JP5779408B2 - Method and apparatus for treating peroxide-containing water - Google Patents

Method and apparatus for treating peroxide-containing water Download PDF

Info

Publication number
JP5779408B2
JP5779408B2 JP2011120751A JP2011120751A JP5779408B2 JP 5779408 B2 JP5779408 B2 JP 5779408B2 JP 2011120751 A JP2011120751 A JP 2011120751A JP 2011120751 A JP2011120751 A JP 2011120751A JP 5779408 B2 JP5779408 B2 JP 5779408B2
Authority
JP
Japan
Prior art keywords
peroxide
reaction tank
water
upward
containing water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011120751A
Other languages
Japanese (ja)
Other versions
JP2012245486A (en
Inventor
大場 将純
将純 大場
祐司 塚本
祐司 塚本
舞奈 吉田
舞奈 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2011120751A priority Critical patent/JP5779408B2/en
Publication of JP2012245486A publication Critical patent/JP2012245486A/en
Application granted granted Critical
Publication of JP5779408B2 publication Critical patent/JP5779408B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、過酸化物を含有する水(以下、「過酸化物含有水」とも称する)の処理方法並びに処理装置に関する。   The present invention relates to a treatment method and a treatment apparatus for water containing a peroxide (hereinafter also referred to as “peroxide-containing water”).

過酸化水素に代表される過酸化物は、洗浄効果、殺菌効果などに優れるばかりか、無害な酸素と水に分解する環境負荷の低い薬品であるため、例えば紙パルプや繊維の漂白剤、化学工業における酸化剤、半導体製造工場での洗浄剤、食品工場での殺菌剤など広く利用されている。
例えば、半導体を製造する工場においては、シリコンウェハーの研磨やエッチング処理に過酸化水素を含む処理液が使用されている。食品工場等においては、テトラパックやPET容器等に各種飲料を無菌充填する際に、過酸化水素やその他過酸化物を含有する水を殺菌剤として用いて容器やキャップの殺菌が行われている。
Peroxides typified by hydrogen peroxide are not only excellent in cleaning and sterilizing effects, but are also environmentally friendly chemicals that decompose into harmless oxygen and water. For example, bleaching agents for paper pulp and fibers, chemicals, etc. It is widely used in industries such as oxidizing agents, cleaning agents in semiconductor manufacturing plants, and bactericides in food factories.
For example, in a factory for manufacturing a semiconductor, a processing solution containing hydrogen peroxide is used for polishing or etching a silicon wafer. In food factories, containers and caps are sterilized using water containing hydrogen peroxide or other peroxides as a disinfectant when aseptically filling various beverages into Tetra Pak or PET containers. .

このような過酸化物は、それ自体がCOD源となるため、使用後の過酸化物含有水は直接公共用水域に排出することができず、また、排水処理設備へ排出する場合も活性汚泥等の生物処理性能に影響を与えるため、排出する際には過酸化物の分解処理が必要とされている。   Since such a peroxide itself becomes a COD source, the peroxide-containing water after use cannot be discharged directly into public water areas, and activated sludge also when discharged into a wastewater treatment facility. Therefore, it is necessary to decompose the peroxide when discharging.

過酸化物含有水の分解処理方法としては、1)ヒドラジンや重亜硫酸ナトリウムなどの還元剤を添加する方法、2)活性炭に接触させる方法、3)カタラーゼなどの酵素に接触させる方法、4)白金、パラジウム、マンガン等の金属触媒を利用して分解する方法、5)光触媒を利用して分解する方法などが知られている。   Methods for decomposing peroxide-containing water include 1) a method of adding a reducing agent such as hydrazine and sodium bisulfite, 2) a method of contacting with activated carbon, 3) a method of contacting with an enzyme such as catalase, 4) platinum There are known a method of decomposing using a metal catalyst such as palladium, manganese and the like, and 5) a method of decomposing using a photocatalyst.

具体的には、過酸化物含有水を活性炭に接触させる方法に関して、例えば特許文献1(特開昭63−39695号公報)には、過酸化水素含有水に鉄塩を添加し、pH2〜3.5に調整して活性炭と接触させる処理方法が提案されている。
特許文献2(実公平2−43515号公報)には、pH10以上に調整した過酸化水素を含む水溶液を固定粒状活性炭充填層の上面に直接散布して、活性炭層によって接触分解する過酸化水素の除去装置が開示されている。
特許文献3(実用新案登録第2560167号公報)には、処理水槽に貯留された過酸化水素を含んだ廃液が循環管路系を通って粒状活性炭フィルターへ循環・通水して過酸化水素を分解処理する過酸化水素水の分解装置が開示されている。
Specifically, regarding a method of bringing peroxide-containing water into contact with activated carbon, for example, in Patent Document 1 (Japanese Patent Laid-Open No. 63-39695), an iron salt is added to hydrogen peroxide-containing water, and the pH is 2 to 3. A treatment method of adjusting to .5 and contacting with activated carbon has been proposed.
In Patent Document 2 (Japanese Utility Model Publication No. 2-43515), an aqueous solution containing hydrogen peroxide adjusted to a pH of 10 or more is directly sprayed on the upper surface of a fixed granular activated carbon packed bed, and hydrogen peroxide that is catalytically decomposed by the activated carbon layer A removal device is disclosed.
In Patent Document 3 (Utility Model Registration No. 2560167), the waste liquid containing hydrogen peroxide stored in the treated water tank is circulated and passed through a granular activated carbon filter through a circulation line system to generate hydrogen peroxide. An apparatus for decomposing hydrogen peroxide water to be decomposed is disclosed.

特許文献4(特開平8−39078号公報)には、アルカリ性化合物を活性炭塔に通水した後、過酸化水素含有廃水を通水することで、過酸化水素を効率的に分解する方法が開示されている。
特許文献5(特開2000−135492号公報)には、原水を循環水で希釈・混合してから流動床式活性炭塔に供給するとともに、その流動床式活性炭塔内の上向流速度を40m/h以上、過酸化水素負荷を50kgH22/m3活性炭・h以下にする方法が開示されている。
Patent Document 4 (JP-A-8-39078) discloses a method for efficiently decomposing hydrogen peroxide by passing an alkaline compound through an activated carbon tower and then passing hydrogen peroxide-containing waste water. Has been.
In Patent Document 5 (Japanese Patent Laid-Open No. 2000-135492), raw water is diluted and mixed with circulating water and then supplied to a fluidized bed activated carbon tower, and the upward flow velocity in the fluidized bed activated carbon tower is set to 40 m. A method is disclosed in which the hydrogen peroxide load is 50 kgH 2 O 2 / m 3 activated carbon · h or less.

過酸化水素酵素に接触させる方法に関しては、例えば特許文献6(特開平6−170355号公報)において、過酸化水素を含む半導体製造排水をpH8〜11にpH調整した後、カタラーゼと接触させて過酸化水素を分解する過酸化水素を含む半導体製造排水の処理方法が開示されている。   Regarding the method of contacting with hydrogen peroxide enzyme, for example, in Patent Document 6 (Japanese Patent Application Laid-Open No. Hei 6-170355), the pH of semiconductor manufacturing wastewater containing hydrogen peroxide is adjusted to pH 8 to 11, and then contacted with catalase. A method of treating semiconductor manufacturing wastewater containing hydrogen peroxide that decomposes hydrogen oxide is disclosed.

金属触媒を利用して分解する方法に関しては、例えば特許文献7(特開平11−290870号公報)には、触媒成分としてマンガン化合物を活性成分とする過酸化水素分解触媒を用い、この過酸化水素分解触媒を充填した過酸化水素分解塔に、廃水を通すことにより、過酸化水素濃度の低下した一次処理水を得、続いて、活性炭を充填した塔に上記一次処理水を通して過酸化水素を更に低下させた二次処理水を得、次いでこの二次処理水をアンモニア濃縮精製塔に通水してアンモニアを濃縮回収するという処理方法が開示されている。
特許文献8(特開2010−240557号公報)には、被処理水を過酸化水素分解触媒と接触させて、該被処理水中の過酸化水素を酸素と水とに分解して処理水を得る過酸化水素水処理装置において、該被処理水の導入口と処理水の排出口を有し、内部に過酸化水素分解触媒が充填された過酸化水素分解反応器と、該過酸化水素分解反応器の流出水が導入される気液分離器とを有し、該気液分離器は、上部に排気配管が接続され、下部に排水配管が接続された筒状容器よりなり、該筒状容器の側部に、前記流出水が導入されることを特徴とする過酸化水素水処理装置が開示されている。
Regarding a method of decomposing using a metal catalyst, for example, Patent Document 7 (Japanese Patent Laid-Open No. 11-290870) uses a hydrogen peroxide decomposition catalyst having a manganese compound as an active component as a catalyst component. By passing waste water through a hydrogen peroxide decomposition tower packed with a decomposition catalyst, primary treated water having a reduced concentration of hydrogen peroxide is obtained. Subsequently, hydrogen peroxide is further passed through the primary treated water into a tower packed with activated carbon. A treatment method is disclosed in which reduced secondary treated water is obtained, and then this secondary treated water is passed through an ammonia concentration and purification tower to concentrate and recover ammonia.
In Patent Document 8 (Japanese Patent Laid-Open No. 2010-240557), treated water is brought into contact with a hydrogen peroxide decomposition catalyst, and hydrogen peroxide in the treated water is decomposed into oxygen and water to obtain treated water. In a hydrogen peroxide treatment apparatus, a hydrogen peroxide decomposition reactor having an inlet for treated water and a discharge outlet for treated water and filled with a hydrogen peroxide decomposition catalyst, and the hydrogen peroxide decomposition reaction A gas-liquid separator into which the outflow water of the vessel is introduced, the gas-liquid separator comprising a cylindrical container having an exhaust pipe connected to the upper part and a drain pipe connected to the lower part. A hydrogen peroxide solution treatment apparatus is disclosed in which the effluent water is introduced into the side portion.

光触媒を利用する方法に関しては、例えば特許文献9(特開平10−151451号)には、過酸化水素含有廃水に酸化チタン(TiO2)、チタン酸ストロンチウム(SrTiO2)、酸化カドミウム(CdS)及び酸化亜鉛(ZnO)といった光触媒を添加し、紫外線を照射することにより過酸化水素を分解する方法が開示されている。 Regarding a method using a photocatalyst, for example, in Patent Document 9 (Japanese Patent Laid-Open No. 10-151451), hydrogen peroxide-containing wastewater is added with titanium oxide (TiO 2 ), strontium titanate (SrTiO 2 ), cadmium oxide (CdS) and A method of decomposing hydrogen peroxide by adding a photocatalyst such as zinc oxide (ZnO) and irradiating with ultraviolet rays is disclosed.

ところで、上記の如く過酸化物が分解されると、この分解反応に伴って酸素ガスが発生することになるが、この酸素ガスの気泡が系内に留まっていると、触媒などと過酸化水素との接触を阻害して分解効率を低下させることになるため、分解時に生じた酸素ガスの気泡を系外に逃がすことが必要であった。   By the way, when the peroxide is decomposed as described above, oxygen gas is generated along with this decomposition reaction. If the bubbles of oxygen gas remain in the system, the catalyst and hydrogen peroxide are generated. Therefore, it is necessary to release oxygen gas bubbles generated during decomposition out of the system.

そこで従来、上記課題を解決する方法として、例えば特許文献10(特公平1−203094号公報)では、通水方式として上向流を用い、かつ活性炭層を流動させることにより、活性炭層での酸素ガスの溜りを防止する方法が提案されている。
また、特許文献11(特公平6−61541号公報)には、原水pHを10以上に調整した上で、活性炭触媒の上部から下向流で通液することにより、触媒上部でほとんどの過酸化水素が分解されるため、結果として触媒内部でのガス発生を抑制できる旨が記載されている。
Therefore, conventionally, as a method for solving the above problem, for example, in Patent Document 10 (Japanese Patent Publication No. 1-203094), an upward flow is used as a water flow method, and the activated carbon layer is caused to flow, whereby oxygen in the activated carbon layer is obtained. A method for preventing gas accumulation has been proposed.
Further, in Patent Document 11 (Japanese Patent Publication No. 6-61541), by adjusting the raw water pH to 10 or more and passing it in a downward flow from the upper part of the activated carbon catalyst, most of the peroxidation at the upper part of the catalyst. Since hydrogen is decomposed, it is described that the generation of gas inside the catalyst can be suppressed as a result.

特許文献12(特開2003−190972号公報)には、過酸化水素の分解よって発生した酸素ガスの気泡が触媒と過酸化水素との接触を阻害するのを防止する方法として、過酸化水素含有排水を上向流にて処理する反応塔において、反応塔内で触媒を上下方向に複数層に分割して配置するとともに、酸素ガスの排出管を反応塔内に設置することにより、下方の触媒層で発生した酸素ガスの気泡を上方の触媒層に接触させることなく反応塔外に排出する方法が開示されている。
特許文献13(特開2006−000827号公報)には、過酸化水素含有排水と触媒とを接触させて排水中の過酸化水素を分解する際に、触媒として均一粒径の球状活性炭を使用することにより、触媒層での酸素ガスの溜りを防止する方法が開示されている。
さらにまた、特許文献14(特開2007−185587号公報)では、過酸化水素分解触媒を充填したカラムに過酸化水素含有水を好ましくは下向流通水した後、カラム流出水を直接膜脱気装置等の溶存酸素除去装置に通水して過酸化水素の分解で生成した酸素を除去する方法が開示されている。
In Patent Document 12 (Japanese Patent Laid-Open No. 2003-190972), as a method for preventing bubbles of oxygen gas generated by decomposition of hydrogen peroxide from inhibiting the contact between the catalyst and hydrogen peroxide, hydrogen peroxide containing In a reaction tower that treats wastewater in an upward flow, the catalyst is divided into a plurality of layers in the vertical direction in the reaction tower, and an oxygen gas discharge pipe is installed in the reaction tower, so that the lower catalyst A method is disclosed in which bubbles of oxygen gas generated in the bed are discharged out of the reaction tower without contacting the upper catalyst layer.
In Patent Document 13 (Japanese Patent Application Laid-Open No. 2006-000827), spherical activated carbon having a uniform particle diameter is used as a catalyst when hydrogen peroxide containing wastewater and a catalyst are brought into contact with each other to decompose hydrogen peroxide in the wastewater. Thus, a method for preventing the accumulation of oxygen gas in the catalyst layer is disclosed.
Furthermore, in Patent Document 14 (Japanese Patent Laid-Open No. 2007-185587), hydrogen peroxide-containing water is preferably flowed downward in a column packed with a hydrogen peroxide decomposition catalyst, and then the column effluent is directly subjected to membrane deaeration. A method for removing oxygen produced by decomposition of hydrogen peroxide by passing water through a dissolved oxygen removing apparatus such as an apparatus is disclosed.

特開昭63−39695号公報JP 63-39695 A 実公平2−43515号公報Japanese Utility Model Publication No. 2-34351 実用新案登録第2560167号公報Utility Model Registration No. 2560167 特開平8−39078号公報JP-A-8-39078 特開2000−135492号公報JP 2000-135492 A 特開平6−170355号公報JP-A-6-170355 特開平11−290870号公報JP 11-290870 A 特開2010−240557号公報JP 2010-240557 A 特開平10−151451号JP-A-10-151451 特公平1−203094号公報Japanese Patent Publication No. 1-203094 特公平6−61541号公報Japanese Examined Patent Publication No. 6-61541 特開2003−190972号公報JP 2003-190972 A 特開2006−000827号公報JP 2006-000827 A 特開2007−185587号公報JP 2007-185587 A

本発明者は、例えば図7に示すように、過酸化物分解材51が内部に充填された第1反応槽52と、過酸化物分解材51が内部に充填された第2反応槽53と、第1反応槽52及び第2反応槽53の上端開口部を連通する連通開放部54とを備えた処理装置50を想到すると共に、第1反応槽52の底部から上部に向かって過酸化物含有水(被処理水)を上向きに流通させた後、連通開放部54を介して第2反応槽53の上端開口部から底部に向かって被処理水を下向きに流通させることによって、過酸化物を分解する方法を想到した。   The inventor, for example, as shown in FIG. 7, the first reaction tank 52 filled with the peroxide decomposition material 51, and the second reaction tank 53 filled with the peroxide decomposition material 51, And a processing device 50 having a communication opening portion 54 communicating with the upper end openings of the first reaction tank 52 and the second reaction tank 53, and a peroxide from the bottom to the top of the first reaction tank 52. After the contained water (treated water) is circulated upward, the treated water is circulated downward from the upper end opening of the second reaction tank 53 toward the bottom via the communication opening portion 54, thereby forming a peroxide. I came up with a way to break down.

このような過酸化物含有水の処理方法によれば、第1反応槽52内において過酸化水素の分解によって発生した酸素の気泡は、上向き流によって第1反応槽52の上端開口部まで上昇し、連通開放部54内において当該気泡の大部分を系外に逃がすことができると予想していた。
ところが、実際に上記のような処理装置を試作して処理を実施してみたところ、第1反応槽52内で発生した酸素の気泡は、上向き流によって展開された過酸化物分解材と共に第2反応槽53に溢流し、第2反応槽の内部に気泡が入り込み、思ったほど分解効率を高めることができないことが判明した。
According to such a method for treating peroxide-containing water, oxygen bubbles generated by the decomposition of hydrogen peroxide in the first reaction tank 52 rise to the upper end opening of the first reaction tank 52 by the upward flow. It was expected that most of the bubbles could escape outside the communication opening 54.
However, when the processing apparatus as described above was actually manufactured and processed, the oxygen bubbles generated in the first reaction tank 52, together with the peroxide decomposition material developed by the upward flow, were second. It was found that the reaction tank 53 overflowed, bubbles entered the second reaction tank, and the decomposition efficiency could not be increased as expected.

そこで本発明は、過酸化物分解材を充填してなる第1反応槽内を、被処理水が上向きに流通した後、過酸化物分解材を充填してなる第2反応槽内を下向きに流通する過酸化物含有水の処理方法及び処理装置において、上向き通水反応槽である第1反応槽内で発生した気泡を効果的に系外に逃がして、下向き通水反応槽である第2反応槽に流通させないようにして、過酸化物の分解効率をより一層高めることができる、新たな過酸化物含有水の処理方法及び装置を提供せんとするものである。   Therefore, in the present invention, after the water to be treated flows upward in the first reaction tank filled with the peroxide decomposition material, the second reaction tank filled with the peroxide decomposition material faces downward. In the method and apparatus for treating peroxide-containing water that circulates, the bubbles generated in the first reaction tank, which is the upward water-flowing reaction tank, are effectively released outside the system, and the second water-flowing reaction tank is the second water-flowing reaction tank. It is an object of the present invention to provide a new peroxide-containing water treatment method and apparatus capable of further improving the decomposition efficiency of peroxide without being allowed to flow through a reaction vessel.

本発明は、過酸化物分解材が内部に充填され、被処理水としての過酸化物含有水が上向きに流通し、発生した気泡を上向流で浮上させる第1反応槽と、過酸化物分解材が内部に充填され、過酸化物含有水が下向きに流通する第2反応槽と、前記第1反応槽及び前記第2反応槽の上部を連通し、前記第1反応槽内を上向きに流通した過酸化物含有水を前記第2反応槽内に流入させる連通開放部と、前記第1反応槽の上部に設けられ、前記第1反応槽内で発生した気泡を系外へ排出させるための前記上向流方向で上方に向かって広がった開拡開口部と、を備え、過酸化物含有水中の過酸化物を分解させることを特徴とする過酸化物含有水の処理装置を提案する。 The present invention includes a first reaction tank in which a peroxide decomposition material is filled, a peroxide-containing water serving as water to be treated flows upward, and bubbles generated are floated in an upward flow; decomposed material is filled therein, and a second reaction vessel that peroxide-containing water flows downward, and communicating an upper portion of the first reaction vessel and the second reaction vessel, upwardly said first reaction vessel a communicating opening which causes inflow distribution was peroxide-containing water to the second reaction vessel, wherein the first provided on the upper portion of the reaction vessel, for discharging bubbles generated in the first reaction vessel from the system And a widening opening that spreads upward in the upward flow direction, and proposes a peroxide-containing water treatment apparatus that decomposes peroxide in the peroxide-containing water. .

本発明はまた、過酸化物分解材が内部に充填され、上部を上方に向かって広がった開拡開口部とした第1反応槽内に、被処理水としての過酸化物含有水を上向きに通水し、前記第1反応槽の上端部から流出した過酸化物含有水を、連通開放部を介して、過酸化物分解材が内部に充填された第2反応槽内に流入させ、前記第2反応槽では、過酸化物含有水を下向きに通水することによって、過酸化物含有水中の過酸化物を分解し、前記第1反応槽、前記第2反応槽及び前記連通開放部における通水方向を交互に切り替えると共に、前記第2反応槽内に過酸化物含有水を上向きに通水し、前記連通開放部を介して、前記第1反応槽内を下向きに通水する場合には、前記第1反応槽の上部を、上方に向かって広がった開拡開口部とする代わりに、前記第2反応槽の上部を、上方に向かって広がった開拡開口部とすることを特徴とする過酸化物含有水の処理方法を提案する。 In the present invention, the peroxide-containing water as the water to be treated is faced upward in the first reaction tank filled with the peroxide decomposition material and having the upper portion spread upward. The peroxide-containing water flowing out from the upper end of the first reaction tank was allowed to flow into the second reaction tank filled with the peroxide decomposition material through the communication opening part, in a second reaction vessel, by passing water down the peroxide-containing water, to decompose a peroxide-containing water of the peroxide, the first reaction vessel, in the second reaction vessel and the communicating opening switches the water flow direction alternately, said upward and passed through a peroxide-containing water to the second reaction vessel, via the communicating opening, when passed through downwards the first reaction vessel is the upper portion of the first reaction vessel, instead of the open mouth spreader unit spread upward, before The upper portion of the second reaction vessel, proposes a processing method of a peroxide-containing water, characterized in that the open mouth spreader portion spreads upward.

このような過酸化物含有水の処理装置及び処理方法によれば、第1反応槽内では、上向き流によって過酸化物分解材が展開および流動した状態となるため、過酸化物の分解によって発生する酸素の気泡が効果的に上部に排出され、過酸化物分解材と被処理水との接触を促進し、過酸化物を効率良く分解させることができる。第1反応槽通水後の被処理水中の過酸化物濃度は非常に低くなるため、第2反応槽内での気泡の発生量は、第1反応槽と比べて明らかに少なくなる。そのため、第2反応槽内は以下の理由により下向き流とするのが良い。
下向き流によって過酸化物分解材は緻密に充填されるため、緻密に充填された過酸化物分解材からなる固定床と被処理水とが密に接触することになり、第1反応槽内で分解されなかった僅かに残留する過酸化物をより完全に分解させることができる。
このように過酸化物の分解効率を高めることができるため、より高濃度の過酸化物を含む廃水の処理が可能となると共に、使用する過酸化物分解材の使用量を減らすことができる。
According to such a peroxide-containing water treatment apparatus and treatment method, in the first reaction tank, the peroxide decomposition material is developed and fluidized by the upward flow, and thus is generated by the decomposition of the peroxide. Oxygen bubbles to be discharged are effectively discharged to the upper portion, the contact between the peroxide decomposition material and the water to be treated is promoted, and the peroxide can be efficiently decomposed. Since the peroxide concentration in the water to be treated after passing through the first reaction tank is very low, the amount of bubbles generated in the second reaction tank is clearly less than that in the first reaction tank. For this reason, the second reaction tank is preferably directed downward for the following reasons.
Since the peroxide decomposition material is densely packed by the downward flow, the fixed bed made of the densely packed peroxide decomposition material and the water to be treated are in close contact with each other in the first reaction tank. The slightly remaining peroxide that has not been decomposed can be more completely decomposed.
Since the decomposition efficiency of peroxide can be increased in this way, it is possible to treat waste water containing a higher concentration of peroxide and reduce the amount of peroxide decomposition material used.

さらに、第1反応槽の上部を、上方に向かって広がった開拡開口部とすることにより、該開拡開口部内に流入した被処理水の上向きの流速は低下するため、上向き流によって一部浮上する過酸化水素分解材は開拡開口部内で沈降するようになる一方、第1反応槽内で発生した酸素の気泡は、上向き流に伴って浮上し、開拡開口部内では水の流れが上方に向かって広がるため、水面から系外に逃げ易くなり、第1反応槽内で発生した酸素の気泡を系外に効果的に排出することができる。これにより、上向き通水反応槽である第1反応槽内で発生した酸素の気泡を第2反応槽に流入させないようにすることができるため、下向き通水反応槽である第2反応槽内での過酸化物の分解効率をより一層高めることができる。   Furthermore, since the upward flow velocity of the water to be treated that has flowed into the widened opening is reduced by making the upper part of the first reaction tank an open widened part that spreads upward, a part of the upward flow is caused by the upward flow. While the hydrogen peroxide decomposition material that floats settles in the widened opening, oxygen bubbles generated in the first reaction tank float along with the upward flow, and water flows in the widened opening. Since it spreads upward, it becomes easy to escape from the water surface to the outside of the system, and oxygen bubbles generated in the first reaction tank can be effectively discharged out of the system. Thereby, since it is possible to prevent the bubbles of oxygen generated in the first reaction tank, which is an upward water flow reaction tank, from flowing into the second reaction tank, in the second reaction tank, which is a downward water flow reaction tank. The peroxide decomposition efficiency can be further increased.

本発明の第1の実施形態に係る過酸化物含有水の処理装置の一例を概略的に示した断面図である。It is sectional drawing which showed roughly an example of the processing apparatus of the peroxide containing water which concerns on the 1st Embodiment of this invention. 図1に示した処理装置を用いて過酸化物含有水の処理を実施した際の一例を概略的に示した断面図である。It is sectional drawing which showed roughly an example at the time of implementing a peroxide containing water using the processing apparatus shown in FIG. 同じく図1に示した処理装置を用いて過酸化物含有水の処理を実施した際の一例として、図2とは通水方向を切り替えた場合の一例を概略的に示した断面図である。FIG. 2 is a cross-sectional view schematically showing an example in which the water flow direction is switched as an example when the peroxide-containing water is treated using the treatment apparatus shown in FIG. 1. 本発明の第2の実施形態に係る過酸化物含有水の処理装置の一例を概略的に示した斜視図である。It is the perspective view which showed roughly an example of the processing apparatus of the peroxide containing water which concerns on the 2nd Embodiment of this invention. 図4に示した処理装置を用いて過酸化物含有水の処理を実施した際の一例を概略的に示した断面図である。It is sectional drawing which showed roughly an example at the time of implementing a peroxide containing water using the processing apparatus shown in FIG. 同じく図4に示した処理装置を用いて過酸化物含有水の処理を実施した際の一例として、図5とは通水方向を切り替えた場合の一例を概略的に示した断面図である。Similarly, FIG. 5 is a cross-sectional view schematically showing an example in which the water flow direction is switched as an example when the treatment of peroxide-containing water is performed using the treatment apparatus shown in FIG. 4. 本発明を想到する際に基礎となった過酸化物含有水の処理装置、すなわち発明が解決しようとする課題の欄で説明した処理装置の一例を概略的に示した断面図である。It is sectional drawing which showed roughly an example of the processing apparatus demonstrated in the column of the processing apparatus of the peroxide containing water which became the foundation when conceiving this invention, ie, the problem which this invention is going to solve. 図1に示した処理装置の変形例において、過酸化物含有水の処理を実施した際の一例を概略的に示した断面図である。It is sectional drawing which showed roughly an example at the time of implementing the process of peroxide containing water in the modification of the processing apparatus shown in FIG. 図8に示した処理装置を用いて過酸化物含有水の処理を実施した際の一例として、図8とは通水方向を切り替えた場合の一例を概略的に示した断面図である。FIG. 9 is a cross-sectional view schematically showing an example in which the water flow direction is switched as an example when the treatment of peroxide-containing water is performed using the treatment apparatus shown in FIG. 8.

次に、本発明を実施するための形態例について説明するが、本発明が次に説明する実施形態に限定されるものではない。   Next, although the example for implementing this invention is demonstrated, this invention is not limited to embodiment described below.

<第1の実施形態>
第1の実施形態に係る過酸化物含有水の処理装置1は、例えば図1−3に示すように、縦置きした有底の外筒2内に縦方向に仕切板3を立設し、この仕切板3によって外筒2内を第1通水路4と第2通水路5とに区画すると共に、外筒2内部における仕切板3の上方の空間部を、第1通水路4と第2通水路5の上端開口部を連通する連通開放部6とされている。そして、第1通水路4の内部に過酸化物分解材8を充填して第1反応槽10とする一方、第2通水路5の内部に過酸化物分解材8を充填して第2反応槽11とされ、第1反応槽10の底部及び第2反応槽11の底部にそれぞれ管12,13が接続されている。
<First Embodiment>
The peroxide-containing water treatment apparatus 1 according to the first embodiment, as shown in, for example, FIG. 1C, erects a partition plate 3 in a vertical direction in a bottomed outer cylinder 2 that is placed vertically, The partition plate 3 divides the inside of the outer cylinder 2 into a first water passage 4 and a second water passage 5, and the space above the partition plate 3 in the outer cylinder 2 is divided into the first water passage 4 and the second water passage 2. A communication opening 6 that communicates with the upper end opening of the water passage 5 is provided. The first water passage 4 is filled with the peroxide decomposition material 8 to form the first reaction tank 10, while the second water passage 5 is filled with the peroxide decomposition material 8 to perform the second reaction. A tank 11 is provided, and pipes 12 and 13 are connected to the bottom of the first reaction tank 10 and the bottom of the second reaction tank 11, respectively.

ここで、上記仕切板3は、その上部が、ワイパー状に回動可能な開閉部3Aとして形成されており、例えば図1中に実線で示すように開閉部3Aを斜めに傾斜させることで、第1反応槽10の上部を、上方に向かって広がった開拡開口部15とすることも可能であるし、逆に、図1中に点線で示すように開閉部3Aを斜めに傾斜させて、第2反応槽10の上部を、上方に向かって広がった開拡開口部16とすることも可能である。
この際、図8及び図9に示すように、回動可能な開閉部3Aの先端部分をメッシュ状の網板3Bとして形成し、微細な活性炭の流出をより一層抑制できるようにすることもできる。
但し、第1反応槽10の上部を、上方に向かって広がった開拡開口部15とする方法、並びに、第2反応槽10の上部を、上方に向かって広がった開拡開口部16とする方法は、このような方法に限定されるものではなく任意である。
Here, the upper part of the partition plate 3 is formed as an opening / closing part 3A that can be rotated like a wiper. For example, the opening / closing part 3A is inclined obliquely as shown by a solid line in FIG. The upper part of the first reaction tank 10 can be an opening 15 that expands upward, and conversely, the opening / closing part 3A is inclined obliquely as shown by the dotted line in FIG. The upper part of the second reaction tank 10 may be an expanded opening 16 that expands upward.
At this time, as shown in FIGS. 8 and 9, the tip end portion of the rotatable opening / closing portion 3 </ b> A can be formed as a mesh-like mesh plate 3 </ b> B so that the outflow of fine activated carbon can be further suppressed. .
However, the upper part of the 1st reaction tank 10 is used as the widening opening part 15 which spreads upwards, and the upper part of the 2nd reaction tank 10 is the widening opening part 16 which spreads upwards. The method is not limited to such a method, and is arbitrary.

また、上記連通開放部6は、配管ではなく、非密閉状態の空間部であればよい。すなわち、該空間部に放出されたガスを系外に逃がすことができるように、上方開口されていてもよいし、また、ガス排出管が連通されていてもよい。   Moreover, the said communication open part 6 should just be a non-sealed space part instead of piping. That is, the gas discharged into the space may be opened upward so that the gas can be released outside the system, or the gas discharge pipe may be communicated.

このような処理装置1においては、被処理水としての過酸化物含有水(「被処理水」と称する)を、管12を通じて第1反応槽10の底部に連続的に供給すると、被処理水は、第1反応槽10内を上向きに流通し、第1反応槽10の上端開口部から流出して連通開放部6内に流入し、次いでこの連通開放部6を介して第2反応槽11内に流入し、第2反応槽11内では、上部から底部に向かって下向きに流通し、その後、管13を通じて処理水として排出することができる。   In such a treatment apparatus 1, when water containing peroxide as water to be treated (referred to as “water to be treated”) is continuously supplied to the bottom of the first reaction tank 10 through the pipe 12, Flows upward in the first reaction tank 10, flows out from the upper end opening of the first reaction tank 10, flows into the communication opening 6, and then passes through the communication opening 6 to the second reaction tank 11. In the second reaction tank 11, it flows downward from the top toward the bottom, and can then be discharged as treated water through the pipe 13.

このように処理すれば、第1反応槽10内では、上向き流によって過酸化物分解材が展開および流動した状態となるため、過酸化物分解材と被処理水との接触を促進し、過酸化物を効率良く分解させることができる。
第1反応槽通水後の被処理水中の過酸化物濃度は非常に低くなるため、第2反応槽11内での気泡の発生量は、第1反応槽と比べて明らかに少なくなる。そのため、第2反応槽内は以下の理由により下向き流とするのが良い。下向き流によって過酸化物分解材は緻密に充填されるため、緻密に充填された過酸化物分解材からなる固定床と被処理水とが密に接触するため、第1反応槽10内で分解されなかった僅かに残留する過酸化物をより完全に分解させることができる。
If treated in this way, in the first reaction tank 10, the peroxide decomposition material is developed and fluidized by the upward flow, so that the contact between the peroxide decomposition material and the water to be treated is promoted, The oxide can be decomposed efficiently.
Since the peroxide concentration in the water to be treated after passing through the first reaction tank is very low, the amount of bubbles generated in the second reaction tank 11 is clearly less than that in the first reaction tank. For this reason, the second reaction tank is preferably directed downward for the following reasons. Since the peroxide decomposition material is densely packed by the downward flow, the fixed bed made of the densely packed peroxide decomposition material and the water to be treated are in close contact with each other, so that the decomposition is performed in the first reaction tank 10. The slightly remaining peroxide that has not been made can be more completely decomposed.

ここで、このように第1反応槽10内に上向き流で通水する場合には、上述したように、図1中に実線で示すように開閉部3Aを斜めに傾斜させて、第1反応槽10の上部を、上方に向かって広がった開拡開口部15とすることが重要である(図2参照)。このようにすれば、第1反応槽10内を上向きに流通してきた被処理水は、開拡開口部15内に流入するとその流速が低下するため、上向き流に伴って浮上した一部の過酸化物分解材はここで沈降するようになる。その一方、第1反応槽10内で発生した酸素の気泡は、上向き流に伴って浮上し、開拡開口部15内では水の流れが上方に向かって広がるようになるため、気泡が水面から一段と逃げ易くなり、第1反応槽10内で発生した酸素の気泡を系外に効果的に排出させることができる。
これにより、第1反応槽10内で発生した酸素の気泡を第2反応槽11に流入させないようにすることができるため、第2反応槽11内での過酸化物の分解効率をより一層高めることができる。
Here, when water flows in the first reaction tank 10 in the upward flow in this way, as described above, the opening and closing part 3A is inclined obliquely as shown by the solid line in FIG. It is important to make the upper part of the tank 10 into the opening part 15 which spreads upwards (refer FIG. 2). If it does in this way, since the to-be-processed water which distribute | circulated upwards in the 1st reaction tank 10 will flow in into the spreading opening part 15, since the flow velocity will fall, it is a part of the excess water that floated with the upward flow. The oxide decomposition material settles here. On the other hand, the bubbles of oxygen generated in the first reaction tank 10 rise with the upward flow, and the flow of water spreads upward in the opening 15, so that the bubbles are separated from the water surface. It becomes easier to escape and oxygen bubbles generated in the first reaction tank 10 can be effectively discharged out of the system.
As a result, oxygen bubbles generated in the first reaction tank 10 can be prevented from flowing into the second reaction tank 11, so that the decomposition efficiency of the peroxide in the second reaction tank 11 is further increased. be able to.

なお、第1反応槽10及び第1反応槽11内の過酸化物分解材8の充填量は任意であるが、第1反応槽10内を上向きに被処理水を通水する場合には、第1反応槽10の充填量は、過酸化物分解材8の上面が開拡開口部15の下端部よりも低い位置になるようにするのが好ましい。このようにすることで、第1反応槽10内において開拡開口部15の下方部では、上向き流によって過酸化物分解材が展開して流動する層を形成することができ、その上方の開拡開口部15内では、上向き流によって一部の浮上した過酸化物分解材が沈降する層を形成することができる。このような点は、次に説明するように通水方向を切り替えた場合も同様である。   In addition, although the filling amount of the peroxide decomposition material 8 in the 1st reaction tank 10 and the 1st reaction tank 11 is arbitrary, when passing the to-be-processed water upward in the 1st reaction tank 10, It is preferable that the filling amount of the first reaction tank 10 is such that the upper surface of the peroxide decomposition material 8 is positioned lower than the lower end portion of the spread opening 15. By doing so, a layer in which the peroxide decomposition material expands and flows due to the upward flow can be formed in the first reaction tank 10 below the spread opening 15, and the upper opening thereof can be formed. In the widened opening 15, a layer in which a part of the peroxide decomposition material that has floated due to the upward flow settles can be formed. This is the same when the water flow direction is switched as described below.

処理装置1は、図3に示すように、第1反応槽10内及び第2反応槽11内での通水方向を切り替えることができる。例えば、被処理水としての過酸化物含有水(「被処理水」と称する)を、管13を通じて第2反応槽11の底部に連続的に供給することで、第2反応槽11内では被処理水が上向きに流通し、連通開放部6を介して第1反応槽10内に流入し、第1反応槽10内を下向きに流通するように切り替えることができる。
但し、このように切り替える場合は、例えば図1中に点線で示すように、第2反応槽11の上端開口部が、上方に向かって広がるように仕切板3を設定し、第2反応槽11の上部を、上方に向かって広がった開拡開口部16とするのが好ましい。切り替える前と同様に、第2反応槽11内で発生した酸素の気泡を系外に効果的に排出させることができる。
As shown in FIG. 3, the treatment apparatus 1 can switch the water flow direction in the first reaction tank 10 and the second reaction tank 11. For example, water containing peroxide as water to be treated (referred to as “water to be treated”) is continuously supplied to the bottom of the second reaction tank 11 through the pipe 13, so that the water to be treated is contained in the second reaction tank 11. The treated water flows upward, flows into the first reaction tank 10 via the communication opening 6, and can be switched to flow downward in the first reaction tank 10.
However, when switching in this way, for example, as shown by a dotted line in FIG. 1, the partition plate 3 is set so that the upper end opening of the second reaction tank 11 spreads upward, and the second reaction tank 11 It is preferable that the upper part of the is an opening 16 that widens upward. As before the switching, oxygen bubbles generated in the second reaction tank 11 can be effectively discharged out of the system.

第1反応槽10及び第2反応槽11での通水方向を切り替えることにより、被処理水中に存在する殺菌剤由来やその他の残留有機物による生菌及びスライムの発生を防ぐことができる。すなわち、第1反応槽10内の通水方法を上向き流とし、第2反応槽11内の通水方法を下向き流として、第1反応槽10から第2反応槽11へ被処理水を流通させると、第1反応槽10において、被処理水中の多くの過酸化物が分解されるため、第2反応槽11内では、殺菌力を有する過酸化物の濃度が少なくなり、長時間運転を継続するうちに、被処理水に含まれる残留有機物によって生菌やスライムが発生することになる。そこで、通水方向を切り替えて、第2反応槽11内の通水方法を上向き流とし、第1反応槽10内の通水方法を下向き流として、第2反応槽11から第1反応槽10へ被処理水を通水させるようにすれば、第2反応槽11に流入する被処理水は過酸化物濃度が高くなるため、過酸化物の殺菌力により生菌やスライムの発生を防止することができる。
但し、このように第1反応槽10及び第2反応槽11での通水方向を切り替える場合には、第1反応槽10及び第2反応槽11の流量が略同じになるように、それぞれの容量を設計するのが好ましい。
By switching the water flow direction in the first reaction tank 10 and the second reaction tank 11, it is possible to prevent the generation of viable bacteria and slime due to the bactericidal agent present in the water to be treated and other residual organic substances. That is, the water to be treated is circulated from the first reaction tank 10 to the second reaction tank 11 using the water flow method in the first reaction tank 10 as an upward flow and the water flow method in the second reaction tank 11 as a downward flow. In the first reaction tank 10, many peroxides in the water to be treated are decomposed, so that the concentration of peroxide having sterilizing power is reduced in the second reaction tank 11 and the operation is continued for a long time. In the meantime, viable bacteria and slime are generated by residual organic substances contained in the water to be treated. Therefore, by switching the water flow direction, the water flow method in the second reaction tank 11 is an upward flow, and the water flow method in the first reaction tank 10 is a downward flow. If the water to be treated is allowed to flow through, the water to be treated flowing into the second reaction tank 11 has a high peroxide concentration, so that the generation of viable bacteria and slime is prevented by the sterilizing power of the peroxide. be able to.
However, when the water flow direction in the first reaction tank 10 and the second reaction tank 11 is switched as described above, the flow rates of the first reaction tank 10 and the second reaction tank 11 are substantially the same. It is preferable to design the capacity.

なお、いずれの通水方向の場合にも、連通開放部6内において、第1反応槽10及び第2反応槽11の上方に、被処理水の溢流からなる溢流層17をある程度の高さをもって形成できるように、被処理水を流通させるのが好ましい。具体的には、例えば第1反応槽10内を上向きに被処理水を通水する場合には、図2及び図3に示すように、第1反応槽10の上部の開拡開口部15を介して連通開放部6内に流入した溢流によって、ある程度の高さの溢流層17が形成されるようにするのが好ましい。
このように溢流層17を形成すれば、溢流層17では被処理水の流れが乱れて乱流状態となるため、流動撹拌されて気泡の排出をより一層促すことができる。
In any of the water flow directions, an overflow layer 17 made of an overflow of the water to be treated is provided to some extent above the first reaction tank 10 and the second reaction tank 11 in the communication opening portion 6. It is preferable to distribute the water to be treated so that it can be formed smoothly. Specifically, for example, in the case where water to be treated is passed upward in the first reaction tank 10, as shown in FIGS. 2 and 3, an opening 15 in the upper part of the first reaction tank 10 is provided. It is preferable that an overflow layer 17 having a certain height is formed by the overflow flowing into the communication opening portion 6 through.
If the overflow layer 17 is formed in this manner, the flow of the water to be treated is turbulent in the overflow layer 17 and is in a turbulent state.

<第2の実施形態>
第2の実施形態に係る過酸化物含有水の処理装置21は、例えば図4−6に示すように、縦置きした有底の外筒22と、該外筒22よりも上端部の高さが低い有底の内筒23を、該外筒内に同心状に配設し、内筒23内部に過酸化物分解材28を充填して第1反応槽30とする一方、外筒22と内筒23の間にも過酸化物分解材28を充填して第2反応槽31とし、外筒22内における内筒23の上方空間部を、第1反応槽30及び第2反応槽31の上端開口部を連通する連通開放部26とし、第1反応槽30の底部及び第2反応槽の底部にはそれぞれ管32,33が接続されている。
<Second Embodiment>
The peroxide-containing water treatment apparatus 21 according to the second embodiment includes, as shown in FIG. 4-6, for example, a vertically disposed bottomed outer cylinder 22 and the height of the upper end portion of the outer cylinder 22. The bottomed inner cylinder 23 is concentrically disposed in the outer cylinder, and the inner cylinder 23 is filled with a peroxide decomposition material 28 to form the first reaction tank 30, while the outer cylinder 22 The peroxide decomposition material 28 is also filled between the inner cylinders 23 to form the second reaction tank 31, and the upper space portion of the inner cylinder 23 in the outer cylinder 22 is formed between the first reaction tank 30 and the second reaction tank 31. The upper end opening is connected to a communication opening 26, and pipes 32 and 33 are connected to the bottom of the first reaction tank 30 and the bottom of the second reaction tank, respectively.

また、上方に向かって開拡し、その下端開口部を内筒23の上端開口部に連結し得る上向拡開筒部24と、上方に向かって窄まっており、その下端開口部を内筒23の上端開口部に連結し得る上向窄まり筒部25とを、それぞれ交互に内筒23の上端開口部に連結することができるように構成されており、例えばワイヤなどで昇降可能に吊下してなる上向拡開筒部24を降下させて内筒23の上端開口部に連結すれば、第1反応槽30の上部を、上方に向かって広がった開拡開口部35とすることができる一方、例えば前記上向拡開筒部24に替えて、ワイヤなどで昇降可能に吊下してなる上向窄まり筒部25を下降させて内筒23の上端開口部に連結すれば、第2反応槽31の上部を、上方に向かって広がった開拡開口部36とすることができる。
但し、第1反応槽30の上部を、上方に向かって広がった開拡開口部35とする方法、並びに、第2反応槽31の上部を、上方に向かって広がった開拡開口部36とする方法は、このような方法に限定されるものではなく任意である。
Further, the upper opening cylinder 24 that can be expanded upward and the lower end opening thereof can be connected to the upper end opening of the inner cylinder 23, and the upper opening narrowed upward. The upwardly narrowed cylindrical portion 25 that can be connected to the upper end opening of the tube 23 is configured to be alternately connected to the upper end opening of the inner tube 23, and can be moved up and down by, for example, a wire or the like. When the upwardly expanded cylindrical portion 24 that is suspended is lowered and connected to the upper end opening of the inner cylinder 23, the upper portion of the first reaction tank 30 is made an expanded opening 35 that expands upward. On the other hand, for example, instead of the upward expanding cylindrical portion 24, the upward constricting cylindrical portion 25 suspended by a wire or the like can be lowered and connected to the upper end opening of the inner cylinder 23. For example, the upper part of the second reaction tank 31 may be an expanded opening 36 that expands upward. Kill.
However, the upper part of the 1st reaction tank 30 is used as the widening opening part 35 which spreads upwards, and the upper part of the 2nd reaction tank 31 is the widening opening part 36 which spreads upwards. The method is not limited to such a method, and is arbitrary.

また、上記連通開放部26は、配管ではなく、非密閉状態の空間部であればよい。すなわち、該空間部に放出されたガスを系外に逃がすことができるように、上方開口されていてもよいし、また、ガス排出管が連通されていてもよい。   Moreover, the said communication open part 26 should just be a non-sealed space part instead of piping. That is, the gas discharged into the space may be opened upward so that the gas can be released outside the system, or the gas discharge pipe may be communicated.

このような処理装置21において、被処理水としての過酸化物含有水(「被処理水」と称する)を、管32を通じて第1反応槽30の底部に連続的に供給すれば、被処理水は、第1反応槽30内を上向きに流通し、第1反応槽30の上端開口部から流出して連通開放部26内に流入し、この連通開放部26を介して第2反応槽31内に流入し、第2反応槽31内では、上部から底部に向かって下向きに流通し、その後、管33を通じて処理水として排出させることができる。   In such a processing apparatus 21, if water containing peroxide as water to be treated (referred to as “water to be treated”) is continuously supplied to the bottom of the first reaction tank 30 through the pipe 32, the water to be treated Circulates upward in the first reaction tank 30, flows out from the upper end opening of the first reaction tank 30, flows into the communication opening part 26, and enters the second reaction tank 31 through the communication opening part 26. In the second reaction tank 31, it flows downward from the top toward the bottom, and can then be discharged as treated water through the pipe 33.

このように処理すれば、第1反応槽30内では、上向き流によって過酸化物分解材が展開および流動した状態となるため、過酸化物分解材と被処理水との接触を促進し、過酸化物を効率良く分解させることができる。
第1反応槽通水後の被処理水中の過酸化物濃度は非常に低くなるため、第2反応槽31内での気泡の発生量は、第1反応槽と比べて明らかに少なくなる。そのため、第2反応槽内は以下の理由により下向き流とするのが良い。下向き流によって過酸化物分解材は緻密に充填されるため、緻密に充填された過酸化物分解材からなる固定床と被処理水とが密に接触するため、第1反応槽30内で分解されなかった僅かに残留する過酸化物をより完全に分解させることができる。
If treated in this way, in the first reaction tank 30, the peroxide decomposition material is developed and fluidized by the upward flow, so that the contact between the peroxide decomposition material and the water to be treated is promoted. The oxide can be decomposed efficiently.
Since the peroxide concentration in the water to be treated after passing through the first reaction tank is very low, the amount of bubbles generated in the second reaction tank 31 is clearly less than that in the first reaction tank. For this reason, the second reaction tank is preferably directed downward for the following reasons. Since the peroxide decomposition material is densely packed by the downward flow, the fixed bed made of the densely packed peroxide decomposition material and the water to be treated are in close contact with each other, so that the decomposition is performed in the first reaction tank 30. The slightly remaining peroxide that has not been made can be more completely decomposed.

ここで、第1反応槽30内に上向き流で通水する場合には、例えば図5に示すように、上向拡開筒部24を内筒23の上端開口部に連結することにより、第1反応槽30の上部を開拡開口部35とすることが重要である。このようにすれば、
第1反応槽30内を上向きに流通してきた被処理水は、開拡開口部35内に流入するとその流速が低下するため、上向き流に伴って浮上した一部の過酸化物分解材はここで沈降するようになる。その一方、第1反応槽30内で発生した酸素の気泡は、上向き流に伴って浮上し、開拡開口部35内では水の流れが上方に向かって広がるため、気泡が水面から逃げ易くなり、第1反応槽30内で発生した酸素の気泡を系外に効果的に排出させることができる。
これにより、第1反応槽30内で発生した酸素の気泡を第2反応槽31に流入させないようにすることができるため、第2反応槽31内での過酸化物の分解効率をより一層高めることができる。
Here, when water flows in the first reaction tank 30 in an upward flow, as shown in FIG. 5, for example, by connecting the upward expanding cylinder portion 24 to the upper end opening of the inner cylinder 23, It is important to set the upper part of one reaction tank 30 as an expanded opening 35. In this way,
Since the water to be treated that has circulated upward in the first reaction tank 30 flows into the widened opening 35, the flow velocity thereof decreases, so a part of the peroxide decomposition material that floats with the upward flow is here It will become settled at. On the other hand, the oxygen bubbles generated in the first reaction tank 30 rise with the upward flow, and the flow of water spreads upward in the opening 35, so that the bubbles easily escape from the water surface. The oxygen bubbles generated in the first reaction tank 30 can be effectively discharged out of the system.
Thereby, since it is possible to prevent oxygen bubbles generated in the first reaction tank 30 from flowing into the second reaction tank 31, the decomposition efficiency of peroxide in the second reaction tank 31 is further increased. be able to.

なお、第1反応槽30及び第1反応槽31内の過酸化物分解材28の充填量は任意であるが、第1反応槽30内を上向きに被処理水を通水する場合には、第1反応槽30の充填量は、過酸化物分解材28の上面が開拡開口部35の下端部よりも低い位置になるようにするのが好ましい。このようにすることで、第1反応槽30内において開拡開口部35の下方部では、上向き流によって過酸化物分解材が浮遊して流動する層を形成することができ、その上方の開拡開口部35内では、上向き流によって浮上した過酸化物分解材が沈降する層を形成することができる。
このような点は、次に説明するように通水方向を切り替えても同様である。
In addition, although the filling amount of the peroxide decomposition material 28 in the first reaction tank 30 and the first reaction tank 31 is arbitrary, in the case of passing the treated water upward in the first reaction tank 30, The filling amount of the first reaction tank 30 is preferably set so that the upper surface of the peroxide decomposition material 28 is lower than the lower end portion of the widening opening 35. By doing so, a layer in which the peroxide decomposition material floats and flows due to the upward flow can be formed in the first reaction tank 30 below the opening 35, and the upper opening is opened. In the widened opening 35, a layer can be formed in which the peroxide decomposition material that has been levitated by the upward flow settles.
Such a point is the same even if the water flow direction is switched as described below.

処理装置21は、第1反応槽30内及び第2反応槽31内での通水方向を切り替えることができる。例えば、図6に示すように、被処理水としての過酸化物含有水(「被処理水」と称する)を、管33を通じて第2反応槽21の底部に連続的に供給することで、第2反応槽31内では被処理水が上向きに流通し、連通開放部26を介して第1反応槽30内に流入し、第1反応槽30内を下向きに流通するようにさせることができる。
但し、この場合は、上向窄まり筒部25を内筒23の上端開口部に連結することにより、第2反応槽31の上部を、上方に向かって広がった開拡開口部36とするのが好ましい。このようにすることで、前述のように、第2反応槽31内で発生した酸素の気泡を系外に効果的に排出させることができる。
The processing device 21 can switch the water flow direction in the first reaction tank 30 and the second reaction tank 31. For example, as shown in FIG. 6, the peroxide-containing water as the water to be treated (referred to as “water to be treated”) is continuously supplied to the bottom of the second reaction tank 21 through the pipe 33, In the two reaction tanks 31, the water to be treated flows upward, flows into the first reaction tank 30 through the communication opening part 26, and can flow through the first reaction tank 30 downward.
However, in this case, the upper constricted cylinder part 25 is connected to the upper end opening part of the inner cylinder 23 so that the upper part of the second reaction tank 31 becomes the widened opening part 36 spreading upward. Is preferred. By doing so, as described above, oxygen bubbles generated in the second reaction tank 31 can be effectively discharged out of the system.

このように第1反応槽30及び第2反応槽31での通水方向を切り替えることにより、処理装置1同様に残留有機物による生菌及びスライムの発生を防ぐことができる。
但し、このように第1反応槽30及び第2反応槽31での通水方向を切り替える場合には、第1反応槽30及び第2反応槽31の流量が略同じになるように、それぞれの容量を設計するのが好ましい。
By switching the water flow direction in the first reaction tank 30 and the second reaction tank 31 in this way, it is possible to prevent the generation of viable bacteria and slime due to residual organic matter, as in the processing apparatus 1.
However, when switching the water flow direction in the first reaction tank 30 and the second reaction tank 31 in this way, the flow rates of the first reaction tank 30 and the second reaction tank 31 are substantially the same. It is preferable to design the capacity.

なお、いずれの通水方向の場合にも、連通開放部26内において、第1反応槽30及び第2反応槽31の上方に、被処理水の溢流からなる溢流層37をある程度の高さをもって形成できるように、被処理水を流通させるのが好ましい点も、処理装置1と同様である。   In any of the water flow directions, an overflow layer 37 made of overflow of the water to be treated is provided to some extent above the first reaction tank 30 and the second reaction tank 31 in the communication opening portion 26. The point that it is preferable to distribute the water to be treated is the same as that of the treatment apparatus 1 so that it can be formed.

<被処理水>
上記第1の実施形態及び上記第2の実施形態に係る処理装置及び処理方法において、被処理水としての過酸化物含有水は、過酸化物を含む水であればよく、過酸化物を複数種類でも他の成分を含んでいてもよい。また、過酸化物濃度を特に制限するものではない。
<Treatment water>
In the processing apparatus and the processing method according to the first embodiment and the second embodiment, the peroxide-containing water as the water to be treated may be water containing peroxide, and a plurality of peroxides may be used. The type may contain other components. Further, the peroxide concentration is not particularly limited.

<過酸化物分解材>
上記第1の実施形態及び上記第2の実施形態に係る処理装置及び処理方法において、過酸化物分解材8及び28としては、過酸化物を分解することができる固形状物質であれば適宜用いることができる。
具体的には、例えば鉄化合物、活性炭、或いは、白金、パラジウム、マンガン等の金属触媒、或いは、触媒活性成分を不活性担体に担持してなる担持触媒、具体的には例えば白金、パラジウム、ロジウム、イリジウム,ルテニウムなどの貴金属元素、或いは、コバルト、マンガン、鉄、銅、ニッケルなどの卑金属元素を、アルミナ、シリカ、チタニア、シリカーアルミナ、ジルコニア、酸化鉄、セリア、炭化ケイ素などの不活性担体に担持してなる担持触媒を挙げることができる。
<Peroxide decomposition material>
In the processing apparatus and the processing method according to the first embodiment and the second embodiment, the peroxide decomposing materials 8 and 28 are appropriately used as long as they are solid substances capable of decomposing peroxide. be able to.
Specifically, for example, an iron compound, activated carbon, or a metal catalyst such as platinum, palladium, manganese, or a supported catalyst in which a catalytically active component is supported on an inert carrier, specifically, for example, platinum, palladium, rhodium. Inactive carriers such as alumina, silica, titania, silica-alumina, zirconia, iron oxide, ceria, silicon carbide, or noble metal elements such as cobalt, manganese, iron, copper and nickel And a supported catalyst formed on the substrate.

<処理水>
上記第1の実施形態及び上記第2の実施形態に係る処理装置及び処理方法で処理された処理水は、必要に応じて、イオン交換樹脂と接触させたり、逆浸透膜処理に供したりして、該処理水中の残留物質をさらに除去するのが好ましい。
<Treatment water>
The treated water treated by the treatment apparatus and treatment method according to the first embodiment and the second embodiment is brought into contact with an ion exchange resin or subjected to a reverse osmosis membrane treatment as necessary. It is preferable to further remove residual substances in the treated water.

<語句の説明>
本明細書において「X〜Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
<Explanation of words>
In the present specification, when expressed as “X to Y” (X and Y are arbitrary numbers), unless otherwise specified, “X is preferably greater than X” or “preferably Y”. It also includes the meaning of “smaller”.
In addition, when expressed as “X or more” (X is an arbitrary number) or “Y or less” (Y is an arbitrary number), it is “preferably greater than X” or “preferably less than Y”. Includes intentions.

以下、本発明を下記実施例及び比較例に基づいてさらに詳述する。   Hereinafter, the present invention will be further described in detail based on the following examples and comparative examples.

(実施例1)
図5に示した処理装置21を用いて、被処理水としての過酸化物含有水(過酸化水素:500mg/L、過酢酸:120mg/L、pH値:3)を、管32を通じて第1反応槽30の底部に連続的に供給し、第1反応槽30内を上向きに流通させ、連通開放部26を介して第2反応槽31内に流入させ、第2反応槽31内では、上部から底部に向かって下向きに流通させた後、管33を通じて処理水として排出させる処理を行った。この際、被処理水の通水速度を、空間速度(線速度):15hr-1(15m/hr)とし、溢流層37の高さ、すなわち上向拡開筒部24の上端部から水面までの高さを200mmとした。
また、処理装置21は、第1反応槽30:容量10L、高さ1300mm、内径100mm、第2反応槽31:容量10L、高さ1300mm、内径150mm、反応槽の総高さ2000mm、上向拡開筒部24:上端開口径130mm、過酸化物分解材:活性炭(水ing社製「エハ゛タ゛イヤ:LG-10S」(破砕炭)、各層の充填量8Lとした。
Example 1
Using the treatment apparatus 21 shown in FIG. 5, peroxide-containing water (hydrogen peroxide: 500 mg / L, peracetic acid: 120 mg / L, pH value: 3) as the water to be treated is first fed through the pipe 32. Continuously supplied to the bottom of the reaction tank 30, flows upward in the first reaction tank 30, flows into the second reaction tank 31 through the communication opening part 26, and in the second reaction tank 31, After flowing downward from the bottom toward the bottom, a treatment of discharging as treated water through the pipe 33 was performed. At this time, the flow rate of the water to be treated is set to a space velocity (linear velocity): 15 hr −1 (15 m / hr), and the height of the overflow layer 37, that is, from the upper end of the upwardly expanding cylindrical portion 24 to the water surface. The height up to 200 mm.
Further, the processing apparatus 21 includes a first reaction tank 30: capacity 10L, height 1300mm, inner diameter 100mm, second reaction tank 31: capacity 10L, height 1300mm, inner diameter 150mm, total height of reaction tank 2000mm, upward expansion. Open tube portion 24: upper end opening diameter 130 mm, peroxide decomposition material: activated carbon (“Evadaya: LG-10S” (crushed charcoal) manufactured by Mizu-ing Co., Ltd.), the filling amount of each layer was 8L.

(比較例1)
図7に示した処理装置50、すなわち、実施例1で用いた処理装置21において、上向拡開筒部24を設けない処理装置を用いて、実施例1と同様の被処理水を、実施例1と同様の条件で処理を行った。
(Comparative Example 1)
In the processing apparatus 50 shown in FIG. 7, that is, the processing apparatus 21 used in the first embodiment, the water to be treated similar to that in the first embodiment is implemented using a processing apparatus that does not have the upwardly-expanded cylindrical portion 24. The treatment was performed under the same conditions as in Example 1.

Figure 0005779408
Figure 0005779408

実施例1では、通水開始から少なくとも18時間までは、被処理水中の過酸化水素および過酢酸は、表1に示すように定量下限値である0.1mg/L未満まで良好に処理された。
これに対し、比較例1では、通水開始から6時間後には、過酸化水素および過酢酸が検出され、18時間後には明らかに処理不良が発生した。このときの第2反応槽には活性炭層内部に気泡の蓄積が認められ、第1反応槽からの気泡の持込みが確認された。
In Example 1, hydrogen peroxide and peracetic acid in the water to be treated were successfully treated to less than the lower limit of quantification of 0.1 mg / L as shown in Table 1 until at least 18 hours from the start of water flow. .
On the other hand, in Comparative Example 1, hydrogen peroxide and peracetic acid were detected 6 hours after the start of water flow, and apparently poor treatment occurred 18 hours later. In the second reaction tank at this time, accumulation of bubbles was observed inside the activated carbon layer, and it was confirmed that bubbles were brought in from the first reaction tank.

(実施例2)
実施例1で使用した処理装置21を用いて、実施例1と同様の被処理水を、実施例1と同様の条件で処理を行い(図5参照)、処理水中の生菌数を調べた。その後、通水方向を切り替えて処理を行い(図6参照)、処理水中の生菌数を調べた。切り替えた後の通水速度及び溢流層37の高さは切り替え前と同様とした。
(Example 2)
Using the treatment apparatus 21 used in Example 1, treated water similar to that in Example 1 was treated under the same conditions as in Example 1 (see FIG. 5), and the number of viable bacteria in the treated water was examined. . Thereafter, the water flow direction was switched to perform the treatment (see FIG. 6), and the number of viable bacteria in the treated water was examined. The water flow rate after switching and the height of the overflow layer 37 were the same as before switching.

Figure 0005779408
Figure 0005779408

この結果、最初の通水方向(第1反応槽→第2反応槽)の処理では、通水24時間後には生菌の増加が見られ、72時間後には180CFU/mLに達した。
その後、通水方向を切り替えて処理を行った結果、切り替えて1時間後には3CFU/mL、すなわち通水初期の値まで生菌数が低下した。
このように通水方向を切り替えることにより、第2反応槽を流通する被処理水中の過酸化物濃度が切り替え前に比べて高くなるため、過酸化物の殺菌力によって生菌数を低下させることができたものと考えることができる。
As a result, in the treatment in the first water flow direction (first reaction tank → second reaction tank), an increase in viable bacteria was observed after 24 hours of water flow and reached 180 CFU / mL after 72 hours.
Then, as a result of switching the direction of water flow, the number of viable bacteria decreased to 3 CFU / mL, that is, the initial value of water flow after 1 hour from switching.
By switching the water flow direction in this way, the concentration of peroxide in the water to be treated flowing through the second reaction tank becomes higher than before switching, so the number of viable bacteria is reduced by the sterilizing power of the peroxide. Can be thought of as having been made.

1:処理装置、2:外筒、3:仕切板、4:第1通水路、5:第2通水路、
6:連通開放部、8:過酸化物分解材、10:第1反応槽、11:第2反応槽、
12,13:管、15:開拡開口部、16:開拡開口部、17:溢流層
21:処理装置、22:外筒、23:内筒、
24:上向拡開筒部、25:上向窄まり筒部、26:連通開放部、
28:過酸化物分解材、30:第1反応槽、31:第2反応槽、32,33:管
35:開拡開口部、36:開拡開口部、37:溢流層
50:処理装置、51:過酸化物分解材、52:第1反応槽、53:第2反応槽
54:連通開放部
1: treatment device, 2: outer cylinder, 3: partition plate, 4: first water passage, 5: second water passage,
6: open communication part, 8: peroxide decomposition material, 10: first reaction tank, 11: second reaction tank,
12, 13: pipe, 15: widened opening, 16: widened opening, 17: overflow layer 21: treatment device, 22: outer cylinder, 23: inner cylinder,
24: upwardly expanded cylindrical part, 25: upwardly constricted cylindrical part, 26: communication open part,
28: peroxide decomposition material, 30: first reaction tank, 31: second reaction tank, 32, 33: pipe 35: widening opening, 36: widening opening, 37: overflow layer 50: treatment device , 51: peroxide decomposition material, 52: first reaction tank, 53: second reaction tank 54: communication open part

Claims (4)

過酸化物分解材が内部に充填され、被処理水としての過酸化物含有水が上向きに流通し、発生した気泡を上向流で浮上させる第1反応槽と、
過酸化物分解材が内部に充填され、過酸化物含有水が下向きに流通する第2反応槽と、
前記第1反応槽及び前記第2反応槽の上部を連通し、前記第1反応槽内を上向きに流通した過酸化物含有水を前記第2反応槽内に流入させる連通開放部と、
前記第1反応槽の上部に設けられ、前記第1反応槽内で発生した気泡を系外へ排出させるための前記上向流方向で上方に向かって広がった開拡開口部と、を備え、
過酸化物含有水中の過酸化物を分解させることを特徴とする過酸化物含有水の処理装置。
A first reaction vessel in which a peroxide decomposition material is filled, a peroxide-containing water as the water to be treated flows upward, and the generated bubbles are floated upward ;
A second reactor in which the peroxide decomposition material is filled, and the peroxide-containing water flows downward;
Said first reaction tank and the upper portion of the second reaction vessel was communicated, the communicating opening for the peroxide-containing water that has circulated upwardly a first reaction vessel causes flow into the second reaction vessel,
The first provided on the upper portion of the reaction vessel, and a spread open mouth spreader portion upward by the upward flow direction for discharging the air bubbles generated in the first reaction vessel to the outside of the system,
An apparatus for treating peroxide-containing water, comprising decomposing peroxide in the peroxide-containing water.
過酸化物分解材が内部に充填され、被処理水としての過酸化物含有水が上向きに流通する第1反応槽と、
過酸化物分解材が内部に充填され、過酸化物含有水が下向きに流通する第2反応槽と、
前記第1反応槽及び前記第2反応槽の上部を連通し、前記第1反応槽内を上向きに流通した過酸化物含有水を前記第2反応槽内に流入させる連通開放部と、
前記第1反応槽の上部に、上方に向かって広がった開拡開口部と、を備え
前記第1反応槽、前記第2反応槽及び前記連通開放部における通水方向を切り替え可能であり、
過酸化物含有水が前記第2反応槽内を上向きに流通し、前記連通開放部を介して、前記第1反応槽内を下向きに流通する場合には、前記第1反応槽の上部を、上方に向かって広がった開拡開口部とする代わりに、前記第2反応槽の上部を、上方に向かって広がった開拡開口部とすることができる構成を備え過酸化物含有水の処理装置。
A first reactor in which a peroxide decomposition material is filled, and peroxide-containing water as treated water flows upward;
A second reactor in which the peroxide decomposition material is filled, and the peroxide-containing water flows downward;
A communication opening portion for communicating the upper part of the first reaction tank and the second reaction tank and allowing the peroxide-containing water flowing upward in the first reaction tank to flow into the second reaction tank;
An upper opening that extends upward at the top of the first reaction tank;
The first reaction vessel, it is possible to switch the water flow direction in the second reaction vessel and the communicating opening,
Peroxide-containing water flows upwardly the second reaction vessel, via the communicating opening, when flowing through the first reaction vessel to downwardly, the upper portion of the first reaction vessel, instead of an open mouth spreader unit spread upward, the top of the second reaction vessel, treatment of peroxide-containing water having a configuration which can be opened mouth spreader unit spread upward apparatus.
前記開拡開口部は、回動可能な開閉部を斜めに傾斜させることで上方に向かって広がる形状とすることを特徴とする請求項1又は2に記載の過酸化物含有水の処理装置。3. The peroxide-containing water treatment apparatus according to claim 1, wherein the widening opening has a shape that widens upward by tilting a rotatable opening / closing portion obliquely. 4. 過酸化物分解材が内部に充填され、上部に上方に向かって広がった開拡開口部を有する第1反応槽内に、被処理水としての過酸化物含有水を上向きに通水し、前記第1反応槽の上端部から流出した過酸化物含有水を、連通開放部を介して、過酸化物分解材が内部に充填された第2反応槽内に流入させ、前記第2反応槽では、過酸化物含有水を下向きに通水することによって、過酸化物含有水中の過酸化物を分解し、
前記第1反応槽、前記第2反応槽及び前記連通開放部における通水方向を交互に切り替えると共に、前記第2反応槽内に過酸化物含有水を上向きに通水し、前記連通開放部を介して、前記第1反応槽内を下向きに通水する場合には、前記第1反応槽の上部を、上方に向かって広がった開拡開口部とする代わりに、前記第2反応槽の上部を、上方に向かって広がった開拡開口部とすることを特徴とする過酸化物含有水の処理方法。
Into the first reaction tank filled with a peroxide decomposition material and having an open-opening opening that spreads upward at the top, the peroxide-containing water as the water to be treated is passed upward, The peroxide-containing water flowing out from the upper end of the first reaction tank is caused to flow into the second reaction tank filled with the peroxide decomposition material through the communication open part, , Decompose the peroxide in the peroxide-containing water by passing the peroxide-containing water downward,
The first reaction vessel, said switches the water flow direction alternately in the second reaction vessel and the communicating opening, the upward and passed through a peroxide-containing water to the second reaction vessel, the communicating opening through it, wherein when the water flow is downwards a first reaction vessel, wherein the upper portion of the first reaction vessel, instead of the open mouth spreader unit spread upward, an upper portion of the second reaction vessel A method for treating peroxide-containing water, characterized in that the opening is an opening that widens upward.
JP2011120751A 2011-05-30 2011-05-30 Method and apparatus for treating peroxide-containing water Active JP5779408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011120751A JP5779408B2 (en) 2011-05-30 2011-05-30 Method and apparatus for treating peroxide-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011120751A JP5779408B2 (en) 2011-05-30 2011-05-30 Method and apparatus for treating peroxide-containing water

Publications (2)

Publication Number Publication Date
JP2012245486A JP2012245486A (en) 2012-12-13
JP5779408B2 true JP5779408B2 (en) 2015-09-16

Family

ID=47466469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011120751A Active JP5779408B2 (en) 2011-05-30 2011-05-30 Method and apparatus for treating peroxide-containing water

Country Status (1)

Country Link
JP (1) JP5779408B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3233558B2 (en) * 1995-08-01 2001-11-26 シャープ株式会社 Hydrogen peroxide removal equipment
JP2005205357A (en) * 2004-01-26 2005-08-04 Ngk Insulators Ltd Absorption apparatus of ammonia and/or ammonium ion

Also Published As

Publication number Publication date
JP2012245486A (en) 2012-12-13

Similar Documents

Publication Publication Date Title
JP5000856B2 (en) Rincer drainage recovery device and Rincer drainage recovery system
KR20110053946A (en) Process and equipment for the treatment of water containing organic matter
TWI485114B (en) Wastewater treatment system
KR0180853B1 (en) Ultrapure water production system having pretreatment system for paper forming both anerobic and aerobic organism treatment
JP3370576B2 (en) Ultrapure water production equipment
KR100805378B1 (en) The Combined Process Method and Unit Equipment using Ozone-Electrolysis/Semiconductor Catalysis for Treatment of Non-degradable Waste
KR20170031503A (en) Purification disposal device of livestock wastewater
JP2006192354A (en) Non-regenerative type ion exchange vessel and ultrapure water production apparatus
KR101858028B1 (en) Rapid complex water treatment system
KR101445837B1 (en) Hydrogen peroxide decomposition device and decomposition method for hydrogen peroxide
JP5380239B2 (en) Waste water treatment apparatus and waste water treatment method using catalyst
JP5779408B2 (en) Method and apparatus for treating peroxide-containing water
JP5910635B2 (en) Method for treating hydrogen peroxide-containing water
JP2005329374A (en) Water treatment apparatus
KR100497546B1 (en) Processing methode for sewage purification and equipment therefor
JP3894788B2 (en) Wastewater treatment equipment containing hydrogen peroxide
JP2006239617A (en) Water treatment method and water treatment apparatus
JPH03278882A (en) Method and apparatus for removing dissolved oxygen in water
JPH0443705B2 (en)
JP2006192352A (en) Ultrapure water production apparatus and ultrapure water production method
KR100205443B1 (en) Apparatus for treating waste water using photocatalyst
JP2655299B2 (en) How to remove hydrogen peroxide
JPH10314760A (en) Hydrogen peroxide removing apparatus and method for treating wastewater-containing hydrogen peroxide
JP2006281041A (en) Organic material-containing water treating apparatus and its operation method
JPH10211487A (en) Activated carbon treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150713

R150 Certificate of patent or registration of utility model

Ref document number: 5779408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250