WO2003053864A1 - Apparatus for treating waste water containing hydrogen peroxide - Google Patents

Apparatus for treating waste water containing hydrogen peroxide Download PDF

Info

Publication number
WO2003053864A1
WO2003053864A1 PCT/JP2002/013353 JP0213353W WO03053864A1 WO 2003053864 A1 WO2003053864 A1 WO 2003053864A1 JP 0213353 W JP0213353 W JP 0213353W WO 03053864 A1 WO03053864 A1 WO 03053864A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen peroxide
catalyst layer
reaction tower
catalyst
wastewater treatment
Prior art date
Application number
PCT/JP2002/013353
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuya Uesugi
Teruo Sugizaki
Original Assignee
Organo Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corporation filed Critical Organo Corporation
Priority to KR10-2003-7007697A priority Critical patent/KR20040067838A/en
Priority to AU2002354263A priority patent/AU2002354263A1/en
Publication of WO2003053864A1 publication Critical patent/WO2003053864A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/346Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from semiconductor processing, e.g. waste water from polishing of wafers

Definitions

  • the present invention relates to an apparatus for treating various hydrogen peroxide-containing wastewater such as semiconductor manufacturing wastewater and food container cleaning wastewater.
  • Hydrogen peroxide is a clean chemical that excels in cleaning and disinfecting effects, and decomposes into oxygen and water after the reaction. Therefore, it is widely used as a detergent and disinfectant in manufacturing processes. For example, in a semiconductor device manufacturing plant, hydrogen peroxide is used for cleaning wafers in various processes.
  • Hydrogen peroxide used for cleaning and sterilization is discharged as waste liquid (water containing hydrogen peroxide) from the manufacturing process. It is not desirable to discharge this waste liquid directly into public waters because it has bactericidal activity and causes COD.
  • the treatment of wastewater containing hydrogen peroxide using a reduction catalyst has the advantages described above, but this treatment requires a relatively large-scale treatment facility as compared to treatment using a reducing agent and an enzyme agent. was there.
  • a hydrogen peroxide decomposition catalyst capable of performing an efficient treatment was used.
  • a treatment device for wastewater containing hydrogen peroxide is provided.
  • the present invention relates to a treatment apparatus for decomposing hydrogen peroxide into oxygen and water by flowing hydrogen peroxide-containing wastewater in an upward flow through a reaction tower filled with a hydrogen peroxide decomposition catalyst.
  • the hydrogen peroxide decomposition catalyst is divided into a plurality of layers in the vertical direction in the reaction tower, and is arranged without contacting at least the oxygen gas generated in the lowermost catalyst layer with the upper catalyst layer.
  • a gas vent pipe to be discharged outside the reaction tower is installed inside the reaction tower.
  • FIG. 1 is a schematic diagram showing an embodiment of a wastewater treatment apparatus containing hydrogen peroxide according to the present invention.
  • FIG. 2 is a plan view showing an upper catalyst support plate of the apparatus of FIG.
  • FIG. 3 is a schematic diagram of the experimental apparatus A used in the experimental example.
  • FIG. 4 is a schematic diagram of the experimental apparatus B used in the experimental example.
  • reaction efficiency is generally increased by improving the contact efficiency between the catalyst and the reaction target (in the present invention, hydrogen peroxide in water). Costs can be reduced.
  • the present inventors studied a method for preventing the generated bubbles of oxygen gas from inhibiting the contact between the catalyst and hydrogen peroxide.
  • the catalyst is divided into multiple layers in the vertical direction in the reaction tower, and the oxygen gas generated in the lower catalyst layer is removed.
  • the upper catalyst layer contacts the catalyst with hydrogen peroxide without being disturbed by the oxygen gas bubbles generated in the lower catalyst layer.
  • the hydrogen peroxide removal rate in the reaction tower was improved. At this time, it was found that by installing an oxygen gas discharge pipe in the reaction tower, it was possible to satisfactorily discharge the oxygen gas generated in the catalyst layer.
  • the apparatus according to the present embodiment is a treatment apparatus that decomposes hydrogen peroxide into oxygen and water by flowing hydrogen peroxide-containing wastewater in an upward flow through a reaction tower filled with a hydrogen peroxide decomposition catalyst.
  • the hydrogen peroxide decomposition catalyst is vertically divided into a plurality of layers in the reaction tower, and at least oxygen gas generated in the lowermost catalyst layer is transferred to the upper catalyst layer.
  • a gas vent pipe that discharges outside the reaction tower without contact is installed inside the reaction tower.
  • the number of layers of the hydrogen peroxide decomposition catalyst can be determined as appropriate, but it is usually appropriate to divide the catalyst into two to four layers, particularly two layers.
  • a gas vent pipe for discharging at least bubbles of oxygen gas generated in the lowermost catalyst layer to the outside of the reaction tower.
  • the type of hydrogen peroxide decomposition catalyst is not limited, and any catalyst can be used as long as it can reduce hydrogen peroxide to decompose it into oxygen and water.
  • the hydrogen peroxide decomposition catalyst include metal catalysts such as platinum, palladium, and manganese; and activated carbon. Further, a catalyst in which a metal such as platinum, palladium, or manganese is supported on a base made of activated carbon, alumina, silica, or the like can also be used.
  • the catalyst loading amount in each of the catalyst layers divided into a plurality of layers in the vertical direction depends on the concentration of hydrogen peroxide in the wastewater, the flow rate of the wastewater, and the target removal of hydrogen peroxide. Each can be set arbitrarily in consideration of the rate and the like. It is also possible to fill each catalyst layer with a different type of catalyst.
  • FIG. 1 is a schematic view showing an embodiment of a wastewater treatment apparatus containing hydrogen peroxide according to the present invention.
  • the reaction tower 2 is formed, for example, in a cylindrical shape.
  • the raw water supply pipe 4 is fixed to the bottom of the reaction tower 2 by being inserted from the outside.
  • a support gravel layer 6 is provided at the bottom of the reaction tower 2, and the raw water supply pipe 4 is opened in the support gravel layer 6.
  • a lower catalyst layer 8 an upper catalyst support plate 10, a support gravel layer 12, and an upper catalyst layer 14 are sequentially formed in this order.
  • the supporting gravel layers 6 and 12 support the lower catalyst layer 8 and the upper catalyst layer 14, respectively, and have a larger particle size than the catalyst particles constituting the lower catalyst layer 8 and the upper catalyst layer 14. It is composed of
  • An L-shaped treated water discharge pipe 16 having an open upper end is provided above the upper catalyst layer 14 to overflow and discharge treated water (supernatant water) in the reaction tower 2. Further, a gas outlet 18 for discharging the internal gas is provided at the upper end of the reaction tower 2.
  • a gas vent pipe 20 is provided to penetrate the upper catalyst support plate 10, the support gravel layer 12, and the upper catalyst layer 14 of the reaction tower 2.
  • the gas vent tube 20 has a lower end supported by an upper catalyst support plate 10 and an upper end supported by a gas vent tube support 22 disposed above the reaction tower 2.
