時の静電偏向レンズ駆動電圧例、推力変更時及び推力ベクトルの方向変更時の静電偏向レンズ駆動電圧例を示す図である。
【図12】 この発明の実施の形態4を示す液体金属イオンスラスタの構成例を示す図である。
【図13】 この発明の実施の形態4を示す液体金属イオンスラスタのレーザー光偏向手段を反射鏡で構成した液体金属スラスタの構成例を示す図である。
【図14】 この発明の実施の形態4を示す液体金属イオンスラスタの最大推力発生時の反射鏡駆動角度、推力変更時及び推力ベクトルの方向変更時の反射鏡駆動角度の例を示す図である。
【図15】 従来のイオンスラスタの構成例を示す図である。
【符号の説明】
1 イオンスラスタ
2 プラズマ生成室
3 ガス供給口
4 イオン化されるガス
5 ヒーター用電源
6 陰極
7 ヒーター
8 電子
9 陰極点火放電維持用電源
10 陰極点火放電維持用電極
11 プラズマ生成室点火放電維持用電源
12 陽極
13 磁石
14 ポールピース
15 磁力線
16 プラズマ
17 プラズマ生成室用電源
18 加速グリッド電源
19 加速グリッド電極
20 スクリーングリッド電極
21 イオン電流
22 ヒーター選択用スイッチ
23 液体金属貯蔵部
24 低融点金属
25 貯蔵部封止蓋
26 針状電極
27 イオン引出用電源
28 イオン引出有孔電極
29 針状電極選択スイッチ
30 引出電極選択スイッチ
31 電子ビーム発生装置
32 電子ビーム用陰極
33 引出加速レンズ
34 収束レンズ
35 偏向レンズ
36 電子ビーム
37 レーザー発生手段
38 レーザー光偏向手段
39 レーザー発振器
40 レーザー光
41 収束レンズ

Claims (4)

  1. 宇宙航行体に搭載して推力を発生する液体金属イオンスラスタにおいて、
    イオン化する低融点金属を貯蔵する貯蔵部と、供給孔を有する貯蔵部封止蓋と、上記貯蔵部封止蓋の供給孔から針先が突出した針状電極と、上記貯蔵部にそれぞれ接したヒーターと、上記貯蔵部封止蓋の供給孔と対向する位置に上記針状電極に電界を形成する有孔電極を配したイオン源を
    複数個マトリックス状に並べたイオン発生部と、
    上記ヒーターに電力を供給するヒーター用電源と、
    上記有孔電極に電圧を印加しイオンを引き出すイオン引出用電源と、
    上記ヒーターと上記ヒーター用電源を繋ぐ電気的経路の間に上記複数のイオン源のうち任意のイオン源に対応する上記ヒーターを選択するスイッチとを具備し、
    上記スイッチの選択に応じて、上記選択されたイオン源に対応するヒーターが通電されるとともに、当該ヒータの通電により対応する上記貯蔵部の低融点金属が溶融し液体化されて上記針状電極に供給され、
    上記有孔電極への電圧印加により当該液体化された低融点金属が上記針状電極の針先で電界蒸発し、イオン電流が引き出される、
    ことを特徴とする液体金属イオンスラスタ。
  2. 宇宙航行体に搭載して推力を発生する液体金属イオンスラスタにおいて、
    イオン化する低融点金属を貯蔵する貯蔵部と、供給孔を有する貯蔵部封止蓋と、上記貯蔵部封止蓋の供給孔から針先が突出した針状電極と、上記貯蔵部にそれぞれ接して配置され、上記貯蔵部を加熱し、上記低融点金属を溶融し液体化して上記針状電極に供給するヒーターと、上記貯蔵部封止蓋の供給孔それぞれ対向する位置に上記針状電極に電界を形成する有孔電極を配したイオン源を
    複数個マトリックス状に並べたイオン発生部と、
    上記ヒーターに電力を供給するヒーター用電源と、
    上記有孔電極及び上記貯蔵部封止蓋に電圧を印加しイオンを引き出すイオン引出用電源と、
    上記それぞれの貯蔵部封止蓋と上記イオン引出電源の正極とを繋ぐ電気的経路の間に上記貯蔵部封止蓋を選択する針状電極選択スイッチと、
    上記有孔電極と上記イオン引出電源の負極とを繋ぐ電気的経路の間に上記有孔電極を選択する引出電極選択スイッチとを具備し、
    上記針状電極選択スイッチ及び引出電極選択スイッチによって選択されたイオン源の上記有孔電極への電圧印加により、上記ヒータの加熱により液体化された低融点金属が上記針状電極の針先で電界蒸発し、イオン電流が引き出される、
    ことを特徴とする液体金属イオンスラスタ。
  3. 宇宙航行体に搭載して推力を発生する液体金属イオンスラスタにおいて、
    イオン化する低融点金属を貯蔵する貯蔵部と、供給孔を有する貯蔵部封止蓋と、上記貯蔵部封止蓋の供給孔から針先が突出した針状電極と、上記貯蔵部封止蓋の供給孔と対向する位置に上記針状電極に電界を形成する有孔電極を配したイオン源を
    複数個マトリックス状に並べたイオン発生部と、
    上記有孔電極に電圧を印加する電源と、
    上記イオン発生部に電子ビームを照射する電子偏向手段を有した電子発生手段とを具備し、
    上記電子発生手段から上記イオン発生部への電子ビームの照射により、電子ビームの照射されたイオン源の上記貯蔵部の低融点金属が溶融し液体化されて上記針状電極に供給され、上記有孔電極への電圧印加により当該液体化された低融点金属が上記針状電極の針先で電界蒸発し、イオン電流が引き出される、
    ことを特徴とする液体金属イオンスラスタ。
  4. 宇宙航行体に搭載して推力を発生する液体金属イオンスラスタにおいて、
    イオン化する低融点金属を貯蔵する貯蔵部と、
    供給孔を有する貯蔵部封止蓋と、
    上記貯蔵部封止蓋の供給孔から針先が突出した針状電極と、
    上記貯蔵部封止蓋の供給孔と対向する位置に上記針状電極に電界を形成する有孔電極を配したイオン源を
    複数個マトリックス状に並べたイオン発生部と、
    上記有孔電極に電圧を印加する電源と、
    上記イオン発生部にレーザー光を照射するレーザー偏向手段を有したレーザー発生手段とを具備し、
    上記レーザ発生手段から上記イオン発生部へのレーザ光の照射により、レーザ光に照射されたイオン源の上記貯蔵部の低融点金属が溶融し液体化されて上記針状電極に供給され、上記有孔電極への電圧印加により当該液体化された低融点金属が上記針状電極の針先で電界蒸発し、イオン電流が引き出される、
    ことを特徴とする液体金属イオンスラスタ。
JP03714498A 1998-02-19 1998-02-19 液体金属イオンスラスタ Expired - Fee Related JP3906549B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03714498A JP3906549B2 (ja) 1998-02-19 1998-02-19 液体金属イオンスラスタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03714498A JP3906549B2 (ja) 1998-02-19 1998-02-19 液体金属イオンスラスタ

Publications (2)

Publication Number Publication Date
JPH11230024A JPH11230024A (ja) 1999-08-24
JP3906549B2 true JP3906549B2 (ja) 2007-04-18

Family

ID=12489430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03714498A Expired - Fee Related JP3906549B2 (ja) 1998-02-19 1998-02-19 液体金属イオンスラスタ

Country Status (1)

Country Link
JP (1) JP3906549B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007328965A (ja) * 2006-06-07 2007-12-20 Univ Nagoya イオン発生装置および中性子発生装置
JP5988570B2 (ja) * 2010-12-31 2016-09-07 エフ・イ−・アイ・カンパニー 選択可能な複数の粒子放出器を備える荷電粒子源
DE102017117316B4 (de) 2017-07-31 2020-04-02 Technische Universität Dresden Feldemissionsantriebssystem sowie Verfahren zum Kalibrieren und Betreiben eines Feldemissionsantriebssystems
EP3604805B1 (en) * 2018-08-02 2024-04-24 ENPULSION GmbH Ion thruster for thrust vectored propulsion of a spacecraft
CN109896050B (zh) * 2019-03-20 2022-05-20 西北工业大学 一种电控矢量推力电推进器
CN114152379B (zh) * 2021-11-15 2022-12-20 华中科技大学 基于无线控制的电气解耦型微推进器推力测量装置及方法

Also Published As

Publication number Publication date
JPH11230024A (ja) 1999-08-24

Similar Documents

Publication Publication Date Title
Brophy NASA’s Deep Space 1 ion engine (plenary)
KR950010036B1 (ko) 평면 영상 디스플레이장치
JP3906549B2 (ja) 液体金属イオンスラスタ
EP2472556B1 (en) Electron beam system having an electron source with multiple selectable electron emitters
US7471542B2 (en) Information storage apparatus storing and reading information by irradiating a storage medium with electron beam
JP4647866B2 (ja) 高い輝度と大きいビーム電流の間で切換可能な粒子源を含む粒子光学装置
EP0468706A2 (en) Thrust vector control unit for an ion thruster
JPH0799720B2 (ja) 高速原子線源
US3517240A (en) Method and apparatus for forming a focused monoenergetic ion beam
JP2009510692A (ja) ガス状の媒体内に制御されたプラズマ環境を生成することにより、粒子密度及びエネルギーを増加させるシステム、装置及び方法
JPH0711429A (ja) 金属蒸気発生方法および装置
EP1306871A2 (en) Apparatus and method for focusing high-density electron beam emitted from planar cold cathode electron emitter
Mitterauer Microstructured liquid metal ion and electron sources (MILMIS/MILMES)
JPH09209914A (ja) イオンエンジン
US20240018950A1 (en) Fusion Thruster
JP4431779B2 (ja) 推力方向制御機構を有するイオンエンジン
JP2876280B2 (ja) ビーム発生方法及び装置
JP3046452B2 (ja) パルスビーム発生方法および発生装置
Mahmoudzadeh Dual Ion Engine Design & Development
Rüdenauer et al. Repair of a liquid metal ion emitter by a liquid metal ion emitter
JP4177149B2 (ja) 荷電粒子発生装置
JPH09120791A (ja) 基板帯電防止用の電子シャワー装置
JPH0719084Y2 (ja) イオン注入装置
JP2001083298A (ja) 静電閉じ込め核融合装置
JPH0722034Y2 (ja) 荷電粒子ビーム発生装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040223

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees