JP3894788B2 - Wastewater treatment equipment containing hydrogen peroxide - Google Patents

Wastewater treatment equipment containing hydrogen peroxide Download PDF

Info

Publication number
JP3894788B2
JP3894788B2 JP2001390090A JP2001390090A JP3894788B2 JP 3894788 B2 JP3894788 B2 JP 3894788B2 JP 2001390090 A JP2001390090 A JP 2001390090A JP 2001390090 A JP2001390090 A JP 2001390090A JP 3894788 B2 JP3894788 B2 JP 3894788B2
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
catalyst
catalyst layer
gas vent
reaction tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001390090A
Other languages
Japanese (ja)
Other versions
JP2003190972A (en
Inventor
和也 上杉
輝雄 杉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2001390090A priority Critical patent/JP3894788B2/en
Priority to TW091136694A priority patent/TWI226311B/en
Priority to KR10-2003-7007697A priority patent/KR20040067838A/en
Priority to PCT/JP2002/013353 priority patent/WO2003053864A1/en
Priority to CNB028051726A priority patent/CN1275876C/en
Priority to AU2002354263A priority patent/AU2002354263A1/en
Publication of JP2003190972A publication Critical patent/JP2003190972A/en
Application granted granted Critical
Publication of JP3894788B2 publication Critical patent/JP3894788B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/346Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from semiconductor processing, e.g. waste water from polishing of wafers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)
  • Removal Of Specific Substances (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体製造排水、食品容器洗浄排水といった各種過酸化水素含有排水の処理装置に関し、さらに詳述すると、触媒を用いて排水中に含まれる過酸化水素を分解する処理装置に関する。
【0002】
【従来の技術】
過酸化水素は洗浄効果、殺菌効果に優れ、かつ反応後は酸素と水に分解するクリーンな薬品であるため、広く製造工程における洗浄剤、殺菌剤として使用されている。例えば、半導体装置の製造工場では、様々な工程で過酸化水素がウエハの洗浄に用いられている。
【0003】
洗浄、殺菌に用いられた過酸化水素は、製造工程から廃液(過酸化水素含有排水)として排出される。この廃液は殺菌力を持つこと、CODの原因物質になることから、直接公共用水域に放流することは好ましくない。
【0004】
従来、過酸化水素含有排水の処理方法としては、亜硫酸ナトリウムなどの還元剤やペルオキシダーゼなどの酵素剤を用いた処理が行われてきたが、これらの方法は薬品使用量が多く、ランニングコストが高いことなどが問題であった。
【0005】
一方、活性炭、マンガン担持触媒、白金担持触媒などの還元触媒を用いて過酸化水素を還元する手法が知られている。排水中の過酸化水素は上記還元触媒と接触することによって酸素と水に分解される。このような還元触媒による処理手法を用いることにより、過酸化水素含有排水の処理に要するランニングコストを安く抑えることができる。
【0006】
【発明が解決しようとする課題】
還元触媒を用いた過酸化水素含有排水の処理は、前述した利点を有するものであるが、この処理では還元剤、酵素剤を用いた処理に比べ、処理設備が大がかりになるという問題があった。そのため、還元触媒を用いた過酸化水素含有排水の処理においては、処理設備スペースの縮小、設置導入にかかる設備費の低減などが求められていた。
【0007】
本発明は、前述した事情に鑑みてなされたもので、過酸化水素分解触媒(還元触媒)を用いた過酸化水素含有排水の処理装置であって、装置の小型化、設備費の低減を図ることができる処理装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、前述した目的を達成するために、下記▲1▼〜▲4▼に述べる検討を行った。
【0009】
▲1▼触媒を利用した反応系では、一般に、触媒と反応対象物(本発明では水中の過酸化水素)との接触効率を向上させることにより、反応効率が高まり、結果として装置の小型化、設備費の低減が可能となる。
【0010】
▲2▼一方、還元触媒を用いた過酸化水素含有排水処理装置では、触媒を充填した反応塔に過酸化水素含有排水を上向流または下向流で連続的に通水し、反応塔上部または下部から処理水を得るのが一般的である。ただし、高濃度の過酸化水素を分解処理する場合、多量の酸素ガスが発生し、それが気泡となって充填層内に閉じ込められるという現象が起こるため、装置構造の簡易性、システムの安全性の観点から、反応塔上部からのガス放出が容易な上向流を選択する方が望ましい。
【0011】
▲3▼しかし、過酸化水素分解時に生じる酸素ガスの気泡は、触媒と過酸化水素の接触効率を低下させ、結果として処理装置の反応効率を低下させると考えられる。特に高濃度の過酸化水素を含有する排水を処理する場合、先に述べた理由により上向流式の反応塔の採用が望ましいが、発生した酸素ガスの気泡が触媒層内を上昇する過程で、気泡が触媒と排水との接触を妨げるものと推定される。
【0012】
▲4▼そこで、本発明者らは、発生した酸素ガスの気泡が触媒と過酸化水素との接触を阻害するのを防止する方法について検討を行った。その結果、過酸化水素含有排水を上向流にて処理する反応塔においては、反応塔内で触媒を上下方向に複数層に分割して配置するとともに、下方の触媒層で発生した酸素ガスの気泡を上方の触媒層に接触させることなく反応塔外に排出することにより、上方の触媒層では下方の触媒層で発生した酸素ガスの気泡の阻害を受けることなく触媒と過酸化水素の接触が生じ、結果として反応塔における過酸化水素除去率が向上することを見いだした。また、このとき酸素ガスの排出管を反応塔内に設置することにより、触媒層で発生した酸素ガスを良好に排出できることを見いだした。
【0013】
本発明は、上述した知見に基づいてなされたもので、過酸化水素分解触媒を充填した反応塔内に過酸化水素含有排水を上向流で通水し、過酸化水素を酸素と水に分解する処理装置において、前記過酸化水素分解触媒は反応塔内において上下方向に複数層に分割されて配置されているとともに、少なくとも最下方の触媒層で発生した酸素ガスをそれより上方の触媒層に接触させることなく反応塔外に排出するガス抜き管であって、集水口およびガス抜き口が設けられた触媒支持板の前記ガス抜き口に下端部が接続されているガス抜き管が反応塔内に設置されていることを特徴とする過酸化水素含有排水処理装置を提供する。
【0014】
この場合、過酸化水素分解触媒をいくつの層に分割するかは適宜決定できるが、通常は2層〜4層、特に2層に分割することが適当である。
【0015】
また、本発明の処理装置では、最下方の触媒層での酸素ガス発生量が最も多いため、少なくとも最下方の触媒層で発生した酸素ガスの気泡を反応塔外に排出するガス抜き管を設けるものであるが、各触媒層で発生したガスをそれぞれ反応塔外に排出するガス抜き管を設けることがより適当である。
【0016】
なお、ガス抜き管による酸素ガスの排出は、発生した酸素ガスの気泡が上方の触媒層で触媒と過酸化水素との接触を阻害するのを有効に防止できる程度に排出すればよい。したがって、必ずしも触媒層で発生したガスの全部を排出する必要はなく、一部を排出してもよい。
【0017】
本発明において、過酸化水素分解触媒の種類に限定はなく、過酸化水素を還元して酸素と水に分解できるものであればいずれのものでもよい。過酸化水素分解触媒として、具体的には、白金、パラジウム、マンガン等の金属触媒や、活性炭等が挙げられる。また、活性炭、アルミナ、シリカ等からなる母体に白金、パラジウム、マンガン等の金属類を担持させた触媒を用いることもできる。
【0018】
また、本発明において、上下方向に複数層に分割配置された各触媒層における触媒充填量は、排水中の過酸化水素濃度、排水の通水速度、目標とする過酸化水素除去率などを勘案してそれぞれ任意に設定することができる。また、各触媒層に種類の異なる触媒を充填することも可能である。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。図1は本発明に係る過酸化水素含有排水処理装置の一実施形態を示す概略図である。図1において、2は反応塔、4は原水供給管、6は支持砂利層、8は下部触媒層、10は上層触媒支持板、12は支持砂利層、14は上部触媒層、16は処理水排出管、18はガス排出口、20はガス抜き管、22はガス抜き管支持体を示す。この場合、支持砂利層12および上部触媒層14を支持する上層触媒支持板10には、図2に示すように8つの集水口(コレクタースクリーン)24および4つのガス抜き口26が設けられており、各ガス抜き口26にそれぞれガス抜き管20の下端部が接続されている。すなわち、図示していないが、本装置では計4本のガス抜き管20が設置されている。また、これらのガス抜き管20は、上部触媒層14を貫通して塔上部の処理水水面30の上方で開口している。また、上層触媒支持板10の下方には空間部32が形成されている。
【0020】
本装置では、触媒層を上下2層(下部触媒層8および上部触媒層14)に分けた反応塔2に過酸化水素含有排水28が塔下部の原水供給管4より供給される。反応塔中段には上部触媒層14の支持板10が設置され、この支持板10の下方には空間部32が形成されているとともに、この支持板10には前記のように下部触媒層8より発生する酸素ガスを集気するためのガス抜き口26が設けられている。ガス抜き口26には塔上部へ向かうガス抜き管20が接続され、このガス抜き管20は下部触媒層8より発生した酸素ガスの一部または全部を上部触媒層14の触媒と接触させることなく系外へ導く。また、反応塔中段の支持板10にはガス抜き口26とは別に排水を上部触媒層14に導くための集水口24が設けられており、発生ガスの一部または全部が除かれた排水は、この集水口24を介して上部触媒層14内に通水され、排水中の過酸化水素はさらに還元分解される。上部触媒層14を通過した排水は塔上部の水面30に達し、処理水排出管16より反応塔外へ排出される。ガス抜き管20を通って水面上方へ導かれた下部触媒層8からの酸素ガス、および上部触媒層14からの酸素ガスは塔上部のガス排出口18より反応塔外へ排出される。
【0021】
本装置は、過酸化水素含有排水を上向流にて処理する装置において、反応塔内で触媒を上下方向に2層に分割して配置するとともに各層の間に空間部32を形成し、下部触媒層8で発生した酸素ガスを上部触媒層14に接触させることなく反応塔外に排出することにより、上部触媒層14では下部触媒層8で発生した酸素ガスの阻害を受けることなく触媒と過酸化水素の接触が生じ、結果として反応塔における過酸化水素除去率が向上する。この場合、本装置では過酸化水素含有排水を上向流にて処理するので、発生した酸素ガスが各触媒層の上方に抜けやすい。また、発生した酸素ガスを排出するガス抜き管20を反応塔内に設置してあるので、ガス抜き管を反応塔外に設置した場合、すなわちガス抜き管を反応塔の上部触媒層と下部触媒層との間の周壁部に外から接続した場合に較べ、下部触媒層で発生した酸素ガスが良好に系外に排出される。
【0022】
なお、本装置では、支持板10に設けるガス抜き口26および集水口24の数とその設置場所は、支持板の強度が十分保たれる範囲で任意に設定することができる。この場合、ガス抜き管ではガス上昇により水に対するエアリフト効果が生じるため、エアリフトにより支持板の下方の排水がガス抜き管を通って上部水面に達しないように配管径を設計する必要がある。また、集水口は上部触媒層の触媒が下方へ落下しないよう触媒の大きさよりも口径を小さくするか、あるいは網目状や櫛状のスクリーンを設置することが適当である。
【0023】
【実施例】
以下に実験例を示す。図3および図4に示す実験装置により本発明の効果を検証した。すなわち、同一形状の反応塔をA、Bの2系列用意し、実験機Aでは本発明による中段でのガス抜きを実施し、実験機Bではガス抜きを行わず、他の条件は全く同一にして模擬過酸化水素含有排水を通水した。実験機AおよびBにおいて、42は反応塔、44は原水供給管、46は下部触媒層、48は上層触媒支持板、50は上部触媒層、52は処理水排出管、54は支持板48のガス抜き口に接続されたガス抜き管(実験機Aのみに設置)、56は支持板48に形成された集水口を示す。また、実験機AおよびBの仕様を下記に示す。
【0024】
実験機A
ガス抜き機構:あり
ガス抜き機構仕様
ガス抜き口:1個(支持板中央、口径15mm)
実験機B
ガス抜き機構:なし
実験機AおよびBの共通仕様
反応塔径:70mm
使用過酸化水素分解触媒:マンガン担持触媒
触媒充填高:上下各500mm
触媒充填量:上下各192mL
集水口:6個(口径2mm)
通水量:770mL/hr、1540mL/hr、3080mL/hr
通水速度:SV=2/hr、4/hr、8/hr
模擬排水:過酸化水素濃度:20000mg/L(純水に試薬の過酸化水素水溶液を溶解、水酸化ナトリウム水溶液にてpH=10.5に調整)
【0025】
上記比較実験により得られたそれぞれの実験機の処理水過酸化水素濃度および過酸化水素除去率を表1に示す。表1に示すように、実験機Aの処理水過酸化水素濃度および過酸化水素除去率は実験機Bのそれらを各通水条件においてすべて上回った。すなわち、下部触媒層から生じた酸素ガスの一部または全部を上部触媒層に達しないよう反応塔中段から系外に導くことにより、同一の触媒量および通水条件において、処理水水質および過酸化水素除去率が向上することが確認された。
【0026】
【表1】

Figure 0003894788
【0027】
【発明の効果】
以上のように、本発明の過酸化水素含有排水処理装置は、過酸化水素分解触媒と過酸化水素との接触効率を高めて、装置の小型化、省スペース、設備費の低減を図ることができる。
【図面の簡単な説明】
【図1】本発明に係る過酸化水素含有排水処理装置の一実施形態を示す概略図である。
【図2】図1の装置の上層触媒支持板を示す平面図である。
【図3】実験例で用いた実験装置の概略図である。
【図4】実験例で用いた実験装置の概略図である。
【符号の説明】
2 反応塔
4 原水供給管
8 下部触媒層
10 上層触媒支持板
14 上部触媒層
16 処理水排出管
18 ガス排出口
20 ガス抜き管
24 集水口
26 ガス抜き口
28 過酸化水素含有排水[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a treatment apparatus for various hydrogen peroxide-containing wastewater such as semiconductor manufacturing wastewater and food container washing wastewater. More specifically, the present invention relates to a treatment apparatus for decomposing hydrogen peroxide contained in wastewater using a catalyst.
[0002]
[Prior art]
Hydrogen peroxide is excellent in cleaning and sterilizing effects, and is a clean chemical that decomposes into oxygen and water after the reaction. Therefore, it is widely used as a cleaning and sterilizing agent in the manufacturing process. For example, in a semiconductor device manufacturing factory, hydrogen peroxide is used for cleaning wafers in various processes.
[0003]
Hydrogen peroxide used for cleaning and sterilization is discharged from the manufacturing process as a waste liquid (hydrogen peroxide-containing wastewater). Since this waste liquid has sterilizing power and becomes a causative substance of COD, it is not preferable to discharge it directly into public water areas.
[0004]
Conventionally, as a method for treating hydrogen peroxide-containing wastewater, treatment using a reducing agent such as sodium sulfite or an enzyme agent such as peroxidase has been performed, but these methods use a large amount of chemicals and have a high running cost. That was the problem.
[0005]
On the other hand, a technique for reducing hydrogen peroxide using a reduction catalyst such as activated carbon, a manganese-supported catalyst, or a platinum-supported catalyst is known. Hydrogen peroxide in the wastewater is decomposed into oxygen and water by contacting with the reduction catalyst. By using such a treatment method using a reduction catalyst, the running cost required for treatment of hydrogen peroxide-containing wastewater can be reduced.
[0006]
[Problems to be solved by the invention]
The treatment of hydrogen peroxide-containing wastewater using a reduction catalyst has the above-mentioned advantages, but this treatment has a problem that the treatment equipment becomes larger than the treatment using a reducing agent and an enzyme agent. . For this reason, in the treatment of hydrogen peroxide-containing wastewater using a reduction catalyst, there has been a demand for reduction in processing equipment space, reduction in equipment costs for installation and the like.
[0007]
The present invention has been made in view of the above-described circumstances, and is a treatment apparatus for hydrogen peroxide-containing wastewater that uses a hydrogen peroxide decomposition catalyst (reduction catalyst), and is intended to reduce the size of the apparatus and reduce equipment costs. It is an object of the present invention to provide a processing apparatus that can perform the processing.
[0008]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present inventors have conducted studies described in the following items (1) to (4).
[0009]
(1) In a reaction system using a catalyst, generally, by improving the contact efficiency between the catalyst and a reaction object (hydrogen peroxide in water in the present invention), the reaction efficiency is increased, resulting in downsizing of the apparatus. Equipment costs can be reduced.
[0010]
(2) On the other hand, in a hydrogen peroxide-containing wastewater treatment apparatus using a reduction catalyst, the hydrogen peroxide-containing wastewater is continuously passed upward or downward through a reaction tower filled with the catalyst, Or it is common to obtain treated water from the lower part. However, when decomposing high-concentration hydrogen peroxide, a large amount of oxygen gas is generated, which becomes bubbles and trapped in the packed bed, thus simplifying the device structure and system safety From this point of view, it is desirable to select an upward flow that allows easy gas release from the upper part of the reaction tower.
[0011]
(3) However, it is considered that the bubbles of oxygen gas generated during the decomposition of hydrogen peroxide reduce the contact efficiency between the catalyst and hydrogen peroxide, and as a result, reduce the reaction efficiency of the processing apparatus. Especially when treating wastewater containing high-concentration hydrogen peroxide, it is desirable to use an up-flow type reaction tower for the reasons mentioned above, but in the process where the bubbles of generated oxygen gas rise in the catalyst layer. It is presumed that the bubbles hinder the contact between the catalyst and the waste water.
[0012]
(4) Therefore, the present inventors examined a method for preventing the generated oxygen gas bubbles from inhibiting the contact between the catalyst and hydrogen peroxide. As a result, in a reaction tower that treats hydrogen peroxide-containing wastewater in an upward flow, the catalyst is divided into a plurality of layers in the vertical direction in the reaction tower and oxygen gas generated in the lower catalyst layer is removed. By discharging the bubbles out of the reaction tower without bringing them into contact with the upper catalyst layer, the upper catalyst layer can contact the catalyst with hydrogen peroxide without being obstructed by the oxygen gas bubbles generated in the lower catalyst layer. As a result, it has been found that the hydrogen peroxide removal rate in the reaction tower is improved. It was also found that the oxygen gas generated in the catalyst layer can be discharged satisfactorily by installing an oxygen gas discharge pipe in the reaction tower.
[0013]
The present invention has been made on the basis of the above-mentioned knowledge. Hydrogen peroxide-containing wastewater is passed upward in a reaction tower packed with a hydrogen peroxide decomposition catalyst, and hydrogen peroxide is decomposed into oxygen and water. In the processing apparatus , the hydrogen peroxide decomposition catalyst is divided into a plurality of layers in the vertical direction in the reaction tower, and at least oxygen gas generated in the lowermost catalyst layer is transferred to the upper catalyst layer. A gas vent pipe that discharges outside the reaction tower without contact, and a gas vent pipe having a lower end connected to the gas vent of the catalyst support plate provided with a water collection port and a gas vent is provided in the reaction tower. A hydrogen peroxide-containing wastewater treatment apparatus is provided.
[0014]
In this case, the number of layers in which the hydrogen peroxide decomposition catalyst is divided can be determined as appropriate, but it is usually appropriate to divide into two to four layers, particularly two layers.
[0015]
Further, in the treatment apparatus of the present invention, since the amount of oxygen gas generated in the lowermost catalyst layer is the largest, a gas vent pipe for discharging at least oxygen gas bubbles generated in the lowermost catalyst layer to the outside of the reaction tower is provided. However, it is more appropriate to provide a gas vent pipe for discharging the gas generated in each catalyst layer to the outside of the reaction tower.
[0016]
Note that the oxygen gas may be discharged through the degassing pipe to such an extent that the generated oxygen gas bubbles can be effectively prevented from inhibiting the contact between the catalyst and hydrogen peroxide in the upper catalyst layer. Therefore, it is not always necessary to exhaust all of the gas generated in the catalyst layer, and part of the gas may be exhausted.
[0017]
In the present invention, the type of hydrogen peroxide decomposition catalyst is not limited, and any hydrogen peroxide decomposition catalyst may be used as long as it can reduce hydrogen peroxide to decompose it into oxygen and water. Specific examples of the hydrogen peroxide decomposition catalyst include metal catalysts such as platinum, palladium, and manganese, and activated carbon. Further, a catalyst in which metals such as platinum, palladium and manganese are supported on a matrix made of activated carbon, alumina, silica or the like can also be used.
[0018]
In the present invention, the catalyst filling amount in each of the catalyst layers divided into a plurality of layers in the vertical direction takes into account the hydrogen peroxide concentration in the waste water, the water flow rate of the waste water, the target hydrogen peroxide removal rate, and the like. Can be set arbitrarily. It is also possible to fill each catalyst layer with different types of catalysts.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. FIG. 1 is a schematic view showing an embodiment of a hydrogen peroxide-containing wastewater treatment apparatus according to the present invention. In FIG. 1, 2 is a reaction tower, 4 is a raw water supply pipe, 6 is a support gravel layer, 8 is a lower catalyst layer, 10 is an upper catalyst support plate, 12 is a support gravel layer, 14 is an upper catalyst layer, and 16 is treated water. An exhaust pipe, 18 is a gas exhaust port, 20 is a gas vent pipe, and 22 is a gas vent pipe support. In this case, the upper catalyst support plate 10 that supports the support gravel layer 12 and the upper catalyst layer 14 is provided with eight water collecting ports (collector screen) 24 and four gas vent ports 26 as shown in FIG. The lower ends of the gas vent pipes 20 are connected to the gas vent ports 26, respectively. That is, although not shown, a total of four gas vent pipes 20 are installed in this apparatus. These degassing pipes 20 pass through the upper catalyst layer 14 and open above the treated water surface 30 at the top of the tower. A space 32 is formed below the upper catalyst support plate 10.
[0020]
In this apparatus, the hydrogen peroxide-containing waste water 28 is supplied from the raw water supply pipe 4 at the bottom of the tower to the reaction tower 2 in which the catalyst layer is divided into two upper and lower layers (lower catalyst layer 8 and upper catalyst layer 14). A support plate 10 for the upper catalyst layer 14 is installed in the middle stage of the reaction tower, and a space 32 is formed below the support plate 10. The support plate 10 has a lower catalyst layer 8 as described above. A gas vent 26 for collecting the generated oxygen gas is provided. A gas vent pipe 20 is connected to the gas vent port 26 toward the upper part of the tower, and this gas vent pipe 20 does not allow a part or all of the oxygen gas generated from the lower catalyst layer 8 to contact the catalyst of the upper catalyst layer 14. Lead outside the system. Further, the support plate 10 in the middle stage of the reaction tower is provided with a water collecting port 24 for guiding the wastewater to the upper catalyst layer 14 in addition to the gas vent 26, and the wastewater from which part or all of the generated gas is removed Then, water is passed through the water collection port 24 into the upper catalyst layer 14, and the hydrogen peroxide in the waste water is further reduced and decomposed. Waste water that has passed through the upper catalyst layer 14 reaches the water surface 30 at the top of the tower, and is discharged from the treated water discharge pipe 16 to the outside of the reaction tower. The oxygen gas from the lower catalyst layer 8 and the oxygen gas from the upper catalyst layer 14 guided to the upper surface of the water through the degassing pipe 20 are discharged out of the reaction tower from the gas discharge port 18 at the upper part of the tower.
[0021]
This apparatus is an apparatus that treats hydrogen peroxide-containing wastewater in an upward flow, and in the reaction tower, the catalyst is divided into two layers in the vertical direction, and a space portion 32 is formed between the layers. By discharging the oxygen gas generated in the catalyst layer 8 to the outside of the reaction tower without contacting the upper catalyst layer 14, the upper catalyst layer 14 does not interfere with the catalyst without being inhibited by the oxygen gas generated in the lower catalyst layer 8. Hydrogen oxide contact occurs, resulting in an improved hydrogen peroxide removal rate in the reaction tower. In this case, since the hydrogen peroxide-containing wastewater is treated in an upward flow in the present apparatus, the generated oxygen gas easily escapes above each catalyst layer. Further, since the gas vent pipe 20 for discharging the generated oxygen gas is installed in the reaction tower, when the gas vent pipe is installed outside the reaction tower, that is, the gas vent pipe is connected to the upper catalyst layer and the lower catalyst of the reaction tower. Compared with the case where it connects from the outside to the peripheral wall part between the layers, the oxygen gas generated in the lower catalyst layer is discharged out of the system better.
[0022]
In the present apparatus, the number of the gas vents 26 and the water collecting ports 24 provided in the support plate 10 and the installation locations thereof can be arbitrarily set as long as the strength of the support plate is sufficiently maintained. In this case, the gas vent pipe has an air lift effect on the water due to the gas rise. Therefore, it is necessary to design the pipe diameter so that the drainage below the support plate does not reach the upper water surface through the gas vent pipe by the air lift. In addition, it is appropriate that the water collecting port has a smaller diameter than the size of the catalyst so that the catalyst in the upper catalyst layer does not fall downward, or a mesh-like or comb-like screen is installed.
[0023]
【Example】
Experimental examples are shown below. The effect of the present invention was verified by the experimental apparatus shown in FIGS. That is, two series of reaction towers A and B having the same shape are prepared. In the experimental machine A, the middle stage is degassed according to the present invention. In the experimental machine B, no degassing is performed, and other conditions are completely the same. Simulated hydrogen peroxide-containing wastewater was passed through. In the experimental apparatuses A and B, 42 is a reaction tower, 44 is a raw water supply pipe, 46 is a lower catalyst layer, 48 is an upper catalyst support plate, 50 is an upper catalyst layer, 52 is a treated water discharge pipe, and 54 is a support plate 48. A gas vent pipe (installed only in the experimental machine A) connected to the gas vent and 56 indicates a water collection port formed in the support plate 48. The specifications of the experimental machines A and B are shown below.
[0024]
Experimental machine A
Degassing mechanism: Yes Degassing mechanism specifications Degassing port: 1 (support plate center, 15mm diameter)
Experimental machine B
Degassing mechanism: None
Common specifications of experimental machines A and B Reaction tower diameter: 70 mm
Hydrogen peroxide decomposition catalyst used: Manganese-supported catalyst Catalyst filling height: 500 mm above and below each
Catalyst filling amount: 192 mL each on the top and bottom
Water collection port: 6 (2mm diameter)
Water flow rate: 770 mL / hr, 1540 mL / hr, 3080 mL / hr
Water flow rate: SV = 2 / hr, 4 / hr, 8 / hr
Simulated drainage: Hydrogen peroxide concentration: 20000 mg / L (dissolve the hydrogen peroxide solution of the reagent in pure water and adjust the pH to 10.5 with aqueous sodium hydroxide)
[0025]
Table 1 shows the hydrogen peroxide concentration and hydrogen peroxide removal rate of each experimental machine obtained by the above comparative experiment. As shown in Table 1, the hydrogen peroxide concentration and hydrogen peroxide removal rate of the experimental machine A exceeded all of the experimental machine B under each water flow condition. That is, by introducing part or all of the oxygen gas generated from the lower catalyst layer out of the system from the middle stage of the reaction tower so as not to reach the upper catalyst layer, the quality of the treated water and the peroxidation are the same under the same catalyst amount and water flow conditions. It was confirmed that the hydrogen removal rate was improved.
[0026]
[Table 1]
Figure 0003894788
[0027]
【The invention's effect】
As described above, the hydrogen peroxide-containing wastewater treatment apparatus of the present invention can improve the contact efficiency between the hydrogen peroxide decomposition catalyst and hydrogen peroxide, thereby reducing the size of the apparatus, saving space, and reducing equipment costs. it can.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an embodiment of a hydrogen peroxide-containing wastewater treatment apparatus according to the present invention.
FIG. 2 is a plan view showing an upper catalyst support plate of the apparatus of FIG.
FIG. 3 is a schematic view of an experimental apparatus used in an experimental example.
FIG. 4 is a schematic view of an experimental apparatus used in an experimental example.
[Explanation of symbols]
2 reaction tower 4 raw water supply pipe 8 lower catalyst layer 10 upper catalyst support plate 14 upper catalyst layer 16 treated water discharge pipe 18 gas outlet 20 gas vent pipe 24 water collection port 26 gas vent 28 drainage containing hydrogen peroxide

Claims (2)

過酸化水素分解触媒を充填した反応塔内に過酸化水素含有排水を上向流で通水し、過酸化水素を酸素と水に分解する処理装置において、前記過酸化水素分解触媒は反応塔内において上下方向に複数層に分割されて配置されているとともに、少なくとも最下方の触媒層で発生した酸素ガスをそれより上方の触媒層に接触させることなく反応塔外に排出するガス抜き管であって、集水口およびガス抜き口が設けられた触媒支持板の前記ガス抜き口に下端部が接続されているガス抜き管が反応塔内に設置されていることを特徴とする過酸化水素含有排水処理装置。Hydrogen peroxide-containing waste water through the water up-flow into the reaction tower filled with a hydrogen peroxide decomposition catalyst, in the process of decomposing apparatus of hydrogen peroxide into oxygen and water, the hydrogen peroxide decomposition catalyst in the reaction column in conjunction are arranged is divided into a plurality of layers in the vertical direction, encounters the gas vent pipe for discharging the oxygen gas generated at least the lowermost catalyst layer out of the reaction tower without contact from above the catalyst layer it A hydrogen peroxide-containing wastewater characterized in that a gas vent pipe having a lower end connected to the gas vent port of the catalyst support plate provided with a water collecting port and a gas vent port is installed in the reaction tower. Processing equipment. 各触媒層で発生したガスをそれぞれそれより上方の触媒層に接触させることなく反応塔外に排出するガス抜き管であって、集水口およびガス抜き口が設けられた触媒支持板の前記ガス抜き口に下端部が接続されているガス抜き管が反応塔内に設置されていることを特徴とする請求項1に記載の過酸化水素含有排水処理装置。A gas vent pipe for discharging the gas generated in each catalyst layer to the outside of the reaction tower without bringing it into contact with the catalyst layer above the catalyst layer, the gas vent of the catalyst support plate provided with a water collection port and a gas vent port 2. The hydrogen peroxide-containing wastewater treatment apparatus according to claim 1, wherein a gas vent pipe having a lower end connected to the mouth is installed in the reaction tower.
JP2001390090A 2001-12-21 2001-12-21 Wastewater treatment equipment containing hydrogen peroxide Expired - Lifetime JP3894788B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001390090A JP3894788B2 (en) 2001-12-21 2001-12-21 Wastewater treatment equipment containing hydrogen peroxide
TW091136694A TWI226311B (en) 2001-12-21 2002-12-19 Hydrogen peroxide containing water discharge treatment device
KR10-2003-7007697A KR20040067838A (en) 2001-12-21 2002-12-20 Apparatus for treating drainage containg hydrogen perdxide
PCT/JP2002/013353 WO2003053864A1 (en) 2001-12-21 2002-12-20 Apparatus for treating waste water containing hydrogen peroxide
CNB028051726A CN1275876C (en) 2001-12-21 2002-12-20 Apparatus for treating waste water containing hydrogen peroxide
AU2002354263A AU2002354263A1 (en) 2001-12-21 2002-12-20 Apparatus for treating waste water containing hydrogen peroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001390090A JP3894788B2 (en) 2001-12-21 2001-12-21 Wastewater treatment equipment containing hydrogen peroxide

Publications (2)

Publication Number Publication Date
JP2003190972A JP2003190972A (en) 2003-07-08
JP3894788B2 true JP3894788B2 (en) 2007-03-22

Family

ID=19188334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001390090A Expired - Lifetime JP3894788B2 (en) 2001-12-21 2001-12-21 Wastewater treatment equipment containing hydrogen peroxide

Country Status (6)

Country Link
JP (1) JP3894788B2 (en)
KR (1) KR20040067838A (en)
CN (1) CN1275876C (en)
AU (1) AU2002354263A1 (en)
TW (1) TWI226311B (en)
WO (1) WO2003053864A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5045099B2 (en) * 2004-03-31 2012-10-10 栗田工業株式会社 Ultrapure water production apparatus and operation method of ultrapure water production apparatus
JP2006087343A (en) * 2004-09-24 2006-04-06 Kawakubo Seisakusho:Kk Method for sterilizing and washing small fish or the like and apparatus therefor
JP2006087342A (en) * 2004-09-24 2006-04-06 Kawakubo Seisakusho:Kk Method for sterilizing and washing small fish or the like and apparatus therefor
JP4747357B2 (en) * 2004-11-02 2011-08-17 株式会社カワクボ製作所 Method and apparatus for sterilizing and cleaning small fish
KR100739825B1 (en) * 2005-09-23 2007-07-13 한국과학기술원 Multiple Stage Catalytic Reactor for Decomposition of Hydrogen Peroxide
JP4919318B2 (en) * 2005-12-07 2012-04-18 オルガノ株式会社 Functional group introduction reaction column, functional group introduction apparatus, and functional group introduction method
JP4860008B1 (en) * 2011-06-02 2012-01-25 株式会社アサカ理研 Hydrogen peroxide decomposition apparatus and hydrogen peroxide decomposition method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136482A (en) * 1984-12-06 1986-06-24 Osamu Mihara Water purification apparatus
JPH0661541B2 (en) * 1985-07-26 1994-08-17 オルガノ株式会社 Method and apparatus for removing hydrogen peroxide
JPH10314760A (en) * 1997-05-16 1998-12-02 Japan Organo Co Ltd Hydrogen peroxide removing apparatus and method for treating wastewater-containing hydrogen peroxide

Also Published As

Publication number Publication date
KR20040067838A (en) 2004-07-30
JP2003190972A (en) 2003-07-08
AU2002354263A1 (en) 2003-07-09
CN1275876C (en) 2006-09-20
TWI226311B (en) 2005-01-11
CN1633395A (en) 2005-06-29
WO2003053864A1 (en) 2003-07-03
TW200301227A (en) 2003-07-01

Similar Documents

Publication Publication Date Title
JP3894788B2 (en) Wastewater treatment equipment containing hydrogen peroxide
JP5446400B2 (en) Hydrogen peroxide water treatment equipment
KR100686191B1 (en) Plant for wastewater treatment
JPH06254538A (en) Removing device for dissolving oxygen
WO2012164948A1 (en) Hydrogen peroxide decomposition device and decomposition method for hydrogen peroxide
JP5910635B2 (en) Method for treating hydrogen peroxide-containing water
CN210795890U (en) Ozone catalytic oxidation moving bed reaction device
JPH0443705B2 (en)
CN206051655U (en) Continuous operating device for catalyzing and oxidating ozone
CN113087114A (en) Ozone catalytic reactor with underneath catalyst and process thereof
CN113104950A (en) External catalyst ozone catalytic reactor and process thereof
JP4608726B2 (en) Biological treatment equipment
JP4106128B2 (en) Upflow anaerobic treatment apparatus and treatment method
JP3216755B2 (en) Descending ozone reaction tank
JP4710168B2 (en) Pressurized fluidized bed wastewater treatment system
CN106186279B (en) Continuous operation type ozone catalytic oxidation device and method
JPH10211487A (en) Activated carbon treatment apparatus
KR100592039B1 (en) Process and plant for wastewater treatment
JP5779408B2 (en) Method and apparatus for treating peroxide-containing water
CN216038804U (en) Ozone direct oxidation and catalytic oxidation integrated sewage treatment device
JP2582053Y2 (en) Bucket type reactor
CN212450796U (en) Ozone catalytic tower
JP2003290782A (en) Catalytic reaction apparatus
JP3781861B2 (en) Regeneration method of activated carbon for hydrogen peroxide decomposition
KR200369990Y1 (en) The cylindrical reactor in a body for dissolving ozone in water and separating sludge by floatation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040726

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040726

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3894788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term