  • the upper catalyst support plate 1 ⁇ supporting the gravel layer 12 and the upper catalyst layer 14 has eight water collecting ports (collector screens) 24 and four gas vent ports 2 as shown in Fig. 2. 6 are provided, and each gas vent 2 The lower end of 0 is connected. That is, in FIG. 1, only one gas vent pipe 20 is shown, but the gas vent pipes 20 are provided corresponding to the gas vent ports 26, and in this apparatus, a total of four gas vent pipes 20 are provided. Draft 20 is installed. Further, these gas vent pipes 20 pass through the upper catalyst layer 14 and open above the treated water level 30 at the top of the tower. That is, the upper end of the degassing pipe 20 is located above the upper end opening of the treated water discharge pipe 16.
  • the upper catalyst support plate 10 is disposed above the lower catalyst layer 8, and a space 32 is formed between the lower catalyst layer 8 and the upper catalyst support plate 10. .
  • the catalyst layer is divided into the upper and lower layers (the lower catalyst layer 8 and the upper catalyst layer 14) and arranged in the reaction tower 2, and the gas vent pipe bypassing the upper catalyst layer 14 is provided. 20 are provided.
  • the hydrogen peroxide-containing wastewater 28 is supplied from the raw water supply pipe 4 to the lower part of the reaction tower 2.
  • a support gravel layer 6 is provided at the lower part of the reaction tower 2, and the hydrogen peroxide-containing wastewater spreads throughout the bottom of the reaction tower 2 in the support gravel layer 6 c as described above.
  • a support plate 10 for the upper catalyst layer 14 is provided on the lower surface, a space 32 is formed below the support plate 10, and the lower catalyst 10 is provided on the support plate 10 as described above.
  • a gas vent 26 for collecting oxygen gas generated from the layer 8 is provided. The gas vent port 26 is connected to a gas vent pipe 20 extending above the upper catalyst layer 8 above the reaction tower 2.
  • the support plate 10 in the middle stage of the reaction tower is provided with a water collecting port 24 for guiding wastewater to the upper catalyst layer 14 separately from the gas venting port 26, and a part or all of the generated gas is removed.
  • the drained water is passed through the water collecting port 24 into the upper catalyst layer 14, and the hydrogen peroxide in the drain is further reduced and decomposed.
  • the oxygen gas generated in the upper catalyst layer 14 is discharged upward as it is.
  • the wastewater that has passed through the upper catalyst layer 14 reaches the water surface 30 at the top of the tower, and is discharged out of the reaction tower 2 from the treated water discharge pipe 16.
  • Oxygen gas from the lower catalyst layer 8 guided upward through the water surface through the gas vent pipe 20, and the upper catalyst layer 14 Oxygen gas is discharged out of the reaction tower 2 from the gas outlet 18 at the top of the tower.
  • This system treats wastewater containing hydrogen peroxide in an upward flow direction.
  • the catalyst is divided into two layers (lower catalyst layer 8 and upper catalyst layer 14) in the vertical direction, and is arranged.
  • a space 32 is formed between both layers, and oxygen gas generated in the lower catalyst layer 8 is discharged out of the reaction tower 2 without contacting the upper catalyst layer 14.
  • the upper catalyst layer 14 makes contact between the catalyst and hydrogen peroxide without being hindered by the oxygen gas generated in the lower catalyst layer 8, and as a result, the hydrogen peroxide removal rate in the reaction tower 2 is improved. .
  • the wastewater containing hydrogen peroxide is treated in an upward flow, so that the generated oxygen gas easily escapes above each catalyst layer.
  • a vent pipe 20 for discharging the generated oxygen gas is provided in the reaction tower 2.
  • the gas vent pipe 20 is installed outside the reaction tower 2, that is, when the gas vent pipe 20 is externally connected to the peripheral wall between the upper catalyst layer 14 and the lower catalyst layer 8 of the reaction tower 2, In comparison, the oxygen gas generated in the lower catalyst layer is discharged well out of the system.
  • the number of gas vents 26 and water collecting ports 24 provided on the support plate 10 and their locations can be arbitrarily set as long as the strength of the support plate 10 is sufficiently maintained.
  • the gas rise causes an air lift effect on water in the gas vent pipe 20
  • the water collecting port 24 has a diameter smaller than the size of the catalyst or a mesh-shaped or comb-shaped screen is provided so that the catalyst in the upper catalyst layer 14 does not fall downward.
  • the lower end opening position of the gas vent port 26 of the support plate 10 is located above the lower end opening position of the water collecting port 24.
  • the support plate 10 is not a flat plate but a shape that faces upward toward the gas vent 26 (shape of an inverted funnel), or a pipe-like member extending downward around the water intake 24 is attached. By doing so, the lower end of the gas vent 26 can be positioned below the water intake 24.
  • the effect of Ming was verified. That is, two sets of reaction towers of the same shape were prepared, A and B.
  • reference numeral 42 denotes a reaction tower
  • 44 denotes a raw water supply pipe
  • 46 denotes a lower catalyst layer
  • 48 denotes an upper catalyst support plate
  • 50 denotes an upper catalyst layer
  • 52 denotes a treated water discharge pipe.
  • Numeral 54 denotes a gas vent pipe connected to the gas vent of the support plate 48 (installed only in the experimental machine A), and numeral 56 denotes a water collecting port formed in the support plate 48.
  • the specifications of experimental units A and B are shown below.
  • Gas vent port 1 piece (center of support plate, diameter 15 mm)
  • Hydrogen peroxide decomposition catalyst used manganese supported catalyst
  • Catalyst filling height 500mm each for upper and lower
  • Catalyst filling amount 192mL each for upper and lower
  • Table 1 shows the hydrogen peroxide concentration and the hydrogen peroxide removal rate of the treated water of the experimental machine. As shown in Table 1, the concentration of hydrogen peroxide in the treated water and the removal rate of hydrogen peroxide in Experimental Unit A were all higher than those in Experimental Unit B in each water flow condition.
  • the hydrogen peroxide-containing wastewater treatment device of the present embodiment is intended to increase the contact efficiency between the hydrogen peroxide decomposition catalyst and hydrogen peroxide, to reduce the size of the device, save space, and reduce equipment costs. Can be.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)
  • Removal Of Specific Substances (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

An apparatus for treating a waste water containing hydrogen peroxide which passes the waste water upwardly through a reaction tower (2) packed with a hydrogen peroxide decomposition catalyst, to decompose hydrogen peroxide into oxygen and water, wherein plural catalyst layers, for example, a lower catalyst layer (8) and an upper catalyst layer (14) are provided in the perpendicular direction in the reaction tower (2), and a gas purging tube (20) is disposed in the reaction tower (2) for purging an oxygen gas generated at least in the lowermost catalyst layer to the outside of the reaction tower (2) without contacting the oxygen gas with a catalyst layer disposed at a position upper than that of the lowermost layer. The apparatus allows the enhancement of the contact efficiency of the catalyst with hydrogen peroxide, which leads to miniaturization of an apparatus, space-saving and the reduction of equipment cost.

Description

明細書  Specification
過酸化水素含有排水処理装置  Wastewater treatment equipment containing hydrogen peroxide
「発明の属する技術分野」 "Technical field to which the invention belongs"
本発明は、 半導体製造排水、 食品容器洗浄排水といった各種過酸化水素含有排 水の処理装置に関する。  The present invention relates to an apparatus for treating various hydrogen peroxide-containing wastewater such as semiconductor manufacturing wastewater and food container cleaning wastewater.
「背景技術」 "Background technology"
過酸化水素は洗浄効果、 殺菌効果に優れ、 かつ反応後は酸素と水に分解する クリーンな薬品であるため、 広く製造工程における洗浄剤、 殺菌剤として使用さ れている。 例えば、 半導体装置の製造工場では、 様々な工程で過酸化水素がゥェ ハの洗浄等に用いられている。  Hydrogen peroxide is a clean chemical that excels in cleaning and disinfecting effects, and decomposes into oxygen and water after the reaction. Therefore, it is widely used as a detergent and disinfectant in manufacturing processes. For example, in a semiconductor device manufacturing plant, hydrogen peroxide is used for cleaning wafers in various processes.
洗浄、 殺菌に用いられた過酸化水素は、 製造工程から廃液 (過酸化水素含有排 水) として排出される。 この廃液は殺菌力を持つこと、 C O Dの原因物質になる ことから、 直接公共用水域に放流することは好ましくない。  Hydrogen peroxide used for cleaning and sterilization is discharged as waste liquid (water containing hydrogen peroxide) from the manufacturing process. It is not desirable to discharge this waste liquid directly into public waters because it has bactericidal activity and causes COD.
従来、 過酸化水素含有排水の処理方法としては、 亜硫酸ナトリウムなどの還元 剤やペルォキシダ一ゼなどの酵素剤を用いた処理が行われてきたが、 これらの方 法は薬品使用量が多く、 ランニングコストが高いことなどが問題であった。 一方、 活性炭、 マンガン担持触媒、 白金担持触媒などの還元触媒を用いて過酸 化水素を還元する手法が知られている。 排水中の過酸化水素は上記還元触媒と接 触することによって酸素と水に分解される。 このような還元触媒による処理手法 を用いることにより、 過酸化水素含有排水の処理に要するランニングコストを安 く抑えることができる。  Conventionally, wastewater containing hydrogen peroxide has been treated with a reducing agent such as sodium sulfite or an enzymatic agent such as peroxidase.However, these methods use a large amount of chemicals and run. The high cost was a problem. On the other hand, a method of reducing hydrogen peroxide using a reducing catalyst such as activated carbon, a manganese-supported catalyst, or a platinum-supported catalyst is known. Hydrogen peroxide in wastewater is decomposed into oxygen and water by contacting the above reduction catalyst. By using such a treatment method using a reduction catalyst, the running cost required for treating hydrogen peroxide-containing wastewater can be reduced.
還元触媒を用いた過酸化水素含有排水の処理は、 前述した利点を有するもので あるが、 この処理では還元剤、 酵素剤を用いた処理に比べ、 処理設備が比較的大 がかりになるという問題があった。  The treatment of wastewater containing hydrogen peroxide using a reduction catalyst has the advantages described above, but this treatment requires a relatively large-scale treatment facility as compared to treatment using a reducing agent and an enzyme agent. was there.
「発明の開示」 "Disclosure of the invention"
本発明では、 効率的な処理が行える過酸化水素分解触媒 (還元触媒) を用いた 過酸化水素含有排水の処理装置を提供する。 In the present invention, a hydrogen peroxide decomposition catalyst (reduction catalyst) capable of performing an efficient treatment was used. Provided is a treatment device for wastewater containing hydrogen peroxide.
本発明は、 過酸化水素分解触媒を充填した反応塔内に過酸化水素含有排水を上 向流で通水し、 過酸化水素を酸素と水に分解する処理装置に関する。 前記過酸化 水素分解触媒は反応塔内において上下方向に複数層に分割されて配置されている c そして、 少なくとも最下方の触媒層で発生した酸素ガスをそれより上方の触媒層 に接触させることなく反応塔外に排出するガス抜き管が反応塔内に設置されてい る。  The present invention relates to a treatment apparatus for decomposing hydrogen peroxide into oxygen and water by flowing hydrogen peroxide-containing wastewater in an upward flow through a reaction tower filled with a hydrogen peroxide decomposition catalyst. The hydrogen peroxide decomposition catalyst is divided into a plurality of layers in the vertical direction in the reaction tower, and is arranged without contacting at least the oxygen gas generated in the lowermost catalyst layer with the upper catalyst layer. A gas vent pipe to be discharged outside the reaction tower is installed inside the reaction tower.
これによつて、 過酸化水素の分解を効果的に行うことができる。 「図面の簡単な説明」  This makes it possible to effectively decompose hydrogen peroxide. "Brief description of the drawings"
図 1は、 本発明に係る過酸化水素含有排水処理装置の一実施形態を示す概略図 である。  FIG. 1 is a schematic diagram showing an embodiment of a wastewater treatment apparatus containing hydrogen peroxide according to the present invention.
図 2は、 図 1の装置の上層触媒支持板を示す平面図である。  FIG. 2 is a plan view showing an upper catalyst support plate of the apparatus of FIG.
図 3は、 実験例で用いた実験装置 Aの概略図である。  FIG. 3 is a schematic diagram of the experimental apparatus A used in the experimental example.
図 4は、 実験例で用いた実験装置 Bの概略図である。  FIG. 4 is a schematic diagram of the experimental apparatus B used in the experimental example.
「発明を実施するための好適な形態」 "Preferred embodiment for carrying out the invention"
まず、 本発明を完成させるために、 本発明者らは、 下記①〜④に述べる検討を TJつた。  First, in order to complete the present invention, the present inventors conducted TJ studies described in the following ① to ④.
①触媒を利用した反応系では、 一般に、 触媒と反応対象物 (本発明では水中の過 酸化水素) との接触効率を向上させることにより、 反応効率が高まり、 結果とし て装置の小型化、 設備費の低減が可能となる。  (1) In a reaction system using a catalyst, the reaction efficiency is generally increased by improving the contact efficiency between the catalyst and the reaction target (in the present invention, hydrogen peroxide in water). Costs can be reduced.
②一方、 還元触媒を用いた過酸化水素含有排水処理装置では、 触媒を充填した反 応塔に過酸化水素含有排水を上向流または下向流で連続的に通水し、 反応塔上部 または下部から処理水を得るのが一般的である。 ただし、 高濃度の過酸化水素を 分解処理する場合、 多量の酸素ガスが発生し、 それが気泡となって充填層内に閉 じ込められるという現象が起こるため、 装置構造の簡易性、 システムの安全性の 観点から、 反応塔上部からのガス放出が容易な上向流を選択する方が望ましい。 (2) On the other hand, in a hydrogen peroxide-containing wastewater treatment system using a reduction catalyst, hydrogen peroxide-containing wastewater is continuously passed through the reaction tower filled with the catalyst in an upward or downward flow, and It is common to obtain treated water from the lower part. However, when high-concentration hydrogen peroxide is decomposed, a large amount of oxygen gas is generated, which generates air bubbles and is trapped in the packed bed. From the viewpoint of safety, it is desirable to select an upward flow that allows easy release of gas from the upper part of the reaction tower.
③しかし、 過酸化水素分解時に生じる酸素ガスの気泡は、 触媒と過酸化水素の接 触効率を低下させ、 結果として処理装置の反応効率を低下させると考えられる。 特に高濃度の過酸化水素を含有する排水を処理する場合、 先に述べた理由により 上向流式の反応塔の採用が望ましいが、 発生した酸素ガスの気泡が触媒層内を上 昇する過程で、 気泡が触媒と排水との接触を妨げるものと推定される。 ③However, the bubbles of oxygen gas generated during decomposition of hydrogen peroxide cause the contact between catalyst and hydrogen peroxide. It is thought that the contact efficiency is reduced, and as a result, the reaction efficiency of the processing apparatus is reduced. In particular, when treating wastewater containing a high concentration of hydrogen peroxide, it is desirable to use an upward flow type reaction tower for the above-mentioned reasons.However, the process in which generated oxygen gas bubbles rise in the catalyst layer It is presumed that air bubbles hinder contact between the catalyst and the wastewater.
④そこで、 本発明者らは、 発生した酸素ガスの気泡が触媒と過酸化水素との接触 を阻害するのを防止する方法について検討を行った。 その結果、 過酸化水素含有 排水を上向流にて処理する反応塔においては、 反応塔内で触媒を上下方向に複数 層に分割して配置するとともに、 下方の触媒層で発生した酸素ガスの気泡を上方 の触媒層に接触させることなく反応塔外に排出することにより、 上方の触媒層で は下方の触媒層で発生した酸素ガスの気泡の阻害を受けることなく触媒と過酸化 水素の接触が生じ、 結果として反応塔における過酸化水素除去率が向上すること を見いだした。 また、 このとき酸素ガスの排出管を反応塔内に設置することによ り、 触媒層で発生した酸素ガスを良好に排出できることを見いだした。 Therefore, the present inventors studied a method for preventing the generated bubbles of oxygen gas from inhibiting the contact between the catalyst and hydrogen peroxide. As a result, in a reaction tower that treats hydrogen peroxide-containing wastewater in an upward flow, the catalyst is divided into multiple layers in the vertical direction in the reaction tower, and the oxygen gas generated in the lower catalyst layer is removed. By discharging the bubbles out of the reaction tower without contacting the upper catalyst layer, the upper catalyst layer contacts the catalyst with hydrogen peroxide without being disturbed by the oxygen gas bubbles generated in the lower catalyst layer. Was found, and as a result, the hydrogen peroxide removal rate in the reaction tower was improved. At this time, it was found that by installing an oxygen gas discharge pipe in the reaction tower, it was possible to satisfactorily discharge the oxygen gas generated in the catalyst layer.
本実施形態の装置は、 過酸化水素分解触媒を充填した反応塔内に過酸化水素含 有排水を上向流で通水し、 過酸化水素を酸素と水に分解する処理装置である。 そ して、 前記過酸化水素分解触媒は反応塔内において上下方向に複数層に分割され て配置されているとともに、 少なくとも最下方の触媒層で発生した酸素ガスをそ れより上方の触媒層に接触させることなく反応塔外に排出するガス抜き管が反応 塔内に設置されている。  The apparatus according to the present embodiment is a treatment apparatus that decomposes hydrogen peroxide into oxygen and water by flowing hydrogen peroxide-containing wastewater in an upward flow through a reaction tower filled with a hydrogen peroxide decomposition catalyst. The hydrogen peroxide decomposition catalyst is vertically divided into a plurality of layers in the reaction tower, and at least oxygen gas generated in the lowermost catalyst layer is transferred to the upper catalyst layer. A gas vent pipe that discharges outside the reaction tower without contact is installed inside the reaction tower.
この場合、 過酸化水素分解触媒をいくつの層に分割するかは適宜決定できるが、 通常は 2層〜 4層、 特に 2層に分割することが適当である。  In this case, the number of layers of the hydrogen peroxide decomposition catalyst can be determined as appropriate, but it is usually appropriate to divide the catalyst into two to four layers, particularly two layers.
また、 本実施形態の処理装置では、 最下方の触媒層での酸素ガス発生量が最も 多いため、 少なくとも最下方の触媒層で発生した酸素ガスの気泡を反応塔外に排 出するガス抜き管を設けるものであるが、 各触媒層で発生したガスをそれぞれ反 応塔外に排出するガス抜き管を設けることがより適当である。  Further, in the processing apparatus of the present embodiment, since the amount of oxygen gas generated in the lowermost catalyst layer is the largest, a gas vent pipe for discharging at least bubbles of oxygen gas generated in the lowermost catalyst layer to the outside of the reaction tower. Although it is more appropriate to provide a gas vent pipe for discharging the gas generated in each catalyst layer to the outside of the reaction tower.
なお、 ガス抜き管による酸素ガスの排出は、 発生した酸素ガスの気泡が上方の 触媒層で触媒と過酸化水素との接触を阻害するのを有効に防止できる程度に排出 すればよい。 したがって、 必ずしも触媒層で発生したガスの全部を排出する必要 はなく、 一部を排出してもよい。 本実施形態において、 過酸化水素分解触媒の種類に限定はなく、 過酸化水素を 還元して酸素と水に分解できるものであればいずれのものでもよい。 過酸化水素 分解触媒として、 具体的には、 白金、 パラジウム、 マンガン等の金属触媒や、 活 性炭等が挙げられる。 また、 活性炭、 アルミナ、 シリカ等からなる母体に白金、 パラジウム、 マンガン等の金属類を担持させた触媒を用いることもできる。 The oxygen gas should be discharged from the gas vent tube to such an extent that the generated oxygen gas bubbles can be effectively prevented from obstructing the contact between the catalyst and hydrogen peroxide in the upper catalyst layer. Therefore, it is not always necessary to discharge all of the gas generated in the catalyst layer, but part of the gas may be discharged. In the present embodiment, the type of hydrogen peroxide decomposition catalyst is not limited, and any catalyst can be used as long as it can reduce hydrogen peroxide to decompose it into oxygen and water. Specific examples of the hydrogen peroxide decomposition catalyst include metal catalysts such as platinum, palladium, and manganese; and activated carbon. Further, a catalyst in which a metal such as platinum, palladium, or manganese is supported on a base made of activated carbon, alumina, silica, or the like can also be used.
また、 本実施形態において、 上下方向に複数層に分割配置された各触媒層にお ける触媒充填量は、 排水中の過酸化水素濃度、 排水の通水速度、 目標とする過酸 化水素除去率などを勘案してそれぞれ任意に設定することができる。 また、 各触 媒層に種類の異なる触媒を充填することも可能である。  Further, in the present embodiment, the catalyst loading amount in each of the catalyst layers divided into a plurality of layers in the vertical direction depends on the concentration of hydrogen peroxide in the wastewater, the flow rate of the wastewater, and the target removal of hydrogen peroxide. Each can be set arbitrarily in consideration of the rate and the like. It is also possible to fill each catalyst layer with a different type of catalyst.
以下、 本発明の実施形態について図面に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1は本発明に係る過酸化水素含有排水処理装置の一実施形態を示す概略図で ある。 図 1において、 反応塔 2は、 例えば円筒状に形成されている。 原水供給管 4は、 反応塔 2の底部に外部から挿入する形態で、 固定されている。 反応塔 2の 底部には、 支持砂利層 6が設けられており、 原水供給管 4は、 この支持砂利層 6 内で開口している。 反応塔 2内の支持砂利層 6の上には、 下部触媒層 8、 上部触 媒支持板 1 0、 支持砂利層 1 2、 上部触媒層 1 4がこの順番で順次形成されてい る。 支持砂利層 6、 1 2は、 それぞれ下部触媒層 8、 上部触媒層 1 4を支持する ものであり、 下部触媒層 8、 上部触媒層 1 4を構成する触媒粒子より、 大粒径の 支持材から構成されている。  FIG. 1 is a schematic view showing an embodiment of a wastewater treatment apparatus containing hydrogen peroxide according to the present invention. In FIG. 1, the reaction tower 2 is formed, for example, in a cylindrical shape. The raw water supply pipe 4 is fixed to the bottom of the reaction tower 2 by being inserted from the outside. A support gravel layer 6 is provided at the bottom of the reaction tower 2, and the raw water supply pipe 4 is opened in the support gravel layer 6. On the support gravel layer 6 in the reaction tower 2, a lower catalyst layer 8, an upper catalyst support plate 10, a support gravel layer 12, and an upper catalyst layer 14 are sequentially formed in this order. The supporting gravel layers 6 and 12 support the lower catalyst layer 8 and the upper catalyst layer 14, respectively, and have a larger particle size than the catalyst particles constituting the lower catalyst layer 8 and the upper catalyst layer 14. It is composed of
また、 上部触媒層 1 4の上方には、 上端が開放した L字型の処理水排出管 1 6 が設けられており、 反応塔 2内の処理水 (上澄み水) を溢流排出する。 さらに、 反応塔 2の上端には、 内部のガスを排出するガス排出口 1 8が設けられている。 そして、 反応塔 2の上部触媒支持板 1 0、 支持砂利層 1 2、 および上部触媒層 1 4を貫通して、 ガス抜き管 2 0が設けられている。 このガス抜き管 2 0は、 下端 部が上部触媒支持板 1 0で支持され、 上端部が反応塔 2の上部に配置されたガス 抜き管支持体 2 2で支持されている。  An L-shaped treated water discharge pipe 16 having an open upper end is provided above the upper catalyst layer 14 to overflow and discharge treated water (supernatant water) in the reaction tower 2. Further, a gas outlet 18 for discharging the internal gas is provided at the upper end of the reaction tower 2. A gas vent pipe 20 is provided to penetrate the upper catalyst support plate 10, the support gravel layer 12, and the upper catalyst layer 14 of the reaction tower 2. The gas vent tube 20 has a lower end supported by an upper catalyst support plate 10 and an upper end supported by a gas vent tube support 22 disposed above the reaction tower 2.
ここで、 支持砂利層 1 2および上部触媒層 1 4を支持する上層触媒支持板 1◦ には、 図 2に示すように 8つの集水口 (コレクタースクリーン) 2 4および 4つ のガス抜き口 2 6が設けられており、 各ガス抜き口 2 6にそれそれガス抜き管 2 0の下端部が接続されている。 すなわち、 図 1においては、 ガス抜き管 2 0が 1 本だけ示してあるが、 ガス抜き管 2 0は各ガス抜き口 2 6に対応して設けられて おり、 本装置では計 4本のガス抜き管 2 0が設置されている。 また、 これらのガ ス抜き管 2 0は、 上部触媒層 1 4を貫通して塔上部の処理水水面 3 0の上方で開 口している。 すなわち、 ガス抜き管 2 0の上端は、 処理水排出管 1 6の上端開口 より上方に至っている。 また、 上層触媒支持板 1 0は、 下部触媒層 8の上方に配 置されており、 下部触媒層 8と上層触媒支持板 1 0との間には、 空間部 3 2が形 成されている。 Here, the upper catalyst support plate 1◦ supporting the gravel layer 12 and the upper catalyst layer 14 has eight water collecting ports (collector screens) 24 and four gas vent ports 2 as shown in Fig. 2. 6 are provided, and each gas vent 2 The lower end of 0 is connected. That is, in FIG. 1, only one gas vent pipe 20 is shown, but the gas vent pipes 20 are provided corresponding to the gas vent ports 26, and in this apparatus, a total of four gas vent pipes 20 are provided. Draft 20 is installed. Further, these gas vent pipes 20 pass through the upper catalyst layer 14 and open above the treated water level 30 at the top of the tower. That is, the upper end of the degassing pipe 20 is located above the upper end opening of the treated water discharge pipe 16. The upper catalyst support plate 10 is disposed above the lower catalyst layer 8, and a space 32 is formed between the lower catalyst layer 8 and the upper catalyst support plate 10. .
このように、 本装置では、 触媒層を上下 2層 (下部触媒層 8および上部触媒層 1 4 ) に分けて反応塔 2内に配置してあり、 上部触媒層 1 4をバイパスするガス 抜き管 2 0が設けられている。  As described above, in this apparatus, the catalyst layer is divided into the upper and lower layers (the lower catalyst layer 8 and the upper catalyst layer 14) and arranged in the reaction tower 2, and the gas vent pipe bypassing the upper catalyst layer 14 is provided. 20 are provided.
このような装置において、 過酸化水素含有排水 2 8は、 反応塔 2下部に原水供 給管 4より供給される。 反応塔 2の下部には、 支持砂利層 6が設けられており、 過酸化水素含有排水は、 支持砂利層 6内において、 反応塔 2内底部全域に広がる c 上述のように、 反応塔 2中段には上部触媒層 1 4の支持板 1 0が設置され、 こ の支持板 1 0の下方には空間部 3 2が形成されているとともに、 この支持板 1 0 には前記のように下部触媒層 8より発生する酸素ガスを集気するためのガス抜き 口 2 6が設けられている。 そして、 ガス抜き口 2 6には反応塔 2上部の上部触媒 層 8より上にまで至るガス抜き管 2 0が接続されている。 従って、 このガス抜き 管 2 0は下部触媒層 8において発生した酸素ガスの一部または全部は、 支持板 1 0のガス抜き口 2 6からガス抜き管 2 0を経て上部触媒層 1 4の上方に至り、 上 部触媒層 1 4の触媒と接触させることなく系外へ排出される。 In such a device, the hydrogen peroxide-containing wastewater 28 is supplied from the raw water supply pipe 4 to the lower part of the reaction tower 2. A support gravel layer 6 is provided at the lower part of the reaction tower 2, and the hydrogen peroxide-containing wastewater spreads throughout the bottom of the reaction tower 2 in the support gravel layer 6 c as described above. A support plate 10 for the upper catalyst layer 14 is provided on the lower surface, a space 32 is formed below the support plate 10, and the lower catalyst 10 is provided on the support plate 10 as described above. A gas vent 26 for collecting oxygen gas generated from the layer 8 is provided. The gas vent port 26 is connected to a gas vent pipe 20 extending above the upper catalyst layer 8 above the reaction tower 2. Therefore, a part or all of the oxygen gas generated in the lower catalyst layer 8 passes through the gas vent port 26 of the support plate 10, passes through the gas vent pipe 20, and flows above the upper catalyst layer 14. And is discharged out of the system without contacting the catalyst in the upper catalyst layer 14.
また、 反応塔中段の支持板 1 0にはガス抜き口 2 6とは別に排水を上部触媒層 1 4に導くための集水口 2 4が設けられており、 発生ガスの一部または全部が除 かれた排水は、 この集水口 2 4を介して上部触媒層 1 4内に通水され、 排水中の 過酸化水素はさらに還元分解される。 上部触媒層 1 4において発生した酸素ガス は、 そのまま上方に排出される。 上部触媒層 1 4を通過した排水は塔上部の水面 3 0に達し、 処理水排出管 1 6より反応塔 2外へ排出される。 ガス抜き管 2 0を 通って水面上方へ導かれた下部触媒層 8からの酸素ガス、 および上部触媒層 1 4 からの酸素ガスは塔上部のガス排出口 1 8より反応塔 2外へ排出される。 The support plate 10 in the middle stage of the reaction tower is provided with a water collecting port 24 for guiding wastewater to the upper catalyst layer 14 separately from the gas venting port 26, and a part or all of the generated gas is removed. The drained water is passed through the water collecting port 24 into the upper catalyst layer 14, and the hydrogen peroxide in the drain is further reduced and decomposed. The oxygen gas generated in the upper catalyst layer 14 is discharged upward as it is. The wastewater that has passed through the upper catalyst layer 14 reaches the water surface 30 at the top of the tower, and is discharged out of the reaction tower 2 from the treated water discharge pipe 16. Oxygen gas from the lower catalyst layer 8 guided upward through the water surface through the gas vent pipe 20, and the upper catalyst layer 14 Oxygen gas is discharged out of the reaction tower 2 from the gas outlet 18 at the top of the tower.
本装置は、 過酸化水素含有排水を上向流にて処理する装置において、 反応塔内 で触媒を上下方向に 2層 (下部触媒層 8と上部触媒層 1 4 ) に分割して配置する とともに両層の間に空間部 3 2を形成し、 下部触媒層 8で発生した酸素ガスを上 部触媒層 1 4に接触させることなく反応塔 2外に排出する。 これにより、 上部触 媒層 1 4では下部触媒層 8で発生した酸素ガスの阻害を受けることなく触媒と過 酸化水素の接触が生じ、 結果として反応塔 2における過酸化水素除去率が向上す る。  This system treats wastewater containing hydrogen peroxide in an upward flow direction. In the reactor, the catalyst is divided into two layers (lower catalyst layer 8 and upper catalyst layer 14) in the vertical direction, and is arranged. A space 32 is formed between both layers, and oxygen gas generated in the lower catalyst layer 8 is discharged out of the reaction tower 2 without contacting the upper catalyst layer 14. As a result, the upper catalyst layer 14 makes contact between the catalyst and hydrogen peroxide without being hindered by the oxygen gas generated in the lower catalyst layer 8, and as a result, the hydrogen peroxide removal rate in the reaction tower 2 is improved. .
