JP3889151B2 - トレンチキャパシタの製造方法及び半導体装置の製造方法 - Google Patents

トレンチキャパシタの製造方法及び半導体装置の製造方法 Download PDF

Info

Publication number
JP3889151B2
JP3889151B2 JP11446198A JP11446198A JP3889151B2 JP 3889151 B2 JP3889151 B2 JP 3889151B2 JP 11446198 A JP11446198 A JP 11446198A JP 11446198 A JP11446198 A JP 11446198A JP 3889151 B2 JP3889151 B2 JP 3889151B2
Authority
JP
Japan
Prior art keywords
film
polycrystalline silicon
type
silicon film
trench
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11446198A
Other languages
English (en)
Other versions
JPH11307737A (ja
Inventor
修二 勝井
浩史 赤堀
藤雄 寺井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11446198A priority Critical patent/JP3889151B2/ja
Publication of JPH11307737A publication Critical patent/JPH11307737A/ja
Application granted granted Critical
Publication of JP3889151B2 publication Critical patent/JP3889151B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本願発明は、トレンチキャパシタの製造方法又は半導体装置の製造方法に関するもので、特にCVD法を用いた多結晶シリコン電極膜の形成方法に関する。
【0002】
【従来の技術】
従来のCVD法を用いた多結晶シリコン電極膜の形成方法について図面(図1〜図2)を参酌して説明する。
まず、図1に示したようなトレンチ型のキャパシタを考える。P型半導体基板1の上面には、シリコン酸化膜12、シリコン窒化膜13、TEOS膜14がそれぞれ形成されている。また、P型半導体基板1にトレンチ4が形成されている。このトレンチ4は、TEOS膜14をマスクとしてP型半導体基板1をエッチングして形成されたものである。トレンチ4の表面にはキャパシタ絶縁膜3が形成されている。P型半導体基板1のトレンチ4に接する所定の位置にプレート電極となるN型拡散層2が形成されている。
【0003】
次に、図2に示したように、CVD法を用いて、全面にドープト多結晶シリコン膜5を形成する。このドープト多結晶シリコン膜5の成膜方法としては、CVD反応槽内にSiH4(シラン)と、ドーパントガスとしてのPH3(ホスフィン)又はAsH3(アルシン)を一定量ずつ同時に流し込み、これらを熱分解させることにより行なっている。
【0004】
【発明が解決しようとする課題】
上記のような、不純物としてP(リン)やAs( 砒素) をドープするドープト多結晶シリコン膜5の成膜工程においては、成膜温度が低く、かつ、成膜速度が遅いほどP(リン)又はAs( 砒素) がドープされ易い性質を有している。
【0005】
しかしながら、枚葉方式のCVD法においては、1枚のウェハーにドープト多結晶シリコン膜を成膜するのに要する時間は3分程度であり、成膜時間を短縮するという製造上の理由から成膜速度を早くせざるを得ない。ここで、枚葉方式のCVD法とは、ウェーハー1枚ずつに成膜していく方式である。
【0006】
すると、特に成膜初期において多結晶シリコン膜中にP( リン) 又はAs(砒素)といった不純物がドープされにくくなる。このため、図3に示したように、キャパシタ絶縁膜3付近の不純物濃度が低下するという問題が生じていた。
【0007】
例えば、図6の場合を考える。この実験では、図6に示したように、シリコン基板9上に膜厚50nm程度に形成されたシリコン酸化膜10の上面にドープト多結晶シリコン膜11を膜厚100nm程度に成膜する。このとき、成膜温度を700℃、成膜圧力を50Torr、成膜時ウェハー回転数を3000rpmとして、SiH4(シラン)を1.2(l/min)、AsH3(アルシン)を0.05(l/min)、H2を4.0(l/min)、N2を35(l/min)としたガス条件で実験を行う。なお、1枚のウェハーを成膜するのに要した時間は2分30秒であった。
【0008】
この実験のデータを図4に示す。このデータは、ドープト多結晶シリコン膜11の上面からシリコン酸化膜10方向のAsの濃度分布をSIMS分析法により評価したものである。そして、図4は、横軸にドープト多結晶シリコン膜11の上面からの深さをとり、縦軸に不純物であるAsの濃度をとったものである。この図4によればシリコン酸化膜10の上面からドープト多結晶シリコン膜11方向に50nm程度まではAsの濃度が低下していることが分かる。つまり、成膜初期に形成されたドープト多結晶シリコン膜におけるAsの濃度が低いことが分かる。
【0009】
このため、図5に示したように、ストレージ電極となるドープト多結晶シリコン膜5に正の電圧が印加されると、キャパシタ絶縁膜3近傍のドープト多結晶シリコン膜5中にキャリア空乏層8が広がることとなる。これにより、キャパシタ容量が低下するという問題が生じていた。
【0010】
また、不純物濃度の低下はドープト多結晶シリコン膜の抵抗を上昇させるため、ストレージ電極の配線抵抗の増加を招く問題も生じていた。
さらに、多結晶シリコン膜にドープされる不純物として、例えばAs(砒素)を用いる場合、Asが空気中に飛散し、人体への悪影響が大きな問題となっていた。
【0011】
【課題を解決するための手段】
上記課題を解決すべく、本願発明は、P型半導体基板に所定の深さを有するトレンチを形成する工程と、前記トレンチの側面の所定の位置から前記P型半導体基板にN型不純物を拡散させる工程と、少なくとも前記トレンチの表面に絶縁膜を被着させる工程と、CVD反応槽内に所定量の成膜材料ガスと所定量のN型ドーパントガスとを流し込み、所定時間が経過した後前記N型ドーパントガスの流量を変えないで前記成膜材料ガスを増量することにより、前記P型半導体基板の全面にN型ドーパントを含む多結晶シリコン膜を形成する工程とを具備し、前記所定時間内に形成したN型ドーパントを含む多結晶シリコン膜内のN型不純物濃度と前記所定時間後に形成したN型ドーパントを含む多結晶シリコン膜内のN型不純物濃度とがほぼ等しいことを特徴とする
【0012】
本願発明は、上記構成をとることにより、キャパシタ絶縁膜3付近で不純物濃度が低下するという問題は生じなくなる。そのため、キャパシタ容量の低下やストレージ電極の配線抵抗の増加をいった問題も起きない。
【0013】
【発明の実施の形態】
本願発明の第一の実施の形態について図面(図7〜図9)を参酌して説明する。
まず、図7に示したようなトレンチセルを考える。P型半導体基板21の上面には、厚さ10nm程度のシリコン酸化膜74、厚さ200nm程度のシリコン窒化膜75、厚さ500nm程度のTEOS膜76が形成されている。また、P型半導体基板21にトレンチ24が形成されている。このトレンチ24は、所定の形状にパターニングされたTEOS膜76をマスクとしてP型半導体基板21をエッチングして形成されたものである。トレンチ24の表面にはキャパシタ絶縁膜23が形成されている。そして、P型半導体基板21のトレンチ24に接する所定の位置にプレート電極となるN型拡散層22が形成されている。ここで、キャパシタ絶縁膜23は、窒化膜と酸化膜の二層絶縁膜を利用してもよい。
【0014】
次に、図8に示したように、CVD法を用いて、不純物をドープしたドープト多結晶シリコン膜25を全面に形成する。
このドープト多結晶シリコン膜25の成膜方法としては、CVD反応槽内にSiH4(シラン)と、ドーパントガスとしてのPH3(ホスフィン)又はAsH3(アルシン)を同時に流し込み、これらを熱分解させることにより行なう。
【0015】
ここで、従来の技術においては、CVD反応槽内にSiH4(シラン)と、例えばAsH3(アルシン)を一定量ずつ流し込んで熱分解させていた。
これに対して本願発明では、成膜温度を600〜800℃程度、成膜圧力を数十Torrとして、AsH3(アルシン)、H2、N2を一定流量ずつ流し込む点では従来の技術と同様である。しかし、SiH4(シラン)は最初の所定時間だけは少ない流量ずつ流し込み、その所定時間を経過した後、流量を増やすことにより、Asドープト多結晶シリコン膜を2段階に分けて成膜する。
【0016】
上記方法についての実験データを図9に示す。この実験は、枚葉CVD法によりAsドープト多結晶シリコン膜を成膜したものである。すなわち、図10に示したように、第一段階として、成膜温度を700℃程度、成膜圧力を50Torr程度、成膜時ウェハー回転数を3000rpm程度の環境下で、SiH4(シラン)を0.1(l/min)程度、AsH3(アルシン)を0.05(l/min)程度、H2を4.0(l/min)程度、N2を35(l/min)程度としたガス条件として、シリコン基板26上に形成された膜厚50nm程度のシリコン酸化膜27の上面にドープト多結晶シリコン膜28を膜厚5nm程度に成膜した。これに要した時間が15秒間程度であった。次に、図11に示したように、第二段階として、SiH4(シラン)の流量を1.2(l/min)程度に増量し、その他の条件を変えずにドープト多結晶シリコン膜28を膜厚100nm程度に形成する。1枚のウェハーを成膜するのに要した時間は2分50秒であった。そして、図9のデータは、ドープト多結晶シリコン膜28の上面からシリコン酸化膜27方向でのAsの濃度分布をSIMS分析法により評価したものである。この図9によれば、ドープト多結晶シリコン膜28からシリコン酸化膜27方向でのAsの濃度低下は見られず、2×1020(atoms/cc)程度とほぼ一定である。この理由として以下のことが考えられる。即ち、一般に、不純物としてAsをドープするドープト多結晶シリコン膜を酸化膜上に成膜する場合には、成膜温度が低く、かつ、成膜速度が遅いほどAsがドープされ易い性質を有している。逆に、成膜温度を高く、かつ、成膜速度を早くした場合、Asはドープされにくい性質がある。一方で、不純物としてAsをドープするドープト多結晶シリコン膜を多結晶シリコン膜上に成膜する場合には、成膜温度、成膜速度によらずにAsを容易にドープすることが可能である。そこで、第一段階(最初の15秒間程度)として、ドープト多結晶シリコン膜を遅い成膜速度で形成する。次いで、第二段階として、成膜速度を上げて、そのドープト多結晶シリコン膜上にさらに重ねてドープト多結晶シリコン膜を成膜する。このように二段階に分けてドープト多結晶シリコン膜28を形成することにより、ドープト多結晶シリコン膜28からシリコン酸化膜27方向でのAsの濃度低下が見られなくなるものと考えられるのである。
【0017】
ここで、図9の実験データは、上記諸条件下における実験により得られたものである。これらの諸条件は、成膜時間を短縮するという製造上の理由から成膜速度を早くせざるを得ないため、設定されたものである。即ち、第一段階においてSiH4(シラン)を0.1(l/min)程度とし、第二段階でSiH4(シラン)を1.2(l/min)程度としたガス条件は、成膜時間の観点から設定されたものである。つまり、これらの諸条件は、生産性の観点から許される範囲で設定すれば本願発明の効果を得ることができる。従って、例えば第一段階において、SiH4(シラン)を0.2(l/min)程度とし、第二段階でSiH4(シラン)を0.8(l/min)程度としたガス条件によって得られる成膜速度でも生産性が確保できるなら、その条件でも本願発明の効果を得ることは可能である。
【0018】
このように、従来の技術によると、ドープト多結晶シリコン膜の表面からシリコン酸化膜方向に50nm程度でAsの濃度が低下していたのに対し(図3参照)、本願発明によればAsの濃度低下は起きていない。
【0019】
以上のように、本願発明の第一の実施の形態によれば、枚葉方式のCVD法においても、成膜の初期段階において形成されるキャパシタ絶縁膜23近傍のドープト多結晶シリコン膜25中の不純物濃度の低下は起きない。そのため、ストレージ電極であるドープト多結晶シリコン膜25に正の電圧が印加されても、キャパシタ絶縁膜23近傍のドープト多結晶シリコン膜25中にキャリア空乏層が広がることはない。従って、キャパシタ容量が低下するということもない。また、キャパシタ絶縁膜23近傍の不純物濃度の低下はないため、ドープト多結晶シリコン膜25の抵抗が上昇することもなく、ストレージ電極の配線抵抗の増加を招くこともない。
【0020】
なお、上記第一の実施の形態において、AsH3(アルシン)の代わりにPH3(ホスフィン)を使用した場合でも上記と同様の効果を得ることができる。
次に、本願発明の第二の実施の形態について図面(図7、図8、図12)を参酌して説明する。
【0021】
まず、本願発明の第一の実施の形態と同様にして、図7に示したようなトレンチセルを形成する。そして、図8に示したように、CVD法を2段階に分けてドープト多結晶シリコン膜を形成する。
【0022】
次に、図12に示したように、ドープト多結晶シリコン膜29を形成した後に(図8参照)、AsH3(アルシン)をCVD反応槽に流し込むのを中止して、他のガスは同じ条件のままで数秒流し込む。このようにすると、Asがドープされたドープト多結晶シリコン膜29上に連続して、不純物がドープされていない多結晶シリコン膜30を形成することができる。この不純物がドープされていない多結晶シリコン膜30は、Asがドープト多結晶シリコン膜29から飛散するのを防止するCap膜として用いられる。
【0023】
このCap膜を成膜した場合についての実験データを表1に示す。この実験データは、不純物としてAsを1×1020atoms/cm3だけドープしたドープト多結晶シリコン膜からのAsの脱ガス量と、Asがドープされたドープト多結晶シリコン膜上に連続してAsがドープされていない多結晶シリコン膜をCap膜として5〜6秒程度、膜厚10nm程度に形成した場合のAsの脱ガス量とを比較したものである。この脱ガス量は、24枚のウェハー上にドープト多結晶シリコン膜を成膜後、34時間密閉したウェハーケース内に放置した後に測定したものである。このデータによれば、Cap膜を形成しておけば、Asが空気中に飛散することを防げ、人体への悪影響を防ぐことができることが分かる。
【0024】
【表1】
Figure 0003889151
【0025】
以上のように、本願発明の第二の実施の形態によれば、枚葉方式のCVD法においても、成膜の初期段階において形成されるキャパシタ絶縁膜23近傍のドープト多結晶シリコン膜29中の不純物濃度の低下は起きない。そのため、ストレージ電極であるドープト多結晶シリコン膜29に電圧が印加されても、キャパシタ絶縁膜23近傍のドープト多結晶シリコン膜29中にキャリア空乏層が広がることはない。従って、キャパシタ容量が低下するということもない。また、キャパシタ絶縁膜23近傍の不純物濃度の低下はないため、ドープト多結晶シリコン膜29の抵抗が上昇することもなく、ストレージ電極の配線抵抗の増加を招くこともない。
【0026】
さらに、不純物がドープされたドープト多結晶シリコン膜29の上面に、Cap膜として不純物をドープしない多結晶シリコン膜30を連続して形成することにより、不純物が空気中へ飛散することを防止できる。これにより人体への悪影響を防ぐことが出来るようになる。
【0027】
なお、上記第二の実施の形態において、AsH3(アルシン)の代わりにPH3(ホスフィン)を使用した場合でも上記と同様の効果を得ることができる。
次に、本願発明の第三の実施の形態として、本願発明のDRAMへの応用について図面(図13〜図21)を参酌して説明する。
【0028】
まず、図13に示したように、熱酸化法を用いてP型半導体基板51の上面に厚さ8nm程度の酸化膜52を形成し、その上にCVD法を用いて厚さ220nm程度の窒化膜53を形成する。さらに、窒化膜53の上面にCVD法を用いて厚さ700nm程度のTEOS膜54を形成し、その上面に回転塗布法を用いて図示せぬレジストを形成する。そして、写真蝕刻法を用いてレジストを所定の形状にパターニングする。このレジストをマスクとして、異方性エッチング法、例えばRIE法によりTEOS膜54、窒化膜53及び酸化膜52を除去し、P型半導体基板51の上面の一部を露出させる。ついで、図示せぬレジストをアッシングにより除去する。そして、TEOS膜54をマスクとして、異方性エッチング法、例えばRIE法を用いてP型半導体基板51を除去してトレンチ55を形成する。
【0029】
次に、図14に示したように、不純物を含んだ膜、例えばAsSG膜56をCVD法を用いて全面に形成した後、回転塗布法を用いてトレンチ55が完全に充填されるように全面にレジスト57を形成する。そして、レジスト57を露光現像することによりAsSG膜56の一部を露出させる。さらに、例えばフッ酸系のウェットエッチング法を用いて露出したAsSG膜56を除去する。ここで、不純物を含んだ膜は、AsSG膜56でなくても、不純物が含まれており、かつ、P型半導体基板51とエッチング選択比がとれる膜ならばなんでもよい。
【0030】
次に、図15に示したように、トレンチ55内のレジスト57をアッシングにより除去し、CVD法を用いて、全面に例えばTEOS膜58を形成する。
次に、図16に示したように、熱拡散法によりAsSG膜56に含まれるAsをトレンチ55の側面に拡散させる。これにより、プレート電極となるN型拡散層59が形成される。ここで、TEOS膜58は、Asを拡散させる際に、外方拡散により、トレンチ55の側面のうちAsSG膜56が形成されていない部分からP型半導体基板51にAsが入り込むのを防止するためのものである。さらに、例えばウェットエッチング法によりAsSG膜56及びTEOS膜58を除去する。
【0031】
次に、図17に示したように、CVD法を用いて、例えばNO膜からなる誘電体膜60を厚さ8nm程度に形成する。次に、CVD法を用いて導電膜、例えばドープト多結晶シリコン膜61をトレンチ55が完全に充填されるように形成することになる。そのためには、半導体基板全体をCVD反応槽内に入れ、成膜温度を600〜800℃程度、成膜圧力を数十Torrとして、アルシンガス(AsH3)、水素ガス(H2)、窒素ガス(N2)を一定流量ずつ流し込む一方で、シランガス(SiH4)を最初の所定時間だけは少ない流量ずつ流し込み、その所定時間を経過した後、流量を増やして2段階で成膜を行なう。ここで、ドープト多結晶シリコン膜61は、ストレージ電極の一部となるものである。このドープト多結晶シリコン膜61は、上述の成膜方法を採用することにより、誘電体膜60近傍においても、その不純物濃度が低下することはない。そのため、ストレージ電極の一部となるドープト多結晶シリコン膜61の抵抗が高くなることもなく、配線抵抗の増加を招くこともない。また、ストレージ電極となるドープト多結晶シリコン膜61に正の電圧が印加されても、誘電体膜60近傍にキャリア空乏層が広がることもない。そのため、キャパシタ容量が低下することはなく、DRAMの書き込み読み出し特性が劣化することも防げる。
【0032】
次に、図18に示したように、CMP法等の平坦化プロセスとウェットエッチング法とを併用することにより、窒化膜53の上面を平坦化する。そして、窒化膜53をマスクとして異方性エッチング法、例えばRIE法を用いてドープト多結晶シリコン膜61を所定の高さまでエッチングする。その後、ウェットエッチング法を用いて、ドープト多結晶シリコン膜61に接していない部分のトレンチ55の側面に残った誘電体膜60を除去する。
さらに、CVD法を用いて、例えばTEOS膜62からなる絶縁膜を全面に形成する。このTEOS膜62は、寄生トランジスタの発生を防ぐためのものであるため、膜厚を十分にとる必要がある。
【0033】
次に、図19に示したように、異方性エッチング法、例えばRIE法を用いてTEOS膜62をトレンチ55の側面にのみ残す。
次に、図20に示したように、CVD法を用いて導電膜、例えばドープト多結晶シリコン膜63をトレンチ55が完全に充填されるように形成することになる。そのためには、半導体基板全体をCVD反応槽内に入れ、成膜温度を600〜800℃程度、成膜圧力を数十Torrとして、アルシンガス(AsH3)、水素ガス(H2)、窒素ガス(N2)を一定流量ずつ流し込む一方で、シランガス(SiH4)を最初の所定時間だけは少ない流量ずつ流し込み、その所定時間を経過した後、流量を増やして2段階で成膜を行なう。ここで、ドープト多結晶シリコン膜63は、ドープト多結晶シリコン膜61をつなぐ引き出し配線をなすこととなる。このドープト多結晶シリコン膜63は、上述の成膜方法を採用することにより、ドープト多結晶シリコン膜61やTEOS膜62の近傍においても、その不純物濃度が低下することはない。そのため、ドープト多結晶シリコン膜63の抵抗が高くなることもなく、配線抵抗の増加を招くこともない。
【0034】
次に、図21に示したように、CMP法等の平坦化プロセスにより、窒化膜53の上面を平坦化する。そして、ダウンフローエッチング法により、ドープト多結晶シリコン膜63をトレンチ55内の所定の高さまで除去する。さらに、ウェットエッチング法により、TEOS膜62をトレンチ55内の所定の高さまで除去する。
【0035】
次に、図22に示したように、図示せぬドープト多結晶シリコン膜をトレンチ55内に形成し、P型半導体基板51の上面を所定の形状にエッチングする。そして、P型半導体基板51の所定の部分に、素子分離用のTEOS膜64を形成する。そして、窒化膜53及び酸化膜52を剥離する。その後、熱酸化法を用いて、厚さ8nm程度の酸化膜77を形成する。さらに、厚さ100nm程度のポリシリコン膜65、厚さ55nm程度のタングステンシリサイド膜66、厚さ150nm程度の窒化シリコン膜67をそれぞれ所定の形状に形成する。そして、P型半導体基板51の上面のうち、ポリシリコン膜65が形成されていない部分に不純物を注入して活性化することにより拡散層68を形成する。次に、CVD法を用いて全面にシリコン窒化膜73を厚さ30nm程度に形成する。その後、異方性エッチング法、例えばRIE法を用いて、そのシリコン窒化膜73をポリシリコン膜65、タングステンシリサイド膜66、窒化シリコン膜67の側面にだけ残す。これにより、トランジスタゲート電極が形成される。
【0036】
次に、図23に示したように、窒化シリコン膜67の上面から厚さ100nm程度のBPSG膜69及びBPSG膜69の上面から厚さ300nm程度のTEOS膜70を形成し、所定の形状にエッチングする。さらに、コンタクトとなるポリシリコン膜71及び配線となるタングステン膜72を所定の形状に形成する。このようにして、P型半導体基板51の上部に情報転送用トランジスタを形成することにより、半導体装置DRAMの基本素子部が形成される。
【0037】
以上のように、本願発明の第三の実施の形態によれば、DRAMを製造する場合において、ストレージ電極となるドープト多結晶シリコン膜61及び引き出し配線となるドープト多結晶シリコン膜63を枚葉方式のCVD法を用いて成膜しても、誘電体膜60近傍のドープト多結晶シリコン膜61及びドープト多結晶シリコン膜61近傍のドープト多結晶シリコン膜63中の不純物濃度の低下は起きない。そのため、ストレージ電極の配線抵抗が大きくなることもない。また、ストレージ電極であるドープト多結晶シリコン膜61、63に電圧が印加されても、誘電体膜60近傍のドープト多結晶シリコン膜61中にキャリア空乏層が広がることはない。従って、キャパシタ容量が低下することもなく、DRAMの書き込み読み出し特性が劣化することを防げる。
なお、上記第三の実施の形態において、AsH3(アルシン)の代わりにPH3(ホスフィン)を使用した場合でも上記と同様の効果を得ることができる。
【0038】
【発明の効果】
以上詳述したように、本願発明によれば、ストレージ電極であるドープト多結晶シリコン膜の不純物濃度がキャパシタ絶縁膜付近で低下するという問題は生じなくなる。そのため、キャパシタ容量の低下やストレージ電極の配線抵抗の増加をいった問題も起きない。
【図面の簡単な説明】
【図1】従来のCVD法を用いたドープト多結晶シリコン電極膜の形成方法に関する工程断面図。
【図2】従来のCVD法を用いたドープト多結晶シリコン電極膜の形成方法に関する工程断面図。
【図3】従来のCVD法を用いてドープト多結晶シリコン電極膜を形成した場合の不純物濃度の分布を示した工程断面図。
【図4】従来のCVD法を用いてドープト多結晶シリコン電極膜を形成した場合の不純物の濃度分布を示すデータ図。
【図5】従来のCVD法を用いてドープト多結晶シリコン電極膜を形成した場合のキャリア空乏層の発生を示した工程断面図。
【図6】図4のデータを得るために行なった実験の工程断面図。
【図7】本願発明の第一の実施の形態に係るCVD法を用いたドープト多結晶シリコン電極膜の形成方法に関する工程断面図。
【図8】本願発明の第一の実施の形態に係るCVD法を用いたドープト多結晶シリコン電極膜の形成方法に関する工程断面図。
【図9】本願発明の第一の実施の形態に係るCVD法を用いてドープト多結晶シリコン電極膜を形成した場合の不純物の濃度分布を示すデータ図。
【図10】図9のデータを得るために行なった実験の工程断面図。
【図11】図9のデータを得るために行なった実験の工程断面図。
【図12】本願発明の第二の実施の形態に係るCVD法を示す工程断面図。
【図13】本願発明に係るCVD法をDRAM製造工程に応用した場合の工程断面図。
【図14】本願発明に係るCVD法をDRAM製造工程に応用した場合の工程断面図。
【図15】本願発明に係るCVD法をDRAM製造工程に応用した場合の工程断面図。
【図16】本願発明に係るCVD法をDRAM製造工程に応用した場合の工程断面図。
【図17】本願発明に係るCVD法をDRAM製造工程に応用した場合の工程断面図。
【図18】本願発明に係るCVD法をDRAM製造工程に応用した場合の工程断面図。
【図19】本願発明に係るCVD法をDRAM製造工程に応用した場合の工程断面図。
【図20】本願発明に係るCVD法をDRAM製造工程に応用した場合の工程断面図。
【図21】本願発明に係るCVD法をDRAM製造工程に応用した場合の工程断面図。
【図22】本願発明に係るCVD法をDRAM製造工程に応用した場合の工程断面図。
【図23】本願発明に係るCVD法をDRAM製造工程に応用した場合の工程断面図。
【符号の説明】
1・・・・P型半導体基板
2・・・・N型拡散層
3・・・・キャパシタ絶縁膜
4・・・・トレンチ
5・・・・ドープト多結晶シリコン膜
6・・・・不純物濃度の低い部分
7・・・・不純物濃度の高い部分
8・・・・キャリア空乏層
9・・・・シリコン基板
10・・・・シリコン酸化膜
11・・・・ドープト多結晶シリコン膜
12・・・・シリコン酸化膜
13・・・・シリコン窒化膜
14・・・・TEOS膜
21・・・・P型半導体基板
22・・・・N型拡散層
23・・・・キャパシタ絶縁膜
24・・・・トレンチ
25・・・・ドープト多結晶シリコン膜
26・・・・シリコン基板
27・・・・シリコン酸化膜
28・・・・ドープト多結晶シリコン膜
29・・・・ドープト多結晶シリコン膜
30・・・・多結晶シリコン膜
51・・・・P型半導体基板
52・・・・酸化膜
53・・・・窒化膜
54・・・・TEOS膜
55・・・・トレンチ
56・・・・AsSG膜
57・・・・レジスト
58・・・・TEOS膜
59・・・・N型拡散層
60・・・・誘電体膜
61・・・・ドープト多結晶シリコン膜
62・・・・TEOS膜
63・・・・ドープト多結晶シリコン膜
64・・・・TEOS膜
65・・・・ポリシリコン膜
66・・・・タングステンシリサイド膜
67・・・・窒化シリコン膜
68・・・・拡散層
69・・・・BPSG膜
70・・・・TEOS膜
71・・・・ポリシリコン膜
72・・・・タングステン膜
73・・・・シリコン窒化膜
74・・・・シリコン酸化膜
