JP3894034B2 - 汚泥の濃縮方法 - Google Patents

汚泥の濃縮方法 Download PDF

Info

Publication number
JP3894034B2
JP3894034B2 JP2002125445A JP2002125445A JP3894034B2 JP 3894034 B2 JP3894034 B2 JP 3894034B2 JP 2002125445 A JP2002125445 A JP 2002125445A JP 2002125445 A JP2002125445 A JP 2002125445A JP 3894034 B2 JP3894034 B2 JP 3894034B2
Authority
JP
Japan
Prior art keywords
sludge
concentrated
concentration
membrane
concentrated sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002125445A
Other languages
English (en)
Other versions
JP2003320400A (ja
Inventor
義寿 伊藤
卓也 常住
慎一 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2002125445A priority Critical patent/JP3894034B2/ja
Publication of JP2003320400A publication Critical patent/JP2003320400A/ja
Application granted granted Critical
Publication of JP3894034B2 publication Critical patent/JP3894034B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Description

【0001】
【発明の属する技術分野】
本発明は汚泥の濃縮方法に係り、特に汚泥を膜分離処理して透過液と濃縮汚泥とに分離する汚泥の濃縮方法に関する。
【0002】
【従来の技術】
廃水処理や浄水処理の分野では、生物学的や物理化学的な処理によって発生した汚泥を膜分離処理して透過液と濃縮汚泥とに分離することが行われている。濃縮のための膜分離装置としては、濃縮汚泥を満たした分離槽内に膜モジュールを浸漬したのものが知られている。この浸漬式の膜分離装置においては、定量の原汚泥を分離槽に連続的に供給しつつ、膜モジュールから吸引する透過液の流量を一定に保持する運転が一般的に行われている。分離槽からオーバーフローして排出される濃縮汚泥の量も原汚泥と透過液の差分として一定となる運転であった。濃縮汚泥の汚泥濃度は原汚泥量と濃縮汚泥量との比である濃縮倍率によって定まる。したがって、上記のような濃縮倍率が一定の運転では原汚泥の汚泥濃度が変動した場合には濃縮汚泥の汚泥濃度も比例して変動する。
【0003】
【発明が解決しようとする課題】
上述の濃縮方法によれば量的な観点からは安定な処理が可能であるが、何らかの原因によって原汚泥の汚泥濃度が高くなった時には、濃縮汚泥の汚泥濃度も高くなり、濾過膜の目詰まりなどを誘発して膜分離装置の運転操作上の不具合を招く。また、濃縮汚泥は後段処理として脱水、天日乾燥、焼却などの処理を受けるが、濃縮汚泥の汚泥濃度が変動すると後段処理の負荷や運転が不安定となり、処理性能や効率を低下させるという問題点があった。
【0004】
このような問題点を解決するために、濃縮汚泥の汚泥濃度を計測し、その計測結果に基づいて濃縮汚泥の汚泥濃度が目標値となるように原汚泥や透過液の流量をフィードバック制御することが考えられる。しかしながら、このような方法はフィードバック制御を実現するための装置構成が複雑で高価になるとともに、原汚泥の汚泥濃度の変動が大きい場合には膜分離装置の負荷も追随して変動することになり、運転の不安定を招く。
本発明の目的は、上記従来技術の問題点を改善し、原汚泥の汚泥濃度の変動が大きい場合でも、複雑なフィードバック制御を行うことなく膜分離装置の負荷を安定に維持し、かつ、最終的に系外に排出する濃縮汚泥の汚泥濃度を一定の目標値にすることができる汚泥の濃縮方法を提供することにある。
【0005】
【課題を解決するための手段】
上記の課題を解決するために、本発明に係る汚泥の濃縮方法は、汚泥供給槽からの供給汚泥を膜分離装置に導き膜分離処理して透過液と濃縮汚泥とに分離する汚泥の濃縮方法であって、前記膜分離装置から排出される濃縮汚泥の少なくとも一部を前記汚泥供給槽に返送するとともに、残部を系外に送り出す循環運転を実施し、この循環運転の結果、前記濃縮汚泥の汚泥濃度が上昇して上限値に達した時には膜分離装置から排出される濃縮汚泥の全量を系外に送り出す排出運転に切り替え、この排出運転の結果、前記濃縮汚泥の汚泥濃度が下降して下限値に達した時には前記循環運転に切り替え、循環運転と排出運転とを交互に繰り返すことを特徴とする。なお、本発明において「上限値(下限値)に達した時」の「達した時」という用語は、「その値に接近した時」「丁度、その値となった時」「その値を超えた時」のいずれにも理解し得るものとする。
【0006】
また、本発明に係る汚泥の濃縮方法は上記の構成において、前記循環運転と排出運転においては供給汚泥と透過液の流量を一定に保持し、原汚泥の処理量の調節を前記膜分離装置の断続運転によって実行することを特徴とする。
また、本発明に係る汚泥の濃縮方法は上記の構成において、前記循環運転と排出運転の運転時間比が1/10〜1/2となるように供給汚泥の設定流量を調節することを特徴とする。
【0007】
また、本発明に係る汚泥の濃縮方法は上記の構成において、前記膜分離装置は分離槽と、この分離槽内の濃縮汚泥に浸漬された膜モジュールと、濃縮汚泥の液面を一定に保持する濃縮汚泥の排出手段とを具備していることを特徴とする。
【0008】
【発明の実施の形態】
図1は本発明に係る汚泥の濃縮方法を実施するための装置系統図である。図1において汚泥供給槽10には管路12から濃縮対象物である原汚泥が流入する。また、この汚泥供給槽10には管路14から後述するように濃縮汚泥が間欠的に返送される。汚泥供給槽10は管路16によって膜分離装置20と接続され、汚泥供給槽10内の汚泥は管路16の途中に設けた供給ポンプ18によって、膜分離装置20に供給される。本発明においては、このような汚泥供給槽10から膜分離装置20に供給される汚泥を供給汚泥と定義し、前記原汚泥と区別する。膜分離装置20は主として分離槽22と、この分離槽22内の濃縮汚泥に浸漬された膜モジュール24とからなる。膜モジュール24の二次側には管路26が接続され、この管路26に設けた吸引ポンプ28によって、膜モジュール24の濾過膜を透過した透過液が管路26から抜き出され、系外に排出される。また、膜分離によって濃縮された分離槽22内の濃縮汚泥は、その液面が一定に保持されつつ、オーバーフロー分が管路30から排出される。
【0009】
膜モジュール24の膜材としては有機材料又はセラミック材料で形成された精密濾過膜又は限外濾過膜が用いられる。膜モジュール24の型式としては浸漬式の中空糸膜、平膜が好ましく、特に円盤状の平膜を回転させるようにした回転平膜式の膜モジュールが汚泥の濃縮用に好都合である。しかしながら、本発明に係る膜分離装置は上記の浸漬式の膜モジュールを用いたものに限らず、例えば管型の膜モジュールを用いたものにも適用可能である。
【0010】
管路30から排出された濃縮汚泥は汚泥溜32を経由したのち、排出ポンプ34によって管路36から前記汚泥供給槽10又は汚泥貯槽38のいずれか一方に送出される。すなわち、管路36は循環用の管路14と排出用の管路40とに分岐しており、管路14には切替弁15が、管路40には切替弁42が設けられている。この切替弁15と切替弁42とを操作することによって、管路36からの濃縮汚泥は管路14を介して汚泥供給槽10に返送されるか、又は管路42を介して汚泥貯槽38に排出される。
切替弁15と切替弁42の操作は前記分離槽22に配設した汚泥濃度計44の検出信号を取り込む制御器46によって制御される。なお、この制御器46は膜分離装置20の運転状況に応じて、供給汚泥の設定流量を調節する信号を供給ポンプ18に出力する機能を備えている。
また、汚泥供給槽10には液面計48が配設され、この液面計48の検出信号を取り込んだ制御器50によって、供給ポンプ18、吸引ポンプ28及び排出ポンプ34の稼動、停止が制御される。なお、分離槽22内の濃縮汚泥の液面を一定に保持する濃縮汚泥の排出手段としては前記したオーバーフローによる方法に限らない。分離槽22内に設けた液面計の指示値が一定となるように排出ポンプ34による濃縮汚泥の引き抜き量を制御するようにしてもよい。
【0011】
上記の構成において、汚泥供給槽10には管路12から原汚泥が連続的又は間欠的に流入する。また、汚泥供給槽10には管路14から濃縮汚泥が間欠的に流入する。これらの原汚泥と濃縮汚泥が汚泥供給槽10内で混合し、原汚泥よりは汚泥濃度が比較的高い濃度に調整された供給汚泥が膜分離装置20に供給される。膜分離装置20では供給される供給汚泥の流量及び膜モジュール24から吸引する透過液の流量を一定に保持する運転をする。その結果、分離槽22をオーバーフローして排出される濃縮汚泥の流量も一定に保持される。なお、分離槽22内の濃縮汚泥の汚泥濃度は汚泥濃度計44によって連続的に又は適当な制御間隔で検出され、制御器46にその検出信号が送信される。
【0012】
上記の運転において、切替弁15を開、切替弁42を閉とし、分離槽22から排出される濃縮汚泥の全量を汚泥供給槽10に返送する循環運転をしたとする。この循環運転の結果、供給汚泥の濃度が徐々に上昇し、それにつれて分離槽22内の濃縮汚泥の汚泥濃度も徐々に上昇する。汚泥濃度計44によって検出される濃縮汚泥の汚泥濃度が上限値に達すると、その信号を受けた制御器46は切替信号を発信して切替弁15を閉、切替弁42を開とする。
その結果、分離槽22から排出される濃縮汚泥の全量を汚泥貯槽40に送り出し系外に排出する排出運転に切り替わる。この排出運転の結果、汚泥供給槽10内の汚泥濃度が比較的高い汚泥が管路12から流入する原汚泥によって希釈され、供給汚泥の濃度が徐々に下降し、それにつれて分離槽22内の濃縮汚泥の汚泥濃度も徐々に下降する。汚泥濃度計44によって検出される濃縮汚泥の汚泥濃度が下限値に達すると制御器46は切替信号を発信して循環運転に切り替える。
以降、上記の循環運転と排出運転を交互に繰り返す運転を継続する。この際、制御器46における上限値と下限値の設定を目標とする濃縮汚泥の汚泥濃度に近接させることにより、系外に排出する濃縮汚泥の汚泥濃度を上限値と下限値の範囲内の安定した値に維持することができる。しかも、この間の供給汚泥、透過液及び濃縮汚泥の流量がいずれも一定に保持されるので運転の単純化と安定を図ることができる。
なお、上記の運転では流入する原汚泥の流量Q1と、系外に排出される透過液と濃縮汚泥の合計流量Q2は各時間帯でアンバランスとなる。したがって、本発明においては流量Q2を大き目に設定しておき、この時のアンバランス量=((流量Q2−流量Q1)×時間)を膜分離装置の断続運転によって吸収することが好ましい。すなわち、図1において、管路12から流入する原汚泥の流量Q1に対して、供給汚泥の流量を十分に大きく設定し、系外に排出される透過液と濃縮汚泥の合計流量Q2が゛、流量Q2>流量Q1となるように運転する。その結果、汚泥供給槽10の汚泥液面が徐々に低下する。汚泥液面の下限値を液面計48で検出し、その信号に基づいて制御器50では供給ポンプ18、吸引ポンプ28及び排出ポンプ34の稼動を停止させる。この膜分離装置の運転停止中に原汚泥が゛汚泥供給槽10に流入することによって汚泥液面が゛回復し、汚泥液面の上限値を液面計48が検出すると制御器50は供給ポンプ18、吸引ポンプ28及び排出ポンプ34の起動させ、膜分離処理を再開する。
【0013】