特に、 本装置では過酸化水素含有排水を上向流にて処理するので、 発生した酸 素ガスが各触媒層の上方に抜けやすい。 また、 発生した酸素ガスを排出するガス 抜き管 2 0を反応塔 2内に設置してある。 ガス抜き管 2 0を反応塔 2外に設置し た場合、 すなわちガス抜き管 2 0を反応塔 2の上部触媒層 1 4と下部触媒層 8と の間の周壁部に外から接続した場合に較べ、 下部触媒層で発生した酸素ガスが良 好に系外に排出される。  In particular, in this apparatus, the wastewater containing hydrogen peroxide is treated in an upward flow, so that the generated oxygen gas easily escapes above each catalyst layer. Further, a vent pipe 20 for discharging the generated oxygen gas is provided in the reaction tower 2. When the gas vent pipe 20 is installed outside the reaction tower 2, that is, when the gas vent pipe 20 is externally connected to the peripheral wall between the upper catalyst layer 14 and the lower catalyst layer 8 of the reaction tower 2, In comparison, the oxygen gas generated in the lower catalyst layer is discharged well out of the system.
なお、 本装置では、 支持板 1 0に設けるガス抜き口 2 6および集水口 2 4の数 とその設置場所は、 支持板 1 0の強度が十分保たれる範囲で任意に設定すること ができる。 この場合、 ガス抜き管 2 0ではガス上昇により水に対するエアリフト 効果が生じるため、 エアリフトにより支持板の下方の排水がガス抜き管を通って 上部水面に達しないように配管径を設計する必要がある。 また、 集水口 2 4は上 部触媒層 1 4の触媒が下方へ落下しないよう触媒の大きさよりも口径を小さくす るか、 あるいは網目状や櫛状のスクリーンを設置することが適当である。  In this device, the number of gas vents 26 and water collecting ports 24 provided on the support plate 10 and their locations can be arbitrarily set as long as the strength of the support plate 10 is sufficiently maintained. . In this case, since the gas rise causes an air lift effect on water in the gas vent pipe 20, it is necessary to design the pipe diameter so that the drain below the support plate does not reach the upper water surface through the gas vent pipe due to the air lift . In addition, it is appropriate that the water collecting port 24 has a diameter smaller than the size of the catalyst or a mesh-shaped or comb-shaped screen is provided so that the catalyst in the upper catalyst layer 14 does not fall downward.
なお、 支持板 1 0のガス抜き口 2 6の下端開口位置を集水口 2 4の下端開口位 置より上方に位置させることも好適である。 支持板 1 0を平板ではなく、 ガス抜 き口 2 6に向けて上方向かう形状 (ロートを逆さにしたような形状) としたり、 集水口 2 4周辺に下方に伸びるパイプ状の部材を取り付けたりすることによって、 ガス抜き口 2 6の下端位置を集水口 2 4より下方に位置させることができる。 (実験例)  It is also preferable that the lower end opening position of the gas vent port 26 of the support plate 10 is located above the lower end opening position of the water collecting port 24. The support plate 10 is not a flat plate but a shape that faces upward toward the gas vent 26 (shape of an inverted funnel), or a pipe-like member extending downward around the water intake 24 is attached. By doing so, the lower end of the gas vent 26 can be positioned below the water intake 24. (Experimental example)
以下に実験例を示す。  An experimental example will be described below.
図 3に模式的に示す実験装置 Aと、 図 4に模式的に示す実験装置 Bにより本発 明の効果を検証した。 すなわち、 同一形状の反応塔を A、 Bの 2系列用意し、 実 験機 Aでは本実施形態による中段でのガス抜きを実施し、 実験機 Bではガス抜き を行わず、 他の条件は全く同一にして模擬過酸化水素含有排水を通水した。 なお、 図 3、 4の実験機 Aおよび Bにおいて、 42は反応塔、 44は原水供給管、 46 は下部触媒層、 48は上層触媒支持板、 50は上部触媒層、 52は処理水排出管、 54は支持板 48のガス抜き口に接続されたガス抜き管 (実験機 Aのみに設置) 、 56は支持板 48に形成された集水口を示す。 また、 実験機 Aおよび Bの仕様を 下記に示す。 The experimental device A shown schematically in FIG. 3 and the experimental device B schematically shown in FIG. The effect of Ming was verified. That is, two sets of reaction towers of the same shape were prepared, A and B. Experimental apparatus A degassed in the middle stage according to the present embodiment, experimental apparatus B did not degas, and other conditions were completely different. Simulated hydrogen peroxide-containing wastewater was passed in the same manner. In experimental machines A and B shown in Figs. 3 and 4, reference numeral 42 denotes a reaction tower, 44 denotes a raw water supply pipe, 46 denotes a lower catalyst layer, 48 denotes an upper catalyst support plate, 50 denotes an upper catalyst layer, and 52 denotes a treated water discharge pipe. Numeral 54 denotes a gas vent pipe connected to the gas vent of the support plate 48 (installed only in the experimental machine A), and numeral 56 denotes a water collecting port formed in the support plate 48. The specifications of experimental units A and B are shown below.
実験機 A  Experiment machine A
ガス抜き機構:あり  Degassing mechanism: Yes
ガス抜き機構仕様  Degassing mechanism specifications
ガス抜き口 : 1個 (支持板中央、 口径 15 mm)  Gas vent port: 1 piece (center of support plate, diameter 15 mm)
実験機 B  Experiment machine B
ガス抜き機構:なし  Degassing mechanism: None
実験機 Aおよび; Bの共通仕様  Common specifications for experimental units A and B
反応塔径: 70mm  Reaction tower diameter: 70mm
使用過酸化水素分解触媒:マンガン担持触媒  Hydrogen peroxide decomposition catalyst used: manganese supported catalyst
触媒充填高:上下各 500mm  Catalyst filling height: 500mm each for upper and lower
触媒充填量:上下各 192mL  Catalyst filling amount: 192mL each for upper and lower
集水口 : 6個 (口径 2 mm)  Water inlets: 6 (diameter 2 mm)
通水量: 770 mL/h r、 1540 mL/h r 3080 mL/h r 通水速度: S V= 2/h r、 4/h r 8/hr  Flow rate: 770 mL / hr, 1540 mL / hr r 3080 mL / hr Flow rate: SV = 2 / hr, 4 / hr 8 / hr
模擬排水:過酸化水素濃度: 2000 Omg/L (純水に試薬の過酸化水素水 溶液を溶解、 水酸化ナトリウム水溶液にて pH= 10. 5に調整) 上記比較実験により得られたそれそれの実験機の処理水過酸化水素濃度および 過酸化水素除去率を表 1に示す。 表 1に示すように、 実験機 Aの処理水過酸化水 素濃度および過酸化水素除去率は実験機 Bのそれらを各通水条件においてすベて 上回った。 すなわち、 下部触媒層から生じた酸素ガスの一部または全部を上部触 媒層に達しないよう反応塔中段から系外に導くことにより、 同一の触媒量および 通水条件において、 処理水水質および過酸化水素除去率が向上する とが確認さ れた。 Simulated wastewater: Hydrogen peroxide concentration: 2000 Omg / L (Dissolve the reagent hydrogen peroxide solution in pure water, adjust to pH = 10.5 with sodium hydroxide aqueous solution) Table 1 shows the hydrogen peroxide concentration and the hydrogen peroxide removal rate of the treated water of the experimental machine. As shown in Table 1, the concentration of hydrogen peroxide in the treated water and the removal rate of hydrogen peroxide in Experimental Unit A were all higher than those in Experimental Unit B in each water flow condition. That is, by guiding a part or all of the oxygen gas generated from the lower catalyst layer to the outside of the system from the middle stage of the reaction tower so as not to reach the upper catalyst layer, the same catalyst amount and It was confirmed that the quality of the treated water and the removal rate of hydrogen peroxide were improved under the water flow conditions.
表 1 table 1
通水結果 (過酸化水素測定下限: 0. l mg/L) Water flow results (lower limit of hydrogen peroxide measurement: 0.1 mg / L)
Figure imgf000010_0001
Figure imgf000010_0001
以上のように、 本実施形態の過酸化水素含有排水処理装置は、 過酸化水素分解 触媒と過酸化水素との接触効率を高めて、 装置の小型化、 省スペース、 設備費の 低減を図ることができる。  As described above, the hydrogen peroxide-containing wastewater treatment device of the present embodiment is intended to increase the contact efficiency between the hydrogen peroxide decomposition catalyst and hydrogen peroxide, to reduce the size of the device, save space, and reduce equipment costs. Can be.

Claims

請求の範囲 The scope of the claims
1 . 過酸化水素分解触媒を充填した反応塔内に過酸化水素含有排水を上向流で通 水し、 過酸化水素を酸素と水に分解する処理装置であって、 前記過酸化水素分解 触媒は反応塔内において上下方向に複数層に分割されて配置されているとともに、 少なくとも最下方の触媒層で発生した酸素ガスをそれより上方の触媒層に接触さ せることなく反応塔外に排出するガス抜き管が反応塔内に設置されている過酸化 水素含有排水処理装置。 1. A treatment device for flowing hydrogen peroxide-containing wastewater in an upward flow through a reaction tower filled with a hydrogen peroxide decomposition catalyst to decompose hydrogen peroxide into oxygen and water, wherein the hydrogen peroxide decomposition catalyst Is divided into a plurality of layers in the vertical direction in the reaction tower, and at least the oxygen gas generated in the lowermost catalyst layer is discharged out of the reaction tower without contacting the catalyst layer above it A wastewater treatment device containing hydrogen peroxide with a gas vent tube installed in the reaction tower.
2 . 請求項 1に記載の過酸化水素含有排水処理装置であって、 2. The hydrogen peroxide-containing wastewater treatment device according to claim 1,
各触媒層で発生したガスをそれぞれそれより上方の触媒層に接触させることな く反応塔外に排出するガス抜き管が反応塔内に設置されている過酸化水素含有排 水処理装置。  A hydrogen peroxide-containing wastewater treatment apparatus in which a gas vent pipe for discharging gas generated in each catalyst layer to the outside of the reaction tower without contacting the catalyst layer above the catalyst layer is installed in the reaction tower.
3 . 請求項 2に記載の過酸化水素含有排水処理装置であって、 3. The hydrogen peroxide-containing wastewater treatment apparatus according to claim 2,
前記ガス抜き管の下端は、 前記ガスを接触させない上方の触媒層を支持する支 持板にその下端が支持されている過酸化水素含有排水処理装置。  A hydrogen peroxide-containing wastewater treatment device, wherein a lower end of the degassing pipe is supported at a lower end by a support plate that supports an upper catalyst layer that does not contact the gas.
4 . 請求項 3に記載の過酸化水素含有排水処理装置であって、 4. The wastewater treatment device containing hydrogen peroxide according to claim 3,
前記ガス抜き管の下端は、 前記支持板に設けられたガス抜き口に接続されてい る過酸化水素含有排水処理装置。  The hydrogen peroxide-containing wastewater treatment device, wherein a lower end of the gas vent pipe is connected to a gas vent provided in the support plate.
5 . 請求項 4に記載の過酸化水素含有排水処理装置であって、 5. The wastewater treatment device containing hydrogen peroxide according to claim 4, wherein
前記最下方の触媒層の上端と前記支持板の間には、 空間があり、 この空間を介 し、 前記最下方の触媒層において発生したガスが集められ、 前記ガス抜き管に集 められる過酸化水素含有排水処理装置。 There is a space between the upper end of the lowermost catalyst layer and the support plate, through which gas generated in the lowermost catalyst layer is collected, and hydrogen peroxide collected in the degassing pipe Contained wastewater treatment equipment.
6 . 請求項 4に記載の過酸化水素含有排水処理装置であって、 6. The wastewater treatment device containing hydrogen peroxide according to claim 4,
前記支持板には、 下方からの排水を上方の触媒層に導く集水口が設けられてい る過酸化水素含有排水処理装置。  A hydrogen peroxide-containing wastewater treatment device, wherein the support plate is provided with a water collection port for guiding wastewater from below to an upper catalyst layer.
7 . 請求項 4に記載の過酸化水素含有排水処理装置であって、 7. The hydrogen peroxide-containing wastewater treatment apparatus according to claim 4,
前記ガス抜き管の上端は、 反応塔内の水面上において開口している過酸化水素 含有排水処理装置。  A hydrogen peroxide-containing wastewater treatment device, wherein an upper end of the gas vent pipe is open on a water surface in a reaction tower.
PCT/JP2002/013353 2001-12-21 2002-12-20 Apparatus for treating waste water containing hydrogen peroxide WO2003053864A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR10-2003-7007697A KR20040067838A (en) 2001-12-21 2002-12-20 Apparatus for treating drainage containg hydrogen perdxide
AU2002354263A AU2002354263A1 (en) 2001-12-21 2002-12-20 Apparatus for treating waste water containing hydrogen peroxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001390090A JP3894788B2 (en) 2001-12-21 2001-12-21 Wastewater treatment equipment containing hydrogen peroxide
JP2001-390090 2001-12-21