75・・・・シリコン窒化膜
76・・・・TEOS膜

Claims (3)

  1. P型半導体基板に所定の深さを有するトレンチを形成する工程と、前記トレンチの側面の所定の位置から前記P型半導体基板にN型不純物を拡散させる工程と、少なくとも前記トレンチの表面に絶縁膜を被着させる工程と、CVD反応槽内に所定量の成膜材料ガスと所定量のN型ドーパントガスとを流し込み、所定時間が経過した後前記N型ドーパントガスの流量を変えないで前記成膜材料ガスを増量することにより、前記P型半導体基板の全面にN型ドーパントを含む多結晶シリコン膜を形成する工程とを具備し、前記所定時間内に形成したN型ドーパントを含む多結晶シリコン膜内のN型不純物濃度と前記所定時間後に形成したN型ドーパントを含む多結晶シリコン膜内のN型不純物濃度とがほぼ等しいことを特徴とするトレンチキャパシタの製造方法。
  2. P型半導体基板に所定の深さを有するトレンチを形成する工程と、前記トレンチの側面の所定の位置から前記P型半導体基板にN型不純物を拡散させる工程と、少なくとも前記トレンチの表面に第一の絶縁膜を被着させる工程と、CVD反応槽内に所定量の成膜材料ガスと所定量のN型ドーパントガスとを流し込み、所定時間が経過した後前記N型ドーパントガスの流量を変えないで前記成膜材料ガスを増量することにより、前記P型半導体基板の全面にN型ドーパントを含む多結晶シリコン膜を形成する工程と、前記N型ドーパントガスのみCVD反応槽内に流し込むのを止めて、前記N型ドーパントを含む多結晶シリコン膜の上面にN型ドーパントを含まない多結晶シリコン膜を形成する工程とを具備し、前記所定時間内に形成したN型ドーパントを含む多結晶シリコン膜内のN型不純物濃度と前記所定時間後に形成したN型ドーパントを含む多結晶シリコン膜内のN型不純物濃度とがほぼ等しいことを特徴とするトレンチキャパシタの製造方法。
  3. P型半導体基板に所定の深さを有するトレンチを形成する工程と、前記トレンチの側面の所定の位置から前記P型半導体基板にN型不純物を拡散させる工程と、少なくとも前記トレンチの側面に第一の絶縁膜を被着させる工程と、CVD反応槽内に、第一の所定時間だけ成膜材料ガスとN型ドーパントガスとを流し込み、前記第一の所定時間を経過した後は前記N型ドーパントガスの流量を変えないで前記成膜材料ガスを増量することにより、前記P型半導体基板の全面に第一のN型ドーパントを含む多結晶シリコン膜を形成する工程と、前記第一の絶縁膜及び前記第一のN型ドーパントを含む多結晶シリコン膜をトレンチ内の所定の深さまで除去する工程と、少なくとも前記トレンチの側面のうち前記第一の絶縁膜が形成されていない部分に第二の絶縁膜を被着させる工程と、CVD反応槽内に、第二の所定時間だけ成膜材料ガスとN型ドーパントガスとを流し込み、前記第二の所定時間を経過した後は前記N型ドーパントガスの流量を変えないで前記成膜材料ガスを増量することにより、前記P型半導体基板の全面に第二のN型ドーパントを含む多結晶シリコン膜を形成する工程と、前記第二の絶縁膜及び前記第二のN型ドーパントを含む多結晶シリコン膜を、前記トレンチ内の所定の深さまで除去する工程と、所定のN型拡散層と前記第二のN型ドーパントを含む多結晶シリコン膜とを電気的に接続させる工程と、前記P型半導体基板上に情報転送用トランジスタを形成する工程とを具備し、前記第一の所定時間内に形成した第一のN型ドーパントを含む多結晶シリコン膜内のN型不純物濃度と前記第一の所定時間後に形成した第一のN型ドーパントを含む多結晶シリコン膜内のN型不純物濃度とがほぼ等しく、前記第二の所定時間内に形成した第二のN型ドーパントを含む多結晶シリコン膜内のN型不純物濃度と前記第二の所定時間後に形成した第二のN型ドーパントを含む多結晶シリコン膜内のN型不純物濃度とがほぼ等しいことを特徴とする半導体装置の製造方法。
JP11446198A 1998-04-24 1998-04-24 トレンチキャパシタの製造方法及び半導体装置の製造方法 Expired - Fee Related JP3889151B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11446198A JP3889151B2 (ja) 1998-04-24 1998-04-24 トレンチキャパシタの製造方法及び半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11446198A JP3889151B2 (ja) 1998-04-24 1998-04-24 トレンチキャパシタの製造方法及び半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JPH11307737A JPH11307737A (ja) 1999-11-05
JP3889151B2 true JP3889151B2 (ja) 2007-03-07

Family

ID=14638327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11446198A Expired - Fee Related JP3889151B2 (ja) 1998-04-24 1998-04-24 トレンチキャパシタの製造方法及び半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP3889151B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI275179B (en) 2005-12-12 2007-03-01 Fujitsu Ltd Semiconductor device and method of manufacturing the same thereof

Also Published As

Publication number Publication date
JPH11307737A (ja) 1999-11-05

Similar Documents

Publication Publication Date Title
US6326658B1 (en) Semiconductor device including an interface layer containing chlorine
JP4057906B2 (ja) コンタクト抵抗を減少させたコンタクトプラグ形成方法
JP3663128B2 (ja) 障壁層の形成を含む半導体製造方法
US7432152B2 (en) Methods of forming HSG layers and devices
JP2992516B1 (ja) 半導体装置の製造方法
JPH10178162A (ja) Soi埋込プレート・トレンチ・キャパシタ
KR100217274B1 (ko) 누적 전극의 표면을 러프닝함으로써 커패시턴스가 증가된 커패시터를 갖는 반도체 장치 제조 방법
US6852579B2 (en) Method of manufacturing a semiconductor integrated circuit device
KR100493018B1 (ko) 반도체 장치의 제조방법
JP2004509469A (ja) トレンチキャパシタと選択トランジスタとを備えた半導体メモリーセル、および、その製造方法
JPH08139278A (ja) 半導体装置の製造方法
JP4221214B2 (ja) 半導体装置の製造方法
KR0171072B1 (ko) 반도체 메모리 셀 제조방법 및 구조
JP2002124649A (ja) 半導体集積回路装置およびその製造方法
JP4197576B2 (ja) 半導体装置の製造方法
JP3889151B2 (ja) トレンチキャパシタの製造方法及び半導体装置の製造方法
JPH06112152A (ja) 半導体デバイスの接触部形成方法
US5976977A (en) Process for DRAM capacitor formation
JPH1050964A (ja) 半導体基板に水素を拡散させるプラグを有する半導体装置およびその製造方法
KR100415519B1 (ko) 반도체 소자의 제조 방법
JPH03220778A (ja) Mos型不揮発性半導体記憶装置の製造方法
US6537872B1 (en) Method of fabricating a DRAM cell capacitor
US5747871A (en) Bipolar transistor having a self-aligned base electrode and method for manufacturing the same
KR20010059517A (ko) 고집적 반도체 메모리장치의 실린더형 하부전극 제조방법
JP4781571B2 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040130

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040826

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20041029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061129

LAPS Cancellation because of no payment of annual fees