次に、いろいろなモデルケースのマスバランスについて説明する。図2は第1のモデルケースのマスバランス図である。図2(イ)は汚泥濃度が1.0%の原汚泥が流量100m3/hrで一日当たり24時間連続的に流入し、この原汚泥を連続的に膜分離処理して汚泥濃度が4.0%の濃縮汚泥を得る場合の基本マスバランスを示している。この場合、原汚泥が4倍に濃縮される結果、濃縮汚泥と透過液の流量はそれぞれ25m3/hr、75m3/hrとなる。図2(ロ)は原汚泥が(イ)と同一の時に本発明に係る方法を実施した場合のマスバランスを例示したものである。本例においては汚泥供給槽10からの供給汚泥の流量を原汚泥が流量よりも十分に多い120m3/hrとし、透過液の流量も上記基本マスバランスでの透過液の流量よりも多い80m3/hrに設定して運転する。その結果、膜分離装置から排出される濃縮汚泥の流量は40m3/hrとなり、濃縮倍率が3倍の運転となる。この濃縮倍率によって汚泥濃度が4.0%の濃縮汚泥を得るためには供給汚泥の汚泥濃度を原汚泥よりも十分に高い4/3=1.33%に調整する必要がある。そのために、濃縮汚泥の循環運転と排出運転の切り替えが行われる。
【0014】
実際の制御では濃縮汚泥の汚泥濃度の上限値を4.1%、下限値を3.9%とし、濃縮汚泥の汚泥濃度が4.1%に達すると循環運転から排出運転に切り替える。また、排出運転の結果、濃縮汚泥の汚泥濃度が3.9%に達すると循環運転に切り替える。この循環運転と排出運転の切り替え制御を繰り返すことによって、供給汚泥の汚泥濃度は必然的に1.33%に収束するとともに、系外に排出する濃縮汚泥の汚泥濃度を平均4%の安定した値に維持することができる。また、透過液の流量を上記基本マスバランスでの透過液の流量よりも多くしたことによる処理量の調節は、前記した汚泥供給槽10での汚泥液面の制御に基づく膜分離装置の断続運転によって容易に実行することができる。その結果、膜分離装置の稼動時間は制御器50による制御によって22.5hr/日となり、制御器46による制御によって濃縮汚泥の循環運転時間は7.5hr/日、排出運転時間は15hr/日となる。
【0015】
図3は第2、第3のモデルケースのマスバランス図である。図3(イ)は原汚泥の汚泥濃度が0.8%に低下した場合に上記と同様の運転をした時のマスバランスを示したものである。この場合には、膜分離装置の稼動時間が24hr/日のフル稼動となり、濃縮汚泥の循環運転時間は12hr/日、排出運転時間は12hr/日となる。
【0016】
図3(ロ)は原汚泥の汚泥濃度が1.2%に上昇した場合に上記と同様の運転をした時のマスバランスを示したものである。この場合には、膜分離装置の稼動時間が21hr/日となり、濃縮汚泥の循環運転時間は3hr/日、排出運転時間は18hr/日となる。
【0017】
上述の第1〜第3のモデルケースから明らかなように、本実施の形態によれば原汚泥の汚泥濃度が0.8〜1.2%の範囲で変動した場合でも、膜分離装置では供給汚泥の汚泥濃度を常に約1.33%の安定した値に維持しつつ、濃縮倍率が3倍の定量運転を実施でき、系外に排出する濃縮汚泥の汚泥濃度を常に平均4%(上限4.1%、下限3.9%)の安定した値にすることができる。汚泥濃度の変動は濃縮汚泥の循環運転/排出運転の切り替え制御と膜分離装置の断続運転とによって吸収することができる。このため、汚泥濃度の変動に対して原汚泥や透過液の流量制御などの複雑な制御を必要とせず、きわめて安定した汚泥の濃縮操作を実施できる。
【0018】
図4は第1のモデルケースの運転状況を各項目別にタイムチャートで表示したものである。(イ)は供給汚泥の流量を示し、途中で流量がゼロの時間帯は膜分離装置20の運転停止を示す。なお、破線は原汚泥の流量を示す。(ロ)は透過液の流量を示す。(ハ)は濃縮汚泥の流量を示し、中央線の上側は排出運転、下側は循環運転を示す。(ニ)は濃縮汚泥の汚泥濃度を示し、濃縮汚泥の循環運転時には汚泥濃度が上昇し、排出運転時には汚泥濃度が低下する。(ホ)は汚泥供給槽10の汚泥液面を示し、濃縮汚泥の循環運転時には液面が上昇し、排出運転時には液面が下降する。排出運転の時間が循環運転の2倍であるため、液面は切り替え運転の度に下降し、液面制御の下限値Lとなる。すると膜分離装置20が運転停止する。この運転停止中にも原汚泥が汚泥供給槽10に流入するので液面は急上昇する。液面制御の上限値Hに達すると膜分離装置20の運転が再開される。以下、同様の運転パターンを繰り返す。実際の運転では原汚泥の汚泥濃度や流量が時々刻々に変動するので、タイムチャートは図4に示したものよりもかなり乱れる。
【0019】
図5は第4、第5のモデルケースのマスバランス図であり、第1のモデルケース対して供給汚泥の流量のみを変化させた場合を示したものである。図5(イ)の第4のモデルケースは供給汚泥の流量を少なくして原汚泥の流量に近づけた場合である。すなわち、原汚泥の汚泥濃度1.0%、流量100m3/hrに対して、供給汚泥の流量を110m3/hr、透過液の流量を80m3/hr、濃縮汚泥の汚泥濃度4.0%の運転を実施すると、供給汚泥の汚泥濃度が1.09%、濃縮倍率が3.67、濃縮汚泥の循環運転時間は2.5hr/日、排出運転時間は20hr/日となる。このモデルケースにおける汚泥供給槽10の汚泥液面の変動状況を図6(ロ)に例示する。なお、図6(イ)は比較のために図4(ホ)の第1のモデルケースを再掲したものである。
一方、図5(ロ)の第5のモデルケースは供給汚泥の流量を多くした場合である。すなわち、原汚泥の汚泥濃度1.0%、流量100m3/hrに対して、供給汚泥の流量を140m3/hr、透過液の流量を80m3/hr、濃縮汚泥の汚泥濃度4.0%の運転を実施すると、供給汚泥の汚泥濃度が1.71%、濃縮倍率が2.33、濃縮汚泥の循環運転時間は12.5hr/日、排出運転時間は10hr/日となる。このモデルケースにおける汚泥供給槽10の汚泥液面の変動状況を図6(ハ)に例示する。
この比較結果からも明らかなように、供給汚泥の流量をなるべく原汚泥の流量に近づけた方が、循環運転と排出運転との切り替え頻度を少なくすることができ、安定運転につながる。ただし、供給汚泥の流量を原汚泥に接近させ過ぎると、原汚泥の流量変動や汚泥濃度変動に追随して適正運転を維持することが難しくなり、透過液の流量制御を含む複雑な制御が゛必要になるので好ましくない。したがって、適正運転を維持する方法として、前記制御器46では直前の循環運転時間(A)と排出運転時間(B)とを記憶しておき、両者の比A/Bが1/10〜1/2の範囲に入るように供給汚泥の流量を調節することが好ましい。すなわち、比A/Bが1/10未満となった時は供給汚泥の流量が原汚泥に接近し過ぎているので、供給汚泥の設定流量を少し増加させる。また、比A/Bが1/2を超えた時は供給汚泥の流量が多すぎるので、供給汚泥の設定流量を少し減少させる。
【0020】
図7は本発明の他の実施形態を説明するための装置系統図である。図7において図1と同一に符号を付した要素は、図1に示したものと同様の要素であるので説明を省略する。図7において循環用の管路14にはバイパス管路52が分岐し、このバイパス管路52の他端は排出用の管路40に合流している。循環用の管路14の分岐部には流量調節弁12A、バイパス管路52には流量調節弁52Aが゛設けられている。上記の構成において、流量調節弁12Aと流量調節弁52Aの開度をそれぞれ調節し、循環運転時においても、例えば半量の濃縮汚泥をバイパス管路52と排出用の管路40を介して系外に排出させる。
【0021】
図8は第6のモデルケースのマスバランス図である。すなわち、原汚泥の汚泥濃度1.0%、流量100m3/hrに対して、供給汚泥の流量を120m3/hr、透過液の流量を80m3/hr、濃縮汚泥の汚泥濃度4.0%とし、循環運転時にも半量の濃縮汚泥を系外に排出する運転を実施するケースである。このケースでは供給汚泥の汚泥濃度が1.33%、濃縮汚泥の循環運転時間は15hr/日、排出運転時間は7.5hr/日となる。このモデルケースにおける汚泥供給槽10の汚泥液面の変動状況を図6(ニ)に例示する。このように、循環運転時に濃縮汚泥の一部を系外に排出する運転を実施すると、循環運転と排出運転との切り替え頻度をす少なくすることができ、安定運転につながる。また、系外に排出される濃縮汚泥の流量が平均化するので、後段の汚泥貯槽38に対して有利に作用する場合がある。
【0022】
前記各実施形態では、分離槽22に設けた汚泥濃度計44の検出値に基づき制御器46によって循環運転と排出運転の切り替えを自動制御する場合について説明した。しかしながら、本発明はこれに限らず、汚泥濃度計は分離槽22以外の例えば汚泥溜32又は管路36に配置してもよい。
【0023】
次に、異常時の対策について説明する。すなわち、原汚泥の汚泥濃度が異常に高いなどの原因によって、前記排出運転によっては濃縮汚泥の汚泥濃度が下降せず上昇し続けるという事態が考えられる。本発明ではこのような事態に備えて、濃縮汚泥の汚泥濃度が前記の上限値よりもさらに高濃度な第2の上限値に達した時には押出運転を実施るように制御することが好ましい。押出運転とは膜分離装置20では膜分離処理を停止しつつ、供給される供給汚泥に相当する量の濃縮汚泥を膜分離装置20から排出させ系外に送り出す運転である。この押出運転では吸引ポンプ28の稼動を停止することによって、膜分離処理を停止する。この停止状態で汚泥供給装10からの供給汚泥を膜分離装置20に供給し続ける。すると供給された供給汚泥に相当する量の濃縮汚泥が分離槽22から押出される。この押出された濃縮汚泥を系外に送り出せば、分離槽22内の濃縮汚泥は供給汚泥に順次置換されて、汚泥濃度が急速に正常値に回復する。
【0024】
図9はこのような本発明においてこのような異常時対策用の押出運転を付加した場合の制御手順を示すフローチャートである。循環運転からスタートし、濃縮汚泥の汚泥濃度Cが上限値▲1▼未満であれば循環運転を継続し、上限値▲1▼以上になると排出運転に切り替える。排出運転によって汚泥濃度Cが下限値未満になると循環運転に切り替え、上限値▲2▼未満であれば排出運転を継続する。万一、排出運転よっても汚泥濃度Cが下降せずに上限値▲2▼以上となった時には押出運転に切り替える。押出運転によって汚泥濃度Cが上限値▲2▼未満になると排出運転に切り替える。
【0025】
【発明の効果】
上述のとおり、本発明に係る汚泥の濃縮方によれば、原汚泥の汚泥濃度の変動が大きい場合でも、複雑なフィードバック制御を行うことなく膜分離装置の負荷を安定に維持し、かつ、最終的に系外に排出する濃縮汚泥の汚泥濃度を一定の目標値にすることができる。特に循環運転と排出運転においては供給汚泥と透過液の流量を一定に保持し、原汚泥の汚泥濃度や流入量の変動に基づく処理量の調節を膜分離装置の断続運転によって実行すると、より一層、運転の安定化と制御の簡素化を図ることができる。また、循環運転の運転時間と排出運転の運転時間との比が1/10〜1/2となるように供給汚泥の設定流量を調節すると、循環運転と排出運転の切り替え頻度を少なくすることができ、より一層、運転の安定化を図ることができる。また、循環運転時に濃縮汚泥の一部を系外に排出する運転を実施すると、循環運転と排出運転との切り替え頻度をす少なくすることができ、同様に安定運転につながる。
【図面の簡単な説明】
【図1】本発明に係る汚泥の濃縮方法を実施するための装置系統図。
【図2】第1のモデルケースのマスバランス図。
【図3】第2、第3のモデルケースのマスバランス図。
【図4】第1のモデルケースの運転状況を各種項目別に示すタイムチャート。
【図5】第4、第5のモデルケースのマスバランス図。
【図6】第1、第4、第5、第6のモデルケースの汚泥供給槽における汚泥液面の経時変化を比較するタイムチャート。
【図7】本発明の他の実施形態を説明するための装置系統図。
【図8】第6のモデルケースのマスバランス図。
【図9】異常時対策用の押出運転を付加した場合の制御手順を示すフローチャート。
【符号の説明】
10……汚泥供給槽
15……切替弁
18……(供給汚泥の)供給ポンプ
20……膜分離装置
22……分離槽
24……膜モジュール
28……(透過液の)吸引ポンプ
32……汚泥溜
34……(濃縮汚泥の)排出ポンプ
38……汚泥貯槽
42……切替弁
42……汚泥濃度計
46……制御器

Claims (5)

  1. 汚泥供給槽からの供給汚泥を膜分離装置に導き膜分離処理して透過液と濃縮汚泥とに分離する汚泥の濃縮方法であって、
    前記膜分離装置から排出される濃縮汚泥の少なくとも一部を前記汚泥供給槽に返送するとともに、残部を系外に送り出す循環運転を実施し、
    この循環運転の結果、前記濃縮汚泥の汚泥濃度が上昇して上限値に達した時には膜分離装置から排出される濃縮汚泥の全量を系外に送り出す排出運転に切り替え、
    この排出運転の結果、前記濃縮汚泥の汚泥濃度が下降して下限値に達した時には前記循環運転に切り替え、
    循環運転と排出運転とを交互に繰り返すことを特徴とする汚泥の濃縮方法。
  2. 前記循環運転と排出運転においては供給汚泥と透過液の流量を一定に保持し、原汚泥の汚泥濃度の変動に基づく処理量の調節を前記膜分離装置の断続運転によって実行することを特徴とする請求項1に記載の汚泥の濃縮方法。
  3. 前記循環運転と排出運転の運転時間比が1/10〜1/2となるように供給汚泥の設定流量を調節することを特徴とする請求項1又は請求項2に記載の汚泥の濃縮方法。
  4. 汚泥供給槽からの供給汚泥を膜分離装置に導き膜分離処理して透過液と濃縮汚泥とに分離する汚泥の濃縮方法であって、前記膜分離装置から排出される濃縮汚泥の少なくとも一部を前記汚泥供給槽に返送するとともに、残部を系外に送り出す循環運転を実施し、この循環運転の結果、前記濃縮汚泥の汚泥濃度が上昇して第1の上限値に達した時には膜分離装置から排出される濃縮汚泥の全量を系外に送り出す排出運転に切り替え、この排出運転の結果、前記濃縮汚泥の汚泥濃度が下降して下限値に達した時には前記循環運転に切り替え、循環運転と排出運転とを交互に繰り返すとともに、前記排出運転によっても前記濃縮汚泥の汚泥濃度が下降せず、濃縮汚泥の汚泥濃度が前記第1の上限値よりもさらに高濃度な第2の上限値に達した時には膜分離装置では膜分離処理を停止しつつ、供給される供給汚泥に相当する量の濃縮汚泥を膜分離装置から排出させ系外に送り出す押出運転を実施することを特徴とする汚泥の濃縮方法。
  5. 前記膜分離装置は分離槽と、この分離槽内の濃縮汚泥に浸漬された膜モジュールと、濃縮汚泥の液面を一定に保持する濃縮汚泥の排出手段とを具備していることを特徴とする請求項1乃至請求項4のいずれかに記載の汚泥の濃縮方法。
JP2002125445A 2002-04-26 2002-04-26 汚泥の濃縮方法 Expired - Fee Related JP3894034B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002125445A JP3894034B2 (ja) 2002-04-26 2002-04-26 汚泥の濃縮方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002125445A JP3894034B2 (ja) 2002-04-26 2002-04-26 汚泥の濃縮方法

