JPH10211487A - Activated carbon treatment apparatus - Google Patents

Activated carbon treatment apparatus

Info

Publication number
JPH10211487A
JPH10211487A JP1525097A JP1525097A JPH10211487A JP H10211487 A JPH10211487 A JP H10211487A JP 1525097 A JP1525097 A JP 1525097A JP 1525097 A JP1525097 A JP 1525097A JP H10211487 A JPH10211487 A JP H10211487A
Authority
JP
Japan
Prior art keywords
activated carbon
liquid
tower
treated
hydrogen peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1525097A
Other languages
Japanese (ja)
Inventor
Madoka Tanabe
円 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP1525097A priority Critical patent/JPH10211487A/en
Publication of JPH10211487A publication Critical patent/JPH10211487A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the short-circuiting caused by channeling by easily venting generated oxygen gas upwardly. SOLUTION: An activated carbon tower 10 is formed into an inverted truncated cone shape and made large in its cross-sectional area upwardly. Therefore, the cross-sectional area of the activated carbon bed 12 in the tower 10 also becomes large upwardly gradually. A liquid to be treated is introduced into the bottom part of the activated carbon tower 10 and the treated soln. is discharged from the upper part of the tower 10. Therefore, the liquid to be treated is brought into contact with activated carbon on the bottom part of the activated carbon bed 12 at first and a large amt. of oxygen gas is generated at this part and increases diameter of bubbles to be vented upwardly. Herein, activated carbon in the activated carbon bed 12 becomes easy to move toward the upper part of the bed 12. Therefore, the upper activated carbon is easily replaced with air bubbles when air bubbles are vented and the short-circuiting caused by channeling can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、過酸化水素を含む
被処理液を粒状活性炭を充填した活性炭塔に導入し、被
処理液を粒状活性炭と接触させ過酸化水素を分解する活
性炭処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an activated carbon treatment apparatus for introducing a liquid to be treated containing hydrogen peroxide into an activated carbon column filled with granular activated carbon, and bringing the liquid to be treated into contact with the granular activated carbon to decompose hydrogen peroxide. .

【0002】[0002]

【従来の技術】各種半導体デバイスや液晶表示装置など
の製造工程から排出される排水中には、過酸化水素が含
まれる場合が多い。これは、半導体ウエハの洗浄工程な
どにおいて、過酸化水素を含む洗浄液が使用されるから
である。通常の場合、これら排水における過酸化水素濃
度は、数10〜数100mg/L程度であり、そのまま
では公共水域に放流したり、再利用することができな
い。そこで、排水中の過酸化水素を分解除去する必要が
あり、被処理液を粒状の活性炭と接触させることにより
過酸化水素を酸素と水に分解させる方法が広く採用され
ている。
2. Description of the Related Art In many cases, wastewater discharged from manufacturing processes of various semiconductor devices and liquid crystal display devices contains hydrogen peroxide. This is because a cleaning liquid containing hydrogen peroxide is used in a semiconductor wafer cleaning step or the like. Usually, the concentration of hydrogen peroxide in these wastewaters is about several tens to several hundreds mg / L, and cannot be discharged to public waters or reused as it is. Therefore, it is necessary to decompose and remove hydrogen peroxide in wastewater, and a method of decomposing hydrogen peroxide into oxygen and water by bringing the liquid to be treated into contact with granular activated carbon has been widely adopted.

【0003】ところが、この方法では、処理によって発
生する酸素ガスがスムーズには上方に抜けず、ある程度
活性炭層内に蓄積し大気泡になってから間欠的に抜ける
傾向がある。そして、このような状態では、流体の流れ
にチャネリングが生じ、粒状活性炭と被処理液の接触が
十分に行われなくなり、過酸化水素を十分に分解できな
いという問題があった。
However, in this method, the oxygen gas generated by the treatment does not flow smoothly upward, but tends to accumulate to some extent in the activated carbon layer to form large bubbles and then intermittently. In such a state, channeling occurs in the flow of the fluid, so that the granular activated carbon and the liquid to be treated are not sufficiently brought into contact with each other, and there is a problem that hydrogen peroxide cannot be sufficiently decomposed.

【0004】このようなチャネリングを防止するため、
活性炭層内に被処理液を上向流で流通することが行われ
ている。上向流とすれば、それだけ気泡の上方への動き
が促進され、発生した酸素ガスが活性炭層内から抜けや
すくなり、チャネリングが起きにくくなる。
[0004] To prevent such channeling,
The liquid to be treated is circulated in the activated carbon layer in an upward flow. If the flow is upward, the upward movement of the bubbles is promoted by that amount, and the generated oxygen gas easily escapes from the inside of the activated carbon layer, so that channeling hardly occurs.

【0005】[0005]

【発明が解決しようとする課題】ここで、過酸化水素濃
度が上述のような濃度の場合には、上向流とすること
が、チャネリング防止に効果がある。しかし、過酸化水
素濃度がさらに高濃度になった場合には、上向流の活性
炭処理塔であっても、十分なチャネリング防止が達成で
きないことがわかってきた。
In the case where the concentration of hydrogen peroxide is as described above, an upward flow is effective for preventing channeling. However, it has been found that when the hydrogen peroxide concentration is further increased, sufficient channeling prevention cannot be achieved even with an activated carbon treatment tower having an upward flow.

【0006】特に、近年では製造上の都合などにより、
一時的に数1000〜10000mg/L、さらにはそ
れ以上の高濃度の過酸化水素を含む排水が排出される場
合もある。このような排水について活性炭処理を行う
と、一時的に過酸化水素が十分分解できなくなる。さら
に、大量に発生する気泡が上方に十分には抜けきらず、
チャネリングが生じ、そのために高濃度排水の一時的な
排出が終了して排水中の過酸化水素濃度が低下したあと
でも、過酸化水素の漏出が長時間にわたって継続される
という問題ががあった。
Particularly, in recent years, due to manufacturing reasons and the like,
In some cases, wastewater containing a high concentration of hydrogen peroxide of several thousand to 10,000 mg / L, or even higher, may be discharged temporarily. When activated carbon treatment is performed on such wastewater, hydrogen peroxide cannot be sufficiently decomposed temporarily. Furthermore, bubbles generated in large quantities cannot be fully removed upward,
There is a problem that the leakage of hydrogen peroxide is continued for a long time even after channeling occurs and the temporary discharge of the high-concentration wastewater ends and the concentration of hydrogen peroxide in the wastewater decreases.

【0007】本発明は、高濃度の過酸化水素を含有する
排水について、チャネリングの発生を最小限に抑制し、
安定して過酸化水素を分解できる活性炭処理装置を提供
することを目的とする。
[0007] The present invention minimizes the occurrence of channeling in wastewater containing a high concentration of hydrogen peroxide,
An object of the present invention is to provide an activated carbon treatment device capable of stably decomposing hydrogen peroxide.

【0008】[0008]

【課題を解決するための手段】本発明は、過酸化水素を
含む被処理液を粒状活性炭を充填した活性炭塔に底部側
から上部側へ向けて上向流で流通し、被処理液を粒状活
性炭と接触させて過酸化水素を分解する活性炭処理装置
であって、活性炭塔内部に充填された粒状活性炭によっ
て形成される活性炭層の上部側の断面積を底部側に比べ
大きくしたことを特徴とする。
According to the present invention, a liquid to be treated containing hydrogen peroxide is passed through an activated carbon tower filled with granular activated carbon in an upward flow from the bottom side to the upper side, and the liquid to be treated is granulated. An activated carbon treatment device for decomposing hydrogen peroxide by contacting with activated carbon, characterized in that the cross-sectional area on the upper side of the activated carbon layer formed by granular activated carbon filled inside the activated carbon tower is larger than that on the bottom side. I do.

【0009】過酸化水素を含む被処理液が活性炭塔にそ
の底部から導入されると、被処理液は内部に充填された
粒状活性炭と接触し、その触媒作用により酸素ガスと水
に効果的に分解される。このため、活性炭層内におい
て、さかんに酸素ガスが発生する。発生した酸素ガスの
気泡は、近くのものと合体し大径化する。そして、大径
化した気泡が活性炭層内を上昇するが、本発明装置にお
いては塔内部に形成された活性炭層の断面積が上方ほど
大きくなっているので、大径化した気泡は活性炭層から
容易に抜けるようになる。なお、活性炭層の断面積が上
方ほど大きくなるようにすることにより、気泡が抜け易
くなる理由は明らかではないが、充填された粒状活性炭
は上方に行くほど移動の自由度が増し、動きやすくなっ
ていると考えられる。そのため、下部の粒状活性炭を押
しのけて上昇してきた気泡は、その上方で移動が妨げら
れることなく、活性炭層の上方に抜け、また気泡の通過
によって押しのけられた粒状活性炭も速やかに元の位置
に戻ると考えられる。いずれにしても、本発明により従
来のようなチャネリングによる短絡を効果的に防止する
ことができることは後述の実施例で示すごとく明らかで
ある。
When the liquid to be treated containing hydrogen peroxide is introduced into the activated carbon tower from the bottom thereof, the liquid to be treated comes into contact with the granular activated carbon filled therein, and its catalytic action effectively converts oxygen gas and water. Decomposed. Therefore, oxygen gas is rapidly generated in the activated carbon layer. The generated oxygen gas bubbles merge with nearby ones and increase in diameter. Then, the bubbles having an increased diameter rise in the activated carbon layer. In the apparatus of the present invention, since the cross-sectional area of the activated carbon layer formed inside the tower is larger upward, the bubbles having an increased diameter are removed from the activated carbon layer. Easy to get out. It is not clear why air bubbles are easily released by increasing the cross-sectional area of the activated carbon layer upward, but the filled granular activated carbon has a higher degree of freedom of movement as it goes upward, making it easier to move. It is thought that it is. For this reason, the bubbles that have risen by pushing the granular activated carbon at the bottom escape above the activated carbon layer without being hindered from moving above, and the granular activated carbon that has been displaced by the passage of the bubbles also quickly returns to its original position. it is conceivable that. In any case, it is apparent that the present invention can effectively prevent the conventional short circuit due to channeling, as will be described in the following embodiments.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態(以下
実施形態という)について、図面に基づいて説明する。
Embodiments of the present invention (hereinafter referred to as embodiments) will be described below with reference to the drawings.

【0011】図1に本発明の一実施形態に係る活性炭処
理装置の構成を示す。活性炭塔10の内部には、粒状活
性炭が充填され活性炭層12が形成されている。また、
活性炭塔10の底部には、被処理液を活性炭塔10の内
部に導入する流入管14が接続され、活性炭塔10の上
部には、処理液の流出管16が接続されている。
FIG. 1 shows a configuration of an activated carbon processing apparatus according to one embodiment of the present invention. Inside the activated carbon tower 10, granular activated carbon is filled to form an activated carbon layer 12. Also,
An inflow pipe 14 for introducing the liquid to be treated into the activated carbon tower 10 is connected to the bottom of the activated carbon tower 10, and an outflow pipe 16 for the processing liquid is connected to the upper part of the activated carbon tower 10.

【0012】ここで、流入管14は、その先端が活性炭
層12内の底部にまでのびており、先端には、目板18
が配置されている。この目板18は、流入管14からの
被処理液を活性炭層12内に供給しながら、活性炭が流
入管14内に逆流してくるのを防止している。また、流
出管16は、その先端が活性炭塔10の上部までのびて
おり、ここにコレクタ20が接続されている。このコレ
クタ20は、活性炭塔10内の上部から均等に処理液を
採取するものであり、多数の開口を有するパイプ状のも
のなどが採用される。
The inflow pipe 14 has a leading end extending to the bottom in the activated carbon layer 12 and a leading end plate 18 at the leading end.
Is arranged. The perforated plate 18 prevents the activated carbon from flowing back into the inflow pipe 14 while supplying the liquid to be treated from the inflow pipe 14 into the activated carbon layer 12. The outlet pipe 16 has a tip extending to an upper portion of the activated carbon tower 10, and a collector 20 is connected to the outlet pipe 16. The collector 20 is for collecting the processing liquid evenly from the upper part in the activated carbon tower 10, and a pipe-shaped one having a large number of openings is employed.

【0013】そして、本実施形態においては、活性炭塔
10は、下方に向けて直径が小さくなる略逆円錐台状
(ホッパ状)の形状を有している。従って、その内部に
収容されている活性炭層12の断面積は、下方に向けて
だんだん小さくなっている。
In this embodiment, the activated carbon tower 10 has a substantially inverted frustoconical shape (hopper shape) whose diameter decreases downward. Therefore, the cross-sectional area of the activated carbon layer 12 accommodated therein is gradually reduced downward.

【0014】このような装置において、流入管14を介
し、活性炭塔10の内部に被処理液を導入する。この被
処理液は、例えば半導体デバイスの製造工程からの排水
であり、高濃度の過酸化水素を含んでいる。なお、図示
していないが、被処理液は通常の場合一旦排水貯槽に貯
留され、ポンプにより圧送されてくる。この被処理液が
活性炭塔10にその底部から導入されると、被処理液は
粒状活性炭と接触し、その触媒作用により酸素ガスと、
水に効果的に分解される。このため、活性炭層12内に
おいて、さかんに酸素ガスが発生する。発生した酸素ガ
スの気泡は、近くのものと合体し、大径化する。そし
て、大径化した気泡が上昇するが、本実施形態では、活
性炭層12の断面積が上方ほど大きくなっている。従っ
て、活性炭層12の粒状活性炭は上方に行くほど移動の
自由度が増し、動きやすくなっている。そこで、下部の
粒状活性炭を押しのけて上昇してきた気泡は、その上方
で移動が妨げられることなく、活性炭層12の上方に抜
け、また気泡の通過によって押しのけられた粒状活性炭
も速やかに元の位置に戻る。このため、従来のようなチ
ャネリングによる被処理液の短絡を効果的に防止するこ
とができる。
In such an apparatus, the liquid to be treated is introduced into the activated carbon tower 10 via the inflow pipe 14. The liquid to be treated is, for example, waste water from a semiconductor device manufacturing process, and contains high concentration hydrogen peroxide. Although not shown, the liquid to be treated is usually once stored in a drainage storage tank and pumped by a pump. When the liquid to be treated is introduced into the activated carbon tower 10 from the bottom thereof, the liquid to be treated comes into contact with the granular activated carbon, and its catalytic action causes oxygen gas and
Decomposes effectively in water. Therefore, oxygen gas is rapidly generated in the activated carbon layer 12. The generated oxygen gas bubbles merge with nearby ones and increase in diameter. Then, the bubbles having a larger diameter rise, but in the present embodiment, the cross-sectional area of the activated carbon layer 12 increases as it goes upward. Therefore, the granular activated carbon of the activated carbon layer 12 has a higher degree of freedom of movement as it goes upward, and is more likely to move. Therefore, the bubbles that have been pushed up by pushing down the granular activated carbon at the lower portion escape above the activated carbon layer 12 without being hindered from moving above, and the granular activated carbon displaced by the passage of the bubbles is also quickly returned to the original position. Return. Therefore, it is possible to effectively prevent a short circuit of the liquid to be processed due to channeling as in the related art.

【0015】「その他の構成」図2に、他の実施形態を
示す。この例では、活性炭塔10が小径の下部直胴部1
0aと下部直胴部10aより大径の上部直胴部10bと
から形成され、両者の中間が逆円錐台状の中間部10c
となっており、かつ活性炭層12が上部直胴部10bに
まで至っている。したがって、この実施形態において
も、上述の場合と同様に、活性炭層12の上部が下部よ
り断面積が広い。従って、上述の場合と同様に気泡の上
方への抜けが効果的に行われ、チャネリングによる被処
理液の短絡が防止される。
[Other Configurations] FIG. 2 shows another embodiment. In this example, the activated carbon tower 10 has a small diameter lower straight body 1.
0a and an upper straight body portion 10b having a diameter larger than that of the lower straight body portion 10a.
And the activated carbon layer 12 has reached the upper straight body portion 10b. Therefore, also in this embodiment, as in the above-described case, the upper part of the activated carbon layer 12 has a larger cross-sectional area than the lower part. Therefore, the bubbles are effectively removed upward as in the above-described case, and short-circuiting of the liquid to be treated due to channeling is prevented.

【0016】図3は、さらに他の実施形態を示してい
る。この装置では、活性炭塔10の外形は、径が一定の
円筒状である。そして、活性炭塔10の底部近傍には、
図3(b)に示すようなドーナツ状の多孔板からなるス
トレーナ22が配置され、その下方に被処理液室24が
区画形成されている。活性炭層12の粒状活性炭はスト
レーナ22により落下が防止され、被処理液はストレー
ナ22を介し活性炭層12に供給される。そして、スト
レーナ22の内側上方には、円錐状の封止体26が設け
られており、ストレーナ22の内側上方の円錐状空間を
占領している。従って、活性炭塔10は、ストレーナ2
2の上方において、徐々に内側空間が広がるように形成
されている。すなわち、活性炭塔10内に充填された粒
状活性炭によって形成される活性炭層12の断面積は、
上方に向かって徐々に大きくなっている。
FIG. 3 shows still another embodiment. In this device, the outer shape of the activated carbon tower 10 is a cylindrical shape having a constant diameter. And near the bottom of the activated carbon tower 10,
A strainer 22 composed of a donut-shaped perforated plate as shown in FIG. 3B is arranged, and a liquid chamber 24 to be treated is defined below the strainer 22. The granular activated carbon in the activated carbon layer 12 is prevented from falling by the strainer 22, and the liquid to be treated is supplied to the activated carbon layer 12 via the strainer 22. A conical sealing body 26 is provided above the inside of the strainer 22 and occupies the conical space inside the strainer 22. Therefore, the activated carbon tower 10 has the strainer 2
Above 2, the inner space is formed so as to gradually expand. That is, the cross-sectional area of the activated carbon layer 12 formed by the granular activated carbon filled in the activated carbon tower 10 is:
It gradually grows upward.

【0017】また、活性炭塔10の上部には、円盤状の
ストレーナ28が設けられ、その上方に処理液室30が
区画形成されている。従って、活性炭塔10内の上部全
面から処理液が処理液室30に集められ、ここから流出
管16を通り排出される。
A disc-shaped strainer 28 is provided above the activated carbon tower 10, and a processing liquid chamber 30 is formed above the strainer 28. Accordingly, the processing liquid is collected in the processing liquid chamber 30 from the entire upper surface of the activated carbon tower 10, and is discharged therefrom through the outflow pipe 16.

【0018】この構成においても、上述の場合と同様
に、気泡の上方への抜けが好適に行われ、チャネリング
による被処理液の短絡が防止される。
Also in this configuration, similarly to the above-described case, the air bubbles can be suitably removed upward, and short-circuiting of the liquid to be processed due to channeling is prevented.

【0019】図4は、さらに他の実施形態を示してい
る。この例では、活性炭塔10が球状に形成され、活性
炭層12は下方から半分程度の場所までに設定されてい
る。また、その他は、図1の構成とほぼ同様である。こ
の構成によっても活性炭層12は、上方に至るほどその
断面積が増加し、上述の場合と同様にチャネリングによ
る被処理液の短絡を防止することができる。
FIG. 4 shows still another embodiment. In this example, the activated carbon tower 10 is formed in a spherical shape, and the activated carbon layer 12 is set to about half a place from below. In other respects, the configuration is almost the same as that of FIG. Even with this configuration, the cross-sectional area of the activated carbon layer 12 increases as it goes upward, and short-circuiting of the liquid to be treated due to channeling can be prevented as in the case described above.

【0020】図5は、さらに他の構成例を示している。
この例では、図1に示したのと同じ構成の活性炭塔10
(第1の活性炭塔と呼ぶ)の後段に大気開放型の貯槽3
2、ポンプ34を介し、第2の活性炭塔36が接続され
ている。ここで、第2の活性炭塔36は、下降流でも上
向流でもよく、その形状も任意の形状のものが採用可能
である。
FIG. 5 shows still another configuration example.
In this example, an activated carbon tower 10 having the same configuration as shown in FIG.
At the later stage (referred to as the first activated carbon tower), an open-air storage tank 3
2. A second activated carbon tower 36 is connected via a pump 34. Here, the second activated carbon tower 36 may be either a downward flow or an upward flow, and any shape can be adopted.

【0021】この装置においては、第1の活性炭塔10
において上向流で処理された一次処理液が貯槽32に一
旦貯留される。この貯槽32は上方が大気に開放されて
いるため、一次処理液中に含まれる酸素ガスがここで除
去される。また、貯槽32にある程度の容量があるた
め、第2の活性炭塔36には、気泡を含まない一次処理
液が供給され、ここで粒状活性炭と更に接触され一次処
理液中に残留する過酸化水素がさらに除去される。この
ように2段の活性炭塔10、36により処理することに
より、一時的に高濃度の過酸化水素を含む排水が排出さ
れてもこれを確実に処理することができる。
In this apparatus, the first activated carbon tower 10
The primary treatment liquid treated in the upward flow is once stored in the storage tank 32. Since the upper portion of the storage tank 32 is open to the atmosphere, oxygen gas contained in the primary processing liquid is removed here. In addition, since the storage tank 32 has a certain capacity, a primary treatment liquid containing no air bubbles is supplied to the second activated carbon tower 36, where the primary treatment liquid is further contacted with granular activated carbon and hydrogen peroxide remaining in the primary treatment liquid is supplied. Is further removed. By treating the wastewater with the two-stage activated carbon towers 10 and 36 in this way, even if wastewater containing a high concentration of hydrogen peroxide is temporarily discharged, it can be reliably treated.

【0022】ここで、第2の活性炭塔36を下降流の自
然流下式のものにすると共に、活性炭塔10の上方を大
気に開放し、酸素ガスを大気中に排出できるようにすれ
ば、ポンプ34及び貯槽32を省略することもできる。
Here, if the second activated carbon tower 36 is of a downflow natural flow type and the upper part of the activated carbon tower 10 is opened to the atmosphere so that oxygen gas can be discharged to the atmosphere, the pump 34 and the storage tank 32 can be omitted.

【0023】図6は、さらに他の実施形態を示してい
る。この例では、第1及び第2の活性炭塔10、36が
同一形状の逆円錐状のものに形成されているとともに、
被処理液を第1の活性炭塔10から第2の活性炭塔36
の順に、あるいはその逆に第2の活性炭塔36から第1
の活性炭塔10の順に通液順序を変えて通液できるよう
に、かつ被処理液が最初に通液される活性炭塔を上向流
通液とし、後段の活性炭塔を下降流通液とすることがで
きるように流通経路が切り替えられるようになってい
る。
FIG. 6 shows still another embodiment. In this example, the first and second activated carbon towers 10 and 36 are formed in an inverted conical shape having the same shape.
The liquid to be treated is transferred from the first activated carbon tower 10 to the second activated carbon tower 36.
, Or vice versa, from the second activated carbon tower 36 to the first
The activated carbon tower through which the liquid to be treated is first passed is set as the upward flow liquid, and the activated carbon tower at the subsequent stage is set as the downward flow liquid so that the liquid can be passed in the order of the activated carbon tower 10 in order. The distribution channel can be switched so that it can be performed.

【0024】すなわち、被処理液は、バルブ40を介し
第1の活性炭塔10の下部に、あるいはバルブ42を介
して第2の活性炭塔36の下部にそれぞれ供給可能にな
っている。また、第1の活性炭塔10から第2の活性炭
塔36への直列通液による最終処理液は、バルブ44を
介し、第2の活性炭塔36の下部から排出可能に、また
その逆の順序で処理された最終処理液はバルブ46を介
して第1の活性炭塔10の下部から排出可能になってい
る。さらに、第1の活性炭塔10の上部からはバルブ5
0を介し、貯槽32に第1の活性炭塔10で処理された
一次処理液が排出可能であり、またこの活性炭塔10の
上部には貯槽32からポンプ34及びバルブ52を介し
第2の活性炭塔36で処理された貯槽32内の一次処理
液が供給可能になっている。また、第2の活性炭塔36
の上部には貯槽32からポンプ34及びバルブ54を介
し、第1の活性炭塔10で処理された貯槽32内の一次
処理液が供給可能になっており、更にこの第2の活性炭
塔36の上部からはバルブ56を介し、貯槽32に第2
の活性炭塔36で処理された一次処理液が排出可能にな
っている。
That is, the liquid to be treated can be supplied to the lower part of the first activated carbon tower 10 via the valve 40 or to the lower part of the second activated carbon tower 36 via the valve 42, respectively. Further, the final treatment liquid by the series flow from the first activated carbon tower 10 to the second activated carbon tower 36 can be discharged from the lower part of the second activated carbon tower 36 via a valve 44, and vice versa. The treated final treatment liquid can be discharged from the lower part of the first activated carbon tower 10 via a valve 46. Further, from the top of the first activated carbon tower 10, a valve 5
0, the primary treatment liquid treated in the first activated carbon tower 10 can be discharged to the storage tank 32, and the second activated carbon tower is supplied from the storage tank 32 to the upper part of the activated carbon tower 10 via the pump 34 and the valve 52. The primary processing liquid in the storage tank 32 processed at 36 can be supplied. In addition, the second activated carbon tower 36
The primary treatment liquid in the storage tank 32 treated in the first activated carbon tower 10 can be supplied from the storage tank 32 via a pump 34 and a valve 54 to the upper part of the second activated carbon tower 36. From the storage tank 32 through the valve 56
The primary treatment liquid treated in the activated carbon tower 36 can be discharged.

【0025】そこで、バルブ40、50、54、44を
開、バルブ42、52、56、46を閉とすることによ
って、被処理液は、バルブ40、配管58を介して第1
の活性炭塔10の下部から流入され第1の活性炭塔10
を上向流で通ったあと一次処理液として配管60を介し
て塔上部から排出されてバルブ50を介して貯槽32に
導入され、その後貯槽32からポンプ34、バルブ54
及び配管62を介し第2の活性炭塔36の上部に供給さ
れ、第2の活性炭塔36を下降流で通り、処理液は最終
処理液として塔下部より配管64、バルブ44、配管6
6を介して排出される。一方、バルブ40、50、5
4、44を閉、バルブ42、52、56、46を開とす
ることによって、被処理液を、第2の活性炭塔36を上
向流で通液したあと貯槽32を介し第1の活性炭塔10
を下降流で通液させることができる。
Therefore, by opening the valves 40, 50, 54 and 44 and closing the valves 42, 52, 56 and 46, the liquid to be treated is discharged through the valve 40 and the pipe 58 to the first liquid.
From the lower part of the activated carbon tower 10
Is discharged from the top of the tower through a pipe 60 as a primary treatment liquid through a pipe 60, and is introduced into a storage tank 32 through a valve 50. Thereafter, the pump 34 and the valve 54
And is supplied to the upper part of the second activated carbon tower 36 via a pipe 62, passes through the second activated carbon tower 36 in a downward flow, and the processing liquid is supplied as a final processing liquid from the lower part of the pipe 64, the valve 44, the pipe 6
Exhausted through 6. On the other hand, valves 40, 50, 5
4 and 44 are closed and the valves 42, 52, 56 and 46 are opened, so that the liquid to be treated flows through the second activated carbon tower 36 in an upward flow, and then the first activated carbon tower is passed through the storage tank 32. 10
Through a downward flow.

【0026】このように、本実施形態では、2つの活性
炭塔10または36のいずれかを先の段として使用する
かを切り替えることができる。ここで、2つの活性炭塔
10及び36はそのいずれもが逆円錐状をなし、上方に
向けて大径になっている。そして、先の段として使用さ
れる活性炭塔10または36が上向流、後の段として使
用される活性炭塔10または36が下降流で通液される
ようになっている。
As described above, in this embodiment, it is possible to switch which of the two activated carbon towers 10 or 36 is used as the preceding stage. Here, each of the two activated carbon towers 10 and 36 has an inverted conical shape, and has a large diameter upward. Then, the activated carbon tower 10 or 36 used as the first stage flows upward, and the activated carbon tower 10 or 36 used as the second stage flows downward.

【0027】従って、被処理液が最初に通液される第1
段目の活性炭塔10または36において、大量に発生す
る酸素ガスを効果的に上方に排出でき、一方2段目の活
性炭塔10または36においては、その活性炭塔10ま
たは36内を流れる液の流速は、塔の出口側(下側)で
流速が速くなる。従って、過酸化水素が低濃度になって
いる部分において流速が速い状態で粒状活性炭と被処理
液とが接触する。流速が速いと活性炭層12を流通する
被処理液のレイノルズ数が高くなり、それだけ活性炭表
面と被処理液の接触が行われやすくなる。従って、低濃
度となった過酸化水素を効果的に除去できる。
Therefore, the first liquid through which the liquid to be treated first flows is
In the activated carbon tower 10 or 36 of the second stage, a large amount of oxygen gas generated can be efficiently discharged upward, while in the activated carbon tower 10 or 36 of the second stage, the flow velocity of the liquid flowing in the activated carbon tower 10 or 36 , The flow velocity becomes higher on the outlet side (lower side) of the tower. Therefore, the granular activated carbon and the liquid to be treated come into contact with each other at a high flow rate in a portion where the concentration of hydrogen peroxide is low. When the flow rate is high, the Reynolds number of the liquid to be treated flowing through the activated carbon layer 12 is increased, and the surface of the activated carbon and the liquid to be treated are more easily contacted. Therefore, hydrogen peroxide having a low concentration can be effectively removed.

【0028】さらに、このように、第1、第2の活性炭
塔10、36の通液の順番を入れ替えることによって、
第1、第2の活性炭塔10、36内の活性炭層の粒状活
性炭の表面におけるスライムの発生を効果的に防止でき
る。すなわち、先の段として使用される活性炭塔10ま
たは36には、過酸化水素が高濃度に含まれた被処理液
が供給されるが、この時この活性炭塔の処理液中に過酸
化水素が少量残留するような流速で被処理液を通液する
ことにより、活性炭塔10または36内の粒状活性炭の
ほとんどすべてが過酸化水素にさらされる。従って、過
酸化水素の殺菌作用によって、スライムの発生が抑制さ
れる。一方、後の段の活性炭塔10または36には、前
段の活性炭塔で大部分の過酸化水素が分解されて、過酸
化水素濃度が薄くなった一次処理液が供給されるので、
活性炭層の上層部で過酸化水素がほとんど分解されてし
まい、中間層から下方に存在する活性炭は過酸化水素に
さらされなくなってしまう。そのため、中間層から下方
においてはスライムの発生が起こる。しかし、本実施形
態では、定期的に被処理液の流通順序が切り替えられる
ため、活性炭塔10、36の両方の活性炭層の活性炭が
間欠的ではあっても確実に殺菌され、スライムの発生が
全体として抑制される。
Further, by changing the order of passing the first and second activated carbon towers 10 and 36 as described above,
The generation of slime on the surface of the granular activated carbon in the activated carbon layer in the first and second activated carbon towers 10 and 36 can be effectively prevented. That is, the liquid to be treated containing a high concentration of hydrogen peroxide is supplied to the activated carbon tower 10 or 36 used as the preceding stage. At this time, hydrogen peroxide is contained in the treatment liquid of the activated carbon tower. By passing the liquid to be treated at such a flow rate as to leave a small amount, almost all of the granular activated carbon in the activated carbon tower 10 or 36 is exposed to hydrogen peroxide. Therefore, the generation of slime is suppressed by the bactericidal action of hydrogen peroxide. On the other hand, most of the hydrogen peroxide is decomposed in the activated carbon tower in the preceding stage and the primary treatment liquid having a reduced concentration of hydrogen peroxide is supplied to the activated carbon tower 10 or 36 in the subsequent stage.
Hydrogen peroxide is almost decomposed in the upper part of the activated carbon layer, and activated carbon existing below the intermediate layer is not exposed to hydrogen peroxide. Therefore, slime is generated below the intermediate layer. However, in this embodiment, since the flow order of the liquid to be treated is periodically switched, the activated carbon in both activated carbon layers of the activated carbon towers 10 and 36 is surely sterilized even if intermittent, and the generation of slime is totally reduced. Is suppressed.

【0029】スライムが発生すると、これが処理液中に
流出したり、デッドスペースができ処理液の短絡が生じ
たり、通水における圧損が増大するなどの問題が生じる
が、本実施形態によりこれらの問題発生を抑制すること
ができる。
When slime is generated, there are problems such as the slime flowing out into the processing solution, a dead space being generated, short-circuiting of the processing solution, and an increase in pressure loss in flowing water. Generation can be suppressed.

【0030】[0030]

【実施例】図2に示した装置を用いて過酸化水素含有水
の処理実験を行った。また、断面積一定の活性炭塔を用
いて比較例についての実験も行った。実施例の活性炭塔
10の下部10aの直径は1.1mで直胴部の高さは
0.8m(したがって、直胴部の容量は約800L)、
上部10bの直径は1.6mであり、粒状活性炭はダイ
ヤホープ006(三菱化学製)を2400L充填した。
比較例は、直径1.1mの円筒で、活性炭の充填量は同
じである。
EXAMPLE An experiment for treating hydrogen peroxide-containing water was performed using the apparatus shown in FIG. Further, an experiment on a comparative example was also performed using an activated carbon tower having a constant cross-sectional area. The diameter of the lower part 10a of the activated carbon tower 10 of the embodiment is 1.1 m, the height of the straight body is 0.8 m (therefore, the capacity of the straight body is about 800 L),
The diameter of the upper portion 10b was 1.6 m, and the granular activated carbon was filled with 2,400 L of Diamond Hope 006 (manufactured by Mitsubishi Chemical Corporation).
The comparative example is a cylinder having a diameter of 1.1 m, and the filling amount of activated carbon is the same.

【0031】被処理液として、過酸化水素濃度500m
g/Lの排水を用意し、これを流量12m3/hで24
時間通水した。この結果、実施形態の装置では、処理水
の過酸化水素濃度は、通液中安定して、ゼロであった
が、比較例では24時間後の濃度が80mg/L程度と
かなり高濃度となり、短絡が起こっていることが推定さ
れた。
As the liquid to be treated, a hydrogen peroxide concentration of 500 m
g / L of wastewater was prepared and supplied at a flow rate of 12 m 3 / h for 24 hours.
Water passed for hours. As a result, in the apparatus of the embodiment, the concentration of hydrogen peroxide in the treated water was stable and zero during the passage, but in the comparative example, the concentration after 24 hours was about 80 mg / L, which was considerably high. It was estimated that a short circuit had occurred.

【0032】また、被処理液の過酸化水素濃度を一時的
に5000mg/Lに上昇させ、その後500mg/L
に戻した。実施形態の装置では、処理液の過酸化水素濃
度が一時的に4mg/Lにまで上昇したが、その後すぐ
にゼロに戻った。一方、比較例では、120mg/Lに
まで上昇し、かつその後かなりの時間過酸化水素濃度が
高濃度となった。
Further, the concentration of hydrogen peroxide in the liquid to be treated is temporarily increased to 5000 mg / L, and thereafter, the concentration is increased to 500 mg / L.
Back to. In the apparatus of the embodiment, the concentration of hydrogen peroxide in the treatment liquid temporarily increased to 4 mg / L, but immediately returned to zero. On the other hand, in the comparative example, the concentration increased to 120 mg / L, and the hydrogen peroxide concentration became high for a considerable time thereafter.

【0033】[0033]

【発明の効果】以上説明したように、本発明によれば、
活性炭層の断面積が上方ほど大きくなっており、ここに
過酸化水素を含む被処理液が上向流で流通される。そこ
で、活性炭層内において発生した酸素ガスからなる気泡
は上方に効果的に抜ける。従って、チャネリングによる
短絡を防止して効果的な処理が行える。
As described above, according to the present invention,
The cross-sectional area of the activated carbon layer increases as it goes upward, and the liquid to be treated containing hydrogen peroxide is circulated in the upward flow. Therefore, the bubbles formed of the oxygen gas generated in the activated carbon layer effectively escape upward. Therefore, an effective processing can be performed by preventing a short circuit due to channeling.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施形態の構成を示す図である。FIG. 1 is a diagram illustrating a configuration of an embodiment.

【図2】 他の実施形態の構成を示す図である。FIG. 2 is a diagram illustrating a configuration of another embodiment.

【図3】 さらに他の実施形態の構成を示す図である。FIG. 3 is a diagram illustrating a configuration of still another embodiment.

【図4】 さらに他の実施形態の構成を示す図である。FIG. 4 is a diagram showing a configuration of still another embodiment.

【図5】 さらに他の実施形態の構成を示す図である。FIG. 5 is a diagram showing a configuration of still another embodiment.

【図6】 さらに他の実施形態の構成を示す図である。FIG. 6 is a diagram showing a configuration of still another embodiment.

【符号の説明】[Explanation of symbols]

10 活性炭塔、12 活性炭層、14 流入管、16
流出管、18 目板、20 コレクタ、22 ストレ
ーナ、24 被処理液室、26 封止体、28ストレー
ナ、30 処理液室、32 貯槽、34 ポンプ、36
活性炭塔、40,42,44,46,50,52,5
4,56 バルブ。
10 activated carbon tower, 12 activated carbon bed, 14 inflow pipe, 16
Outflow pipe, 18th board, 20 collector, 22 strainer, 24 liquid chamber to be processed, 26 sealed body, 28 strainer, 30 processing liquid chamber, 32 storage tank, 34 pump, 36
Activated carbon tower, 40, 42, 44, 46, 50, 52, 5
4,56 valves.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 過酸化水素を含む被処理液を粒状活性炭
を充填した活性炭塔に底部側から上部側へ向けて上向流
で流通し、被処理液を粒状活性炭と接触させて過酸化水
素を分解する活性炭処理装置であって、 活性炭塔内部に充填された粒状活性炭によって形成され
る活性炭層の上部側の断面積を底部側に比べ大きくした
ことを特徴とする活性炭処理装置。
1. A liquid to be treated containing hydrogen peroxide is passed through an activated carbon tower filled with granular activated carbon in an upward flow from the bottom side to the upper side, and the liquid to be treated is brought into contact with the granular activated carbon to form hydrogen peroxide. Activated carbon treatment apparatus for decomposing an activated carbon, wherein an activated carbon layer formed by granular activated carbon filled in an activated carbon tower has a cross-sectional area on an upper side larger than that on a bottom side.
JP1525097A 1997-01-29 1997-01-29 Activated carbon treatment apparatus Pending JPH10211487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1525097A JPH10211487A (en) 1997-01-29 1997-01-29 Activated carbon treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1525097A JPH10211487A (en) 1997-01-29 1997-01-29 Activated carbon treatment apparatus

Publications (1)

Publication Number Publication Date
JPH10211487A true JPH10211487A (en) 1998-08-11

Family

ID=11883618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1525097A Pending JPH10211487A (en) 1997-01-29 1997-01-29 Activated carbon treatment apparatus

Country Status (1)

Country Link
JP (1) JPH10211487A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009165992A (en) * 2008-01-18 2009-07-30 Sharp Corp Exhaust gas treatment apparatus
WO2010008072A1 (en) * 2008-07-18 2010-01-21 株式会社クレハ Treating agent for oxidizing agent-containing waste water, method for treating oxidizing agent-containing waste water, apparatus for treating oxidizing agent-containing waste water, purifying agent for organic solvent, method for purifying organic solvent, and apparatus for purifying organic solvent
JP2010227888A (en) * 2009-03-27 2010-10-14 Nippon Rensui Co Ltd Method for recovering of wastewater, and recovery apparatus of the wastewater
JP4860008B1 (en) * 2011-06-02 2012-01-25 株式会社アサカ理研 Hydrogen peroxide decomposition apparatus and hydrogen peroxide decomposition method
KR20170081246A (en) 2014-12-11 2017-07-11 다나카 기킨조쿠 고교 가부시키가이샤 Waste water treatment device and waste water treatment method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009165992A (en) * 2008-01-18 2009-07-30 Sharp Corp Exhaust gas treatment apparatus
WO2010008072A1 (en) * 2008-07-18 2010-01-21 株式会社クレハ Treating agent for oxidizing agent-containing waste water, method for treating oxidizing agent-containing waste water, apparatus for treating oxidizing agent-containing waste water, purifying agent for organic solvent, method for purifying organic solvent, and apparatus for purifying organic solvent
JP5629578B2 (en) * 2008-07-18 2014-11-19 株式会社クレハ Oxidant-containing wastewater treatment agent, oxidant-containing wastewater treatment method, oxidant-containing wastewater treatment device, organic solvent purification agent, organic solvent purification method, and organic solvent purification device
JP2010227888A (en) * 2009-03-27 2010-10-14 Nippon Rensui Co Ltd Method for recovering of wastewater, and recovery apparatus of the wastewater
JP4860008B1 (en) * 2011-06-02 2012-01-25 株式会社アサカ理研 Hydrogen peroxide decomposition apparatus and hydrogen peroxide decomposition method
WO2012164948A1 (en) * 2011-06-02 2012-12-06 株式会社アサカ理研 Hydrogen peroxide decomposition device and decomposition method for hydrogen peroxide
KR20170081246A (en) 2014-12-11 2017-07-11 다나카 기킨조쿠 고교 가부시키가이샤 Waste water treatment device and waste water treatment method
US10407326B2 (en) 2014-12-11 2019-09-10 Tanaka Kikinzoku Kogyo K.K. Waste liquid treatment device and waste liquid treatment method

Similar Documents

Publication Publication Date Title
KR0180853B1 (en) Ultrapure water production system having pretreatment system for paper forming both anerobic and aerobic organism treatment
JP2012193252A (en) Biodesulfurization device of biogas and cleaning method of the same
JPH10211487A (en) Activated carbon treatment apparatus
CN1326601C (en) Gas dissolving device
JP2601379B2 (en) Gas deodorization and oxidation treatment method, liquid ozone oxidation treatment method, and pretreatment method for aerobic biological treatment
JP5910635B2 (en) Method for treating hydrogen peroxide-containing water
TWI226311B (en) Hydrogen peroxide containing water discharge treatment device
KR100615434B1 (en) The cylindrical reactor in a body for dissolving ozone in water and separating sludge by floatation
JP4608726B2 (en) Biological treatment equipment
JP4106128B2 (en) Upflow anaerobic treatment apparatus and treatment method
JP3444725B2 (en) Vacuum deaerator
JP3488588B2 (en) Activated carbon treatment method
JPH10314760A (en) Hydrogen peroxide removing apparatus and method for treating wastewater-containing hydrogen peroxide
JPH10230249A (en) Activated carbon treating device
JP3087914B2 (en) Aeration treatment equipment
JP2005007378A (en) Charcoal type water purification device
JP2000024451A (en) Packed-bed type biological deodorizer and its cleaning
JPH0839054A (en) Method for decomposing hydrogen peroxide
JP2002301491A (en) Waste water disposal apparatus and method of transferring liquid in the apparatus
JP5779408B2 (en) Method and apparatus for treating peroxide-containing water
KR200369990Y1 (en) The cylindrical reactor in a body for dissolving ozone in water and separating sludge by floatation
JPH10151451A (en) Method for removing hydrogen peroxide by photocatalyst and light irradiation
JP2002346582A (en) Pressure fluidized bed type wastewater treatment apparatus
JPH08267099A (en) Ozonetreatment equipment for biological sludge
JP3802381B2 (en) Method and apparatus for deodorizing organic wastewater or sludge using reduced pressure treatment equipment