Publications (1)

Publication Number Publication Date
WO2003053864A1 true WO2003053864A1 (en) 2003-07-03

Family

ID=19188334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/013353 WO2003053864A1 (en) 2001-12-21 2002-12-20 Apparatus for treating waste water containing hydrogen peroxide

Country Status (6)

Country Link
JP (1) JP3894788B2 (en)
KR (1) KR20040067838A (en)
CN (1) CN1275876C (en)
AU (1) AU2002354263A1 (en)
TW (1) TWI226311B (en)
WO (1) WO2003053864A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5045099B2 (en) * 2004-03-31 2012-10-10 栗田工業株式会社 Ultrapure water production apparatus and operation method of ultrapure water production apparatus
JP2006087343A (en) * 2004-09-24 2006-04-06 Kawakubo Seisakusho:Kk Method for sterilizing and washing small fish or the like and apparatus therefor
JP2006087342A (en) * 2004-09-24 2006-04-06 Kawakubo Seisakusho:Kk Method for sterilizing and washing small fish or the like and apparatus therefor
JP4747357B2 (en) * 2004-11-02 2011-08-17 株式会社カワクボ製作所 Method and apparatus for sterilizing and cleaning small fish
KR100739825B1 (en) * 2005-09-23 2007-07-13 한국과학기술원 Multiple Stage Catalytic Reactor for Decomposition of Hydrogen Peroxide
JP4919318B2 (en) * 2005-12-07 2012-04-18 オルガノ株式会社 Functional group introduction reaction column, functional group introduction apparatus, and functional group introduction method
JP4860008B1 (en) * 2011-06-02 2012-01-25 株式会社アサカ理研 Hydrogen peroxide decomposition apparatus and hydrogen peroxide decomposition method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136482A (en) * 1984-12-06 1986-06-24 Osamu Mihara Water purification apparatus
JPS6227090A (en) * 1985-07-26 1987-02-05 Japan Organo Co Ltd Method and apparatus for removing hydrogen peroxide
JPH10314760A (en) * 1997-05-16 1998-12-02 Japan Organo Co Ltd Hydrogen peroxide removing apparatus and method for treating wastewater-containing hydrogen peroxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136482A (en) * 1984-12-06 1986-06-24 Osamu Mihara Water purification apparatus
JPS6227090A (en) * 1985-07-26 1987-02-05 Japan Organo Co Ltd Method and apparatus for removing hydrogen peroxide
JPH10314760A (en) * 1997-05-16 1998-12-02 Japan Organo Co Ltd Hydrogen peroxide removing apparatus and method for treating wastewater-containing hydrogen peroxide

Also Published As

Publication number Publication date
AU2002354263A1 (en) 2003-07-09
TWI226311B (en) 2005-01-11
KR20040067838A (en) 2004-07-30
TW200301227A (en) 2003-07-01
JP3894788B2 (en) 2007-03-22
JP2003190972A (en) 2003-07-08
CN1633395A (en) 2005-06-29
CN1275876C (en) 2006-09-20

Similar Documents

Publication Publication Date Title
KR100686191B1 (en) Plant for wastewater treatment
JP3233558B2 (en) Hydrogen peroxide removal equipment
WO2003053864A1 (en) Apparatus for treating waste water containing hydrogen peroxide
JP6278796B2 (en) Deodorization device
JP2006289153A (en) Method of cleaning sewage and apparatus thereof
CN114538596B (en) Heterogeneous Fenton wastewater treatment device
KR100615434B1 (en) The cylindrical reactor in a body for dissolving ozone in water and separating sludge by floatation
JP4106128B2 (en) Upflow anaerobic treatment apparatus and treatment method
CN206051655U (en) Continuous operating device for catalyzing and oxidating ozone
JP3087914B2 (en) Aeration treatment equipment
JP4608726B2 (en) Biological treatment equipment
JP3214291B2 (en) Sewage septic tank
KR100469317B1 (en) System for Advanced Wastewater Treatment using ozone
JP4710168B2 (en) Pressurized fluidized bed wastewater treatment system
JP2002239589A (en) Anaerobic treatment apparatus by ascending flow
KR100592039B1 (en) Process and plant for wastewater treatment
JPH10211487A (en) Activated carbon treatment apparatus
JP3216755B2 (en) Descending ozone reaction tank
JP2005007378A (en) Charcoal type water purification device
JP2001047085A (en) Anaerobic waste water treatment apparatus
JP2003290782A (en) Catalytic reaction apparatus
CN107215946B (en) Miniature water treatment ozone reaction unit
JP2002301491A (en) Waste water disposal apparatus and method of transferring liquid in the apparatus
JP2002263683A (en) Upward stream anaerobic processor
KR200369990Y1 (en) The cylindrical reactor in a body for dissolving ozone in water and separating sludge by floatation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 02805172.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020037007697

Country of ref document: KR

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020037007697

Country of ref document: KR

122 Ep: pct application non-entry in european phase