Publications (2)

Publication Number Publication Date
JP2003320400A JP2003320400A (ja) 2003-11-11
JP3894034B2 true JP3894034B2 (ja) 2007-03-14

Family

ID=29540164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002125445A Expired - Fee Related JP3894034B2 (ja) 2002-04-26 2002-04-26 汚泥の濃縮方法

Country Status (1)

Country Link
JP (1) JP3894034B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5639373A (en) 1995-08-11 1997-06-17 Zenon Environmental Inc. Vertical skein of hollow fiber membranes and method of maintaining clean fiber surfaces while filtering a substrate to withdraw a permeate
US8852438B2 (en) 1995-08-11 2014-10-07 Zenon Technology Partnership Membrane filtration module with adjustable header spacing
JP4493371B2 (ja) * 2004-03-04 2010-06-30 株式会社クボタ 汚泥の濃縮分離方法
JP4979321B2 (ja) * 2006-09-29 2012-07-18 メンブレンテック株式会社 汚泥含有排水の処理装置
JP5939506B2 (ja) * 2012-05-25 2016-06-22 三菱レイヨン株式会社 廃水処理方法
JP6024232B2 (ja) * 2012-06-20 2016-11-09 株式会社明電舎 活性汚泥濃度制御方法
JP2020179340A (ja) * 2019-04-25 2020-11-05 株式会社クボタ 有機性排水処理設備の運転方法および有機性排水処理設備
JP7016339B2 (ja) * 2019-11-25 2022-02-04 Ihi運搬機械株式会社 石炭排水の処理方法および装置

Also Published As

Publication number Publication date
JP2003320400A (ja) 2003-11-11

Similar Documents

Publication Publication Date Title
CN101092259B (zh) 膜过滤系统
JP5222526B2 (ja) 水処理方法ならびに水処理装置
US20070084795A1 (en) Method and system for treating wastewater
US20160102003A1 (en) Advanced control system for wastewater treatment plants with membrane bioreactors
WO2017217008A1 (ja) 逆浸透膜分離装置
JP3894034B2 (ja) 汚泥の濃縮方法
CN109843416A (zh) 反渗透膜处理系统及反渗透膜处理系统的运行方法
JP3270211B2 (ja) 淡水製造装置
JP3473309B2 (ja) 膜分離装置の運転制御装置
JP2010058010A (ja) 純水製造装置
JP2018202360A (ja) 逆浸透膜分離装置
JP2001187323A (ja) 膜分離装置およびその運転方法
KR101522254B1 (ko) 유동적 회수율을 갖는 2단 막여과 시스템 및 이의 운전방법
US20140144840A1 (en) Sequencing batch type or batch type water-filtering apparatus and method of operating the same
JP3894043B2 (ja) 膜分離装置の運転方法
JP2017221877A (ja) 逆浸透膜分離装置
JPH10165782A (ja) 膜モジュール及びその運転方法
JP2017221876A (ja) 逆浸透膜分離装置
JP6390312B2 (ja) 濾過システム
JP7107011B2 (ja) 膜分離装置
JPH07328393A (ja) 膜分離装置の運転方法および膜分離装置
JP4020747B2 (ja) 濾過装置の運転開始時の安定運転方法
JP4293848B2 (ja) 濾過装置の運転方法
JP5080739B2 (ja) 活性汚泥処理装置
JP2017221875A (ja) 逆浸透膜分離装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3894034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees