JP3886941B2 - Jitter tolerance measuring device - Google Patents

Jitter tolerance measuring device Download PDF

Info

Publication number
JP3886941B2
JP3886941B2 JP2003195252A JP2003195252A JP3886941B2 JP 3886941 B2 JP3886941 B2 JP 3886941B2 JP 2003195252 A JP2003195252 A JP 2003195252A JP 2003195252 A JP2003195252 A JP 2003195252A JP 3886941 B2 JP3886941 B2 JP 3886941B2
Authority
JP
Japan
Prior art keywords
jitter
error
measurement
jitter tolerance
tolerance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003195252A
Other languages
Japanese (ja)
Other versions
JP2005030868A (en
Inventor
貴志 柳井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2003195252A priority Critical patent/JP3886941B2/en
Publication of JP2005030868A publication Critical patent/JP2005030868A/en
Application granted granted Critical
Publication of JP3886941B2 publication Critical patent/JP3886941B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Dc Digital Transmission (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ジッタ耐力測定装置において、ジッタ量の可変によって測定対象が特定エラー状態になっても、正確なジッタ耐力特性を測定できるようにするための技術に関する。
【0002】
【従来の技術】
SDH、SONET、OTN等のネットワークに接続される装置のジッタ特性に関し、ITU−TやTelcordia等の国際規格で規定されている代表的な特性としてジッタ耐力特性がある。
【0003】
ジッタ耐力特性は、測定対象の装置がどの程度のジッタに耐えられるかジッタの周波数毎に表すものであり、図4に示すように測定によって得られた特性JTと規格特性Rとを対比することで、測定対象のジッタ耐力の良否を判定することができる。
【0004】
このジッタ耐力を自動測定するために、図5に示すジッタ耐力測定装置10が用いられている。
【0005】
このジッタ耐力測定装置10は、ジッタが付与されたデータ信号Dを生成して測定対象1に入力するジッタ発生部11と、そのデータ信号Dを受けた測定対象1から出力されるデータ信号D′の誤り率を測定する誤り測定器12と、ジッタ発生部11がデータ信号Dに付与するジッタ量を、予め設定された変化幅で且つ誤り率測定器12の測定結果に応じて増減可変し、誤り率Eが所定値以内に入る最大のジッタ量を、測定対象1のジッタ耐力値として求めるジッタ耐力検出部13とを有している。
【0006】
ジッタ発生部11は、指定された変調周波数と振幅の変調信号Mを発生する変調信号発生器11aと、変調信号Mによって位相変調されたクロック信号に同期するデータ信号Dを発生するジッタ信号発生器11bによって構成され、変調信号Mの振幅に比例するジッタ量が付与されたデータ信号Dを発生する。
【0007】
ジッタ耐力検出部13は、変調信号発生器11aが出力する変調信号Mの変調周波数と振幅を可変制御して測定対象1のジッタ耐力特性を求めるが、各変調周波数毎のジッタ耐力値を効率的に検出するために、図6に示すフローチャートにしたがった処理を行なう。
【0008】
即ち、始めに、データ信号Dに付与するジッタ変調周波数fjを初期値f0に設定し、ジッタ量の可変回数を表す変数nを1にセットし、ジッタ量Jを付与可能な最大値Jmaxに設定して、誤り測定の開始を指示する(S1〜S4)。なお、実際の可変対象は変調信号Mの振幅値であるが、ここでは、ジッタ量(UI)で説明する。
【0009】
そして、誤り測定器12で測定された誤り率Eが所定値Rより大きいか否かを判定する(S5)。
【0010】
ここで、誤り率Eが所定値Rより大きいと判定されたとき、前回と同一判定か否かが判定され、同一判定であれば、次のジッタ量JをJmax/2だけ小さくして、nを1だけ増加更新して処理S4に戻る(S6〜S8)。
【0011】
また、誤り率Eが所定値R以下と判定されたとき、前回と同一判定か否かが判定され、同一判定であれば、ジッタ量JをJmax/2だけ大きくして、nを1だけ増加更新して処理S4に戻る(S9〜S11)。なお、処理S6、S9において初回(n=1)のときには同一判定とする。
【0012】
また、処理S6において、前回と判定が異なる場合には、前回のジッタ量J(n−1)と今回のジッタ量J(n)との差の絶対値ΔJを求め、その値ΔJが許容値rより小さいか否かを判定し、許容値rより大きいときには処理S7へ移行し、許容値以内であれば、前回のジッタ量J(n−1)をジッタ耐力値と決定する(S12〜S14)。
【0013】
また、処理S9において、前回と判定が異なる場合には、前回のジッタ量J(n−1)と今回のジッタ量Jnとの差の絶対値ΔJを求め、その値ΔJが許容値rより小さいか否かを判定し、許容値rより大きいときには処理S10へ移行し、許容値以内であれば、今回のジッタ量J(n)をジッタ耐力値と決定する(S15〜S17)。
【0014】
図7は、あるジッタ変調周波数における測定対象1のジッタ耐力値Jxに対する上記処理によるジッタ量の変化例を示す図であり、付与するジッタ量は最大値JmaxからJmax/2へ可変され、さらにJxより小さいJmax/4まで可変されると誤り率Eが所定値R以下になる。
【0015】
そして、今度は逆にジッタ量が(Jmax/4)+(Jmax/8)まで大きくなって、誤り率Eが所定値Rを越えると、ジッタ量が(Jmax/4)+(Jmax/8)−(Jmax/16)まで可変されて、再び誤り率Eが所定値Rより小さくなる。
【0016】
以下、同様のジッタ量の可変処理が繰り返され、データ信号Dに付与されるジッタ量がジッタ耐力Jxに漸近して、誤り率Eが所定値Rより大きい状態と小さい状態とが交互に現れて、そのジッタ量の偏差ΔJが許容値r内に入ったときのジッタ量またはその前のジッタ量がジッタ耐力値として検出される。
【0017】
このようなジッタ耐力の検出処理を、全てのジッタ変調周波数について行なうことで、前記した図4のジッタ耐力特性を得ることができる(S18、S19)。
【0018】
なお、上記したようにジッタ量を可変してジッタ耐力を自動測定する技術は、次の特許文献1に開示されている。
【0019】
【特許文献1】
特開平8−50156公報
【0020】
【発明が解決しようとする課題】
しかしながら、上記のような従来のジッタ耐力測定装置で、SDH、SONET、OTN等のネットワークで使用されるフレームデータを用いて測定を行なった場合、測定対象が特定エラー状態、例えば、フレーム同期外れを表すLOF、ペイロード部の同期外れを表すPattern Sync.Loss、出力遮断を表すLOS等の状態が発生する。
【0021】
これらの特定エラー状態は、ジッタの急激な付与や変化に対して測定対象が一時的に発生するものであり、ジッタ変調周波数によってもその発生頻度が異なるが、前記した従来のジッタ耐力測定装置では、この特定エラー状態が考慮されておらず、特定エラー状態が発生しているときでもデータ信号D′に対する誤り率の測定を行ない、その結果に対してジッタ量の可変処理を行なうため、測定対象のジッタ耐力を正しく測定できないという問題があった。
【0022】
即ち、図8に示すように、ジッタの付与時や可変時に特定エラーEsが発生すると、その特定エラーによって誤り率Eが所定値Rを越え、付与するジッタ量がジッタ耐力値Jxに対し異常に小さい値に追い込まれたり、可変幅が小さくなった段階で特定エラーがなくなってもジッタ耐力値Jxに漸近できなくなってしまい、測定対象のジッタ耐力を正しく求めることができない。
【0023】
本発明は、この問題を解決し、特定エラー状態が発生しても、測定対象のジッタ耐力を正しく自動測定できるジッタ耐力測定装置を提供することを目的としている。
【0024】
【課題を解決するための手段】
前記目的を達成するために、本発明の請求項1のジッタ耐力測定装置は、
ジッタが付与されたデータ信号を生成して測定対象に入力するジッタ発生部(11)と、
前記データ信号を受けた測定対象から出力されるデータ信号の誤り率を測定する誤り測定器(12)と、
前記ジッタ発生部がデータ信号に付与するジッタ量を、予め設定された変化幅で且つ前記誤り率測定器の測定結果に応じて増減可変し、前記誤り率が所定値以内に入る最大のジッタ量を、測定対象のジッタ耐力値として求めるジッタ耐力検出部(13)とを有するジッタ耐力測定装置において、
前記ジッタ耐力検出部がジッタ量を可変する毎に、測定対象が特定エラー状態か否かを判定する特定エラー判定手段(21)と、
測定対象が前記特定エラー状態になっている間、前記誤り測定器による測定動作を停止させる誤り測定規制手段(23)とを設けたことを特徴としている。
【0025】
また、本発明の請求項2のジッタ耐力測定装置は、請求項1のジッタ耐力測定装置において、
測定対象が前記特定エラー状態になってから復帰するまでに必要な復帰時間を予め記憶している復帰時間メモリ(22)を有し、
前記誤り測定規制手段は、前記特定エラー判定手段によって前記特定エラー状態と判定されたとき、前記誤り測定器による測定動作を前記復帰時間メモリに記憶されている復帰時間だけ停止させることを特徴としている。
【0026】
【発明の実施の形態】
以下、図面に基づいて本発明の実施の形態を説明する。
図1は、本発明を適用したジッタ耐力測定装置20の構成を示している。
【0027】
なお、図1において、ジッタ発生部11、誤り測定器12、ジッタ耐力検出部13は、前記した従来のジッタ耐力測定装置10と同等であるので、同一符号を付している。
【0028】
即ち、このジッタ耐力測定装置20のジッタ発生部11は、ジッタ耐力検出部13によって指定されたジッタ変調周波数fjと振幅Vmの変調信号Mを発生する変調信号発生器11aと、変調信号Mによって位相変調されたクロック信号に同期するデータ信号Dを発生するジッタ信号発生器11bによって構成され、変調信号Mの振幅Vmに比例するジッタ量が付与されたデータ信号Dを生成し、測定対象1に入力する。
【0029】
また、誤り測定器12は、測定の指示を受ける毎に、測定対象1から出力されるデータ信号D′の誤り率を測定し、その測定結果Eをジッタ耐力検出部13に出力する。
【0030】
ジッタ耐力検出部13は、ジッタ発生部11がデータ信号Dに付与するジッタ量を、予め設定された変化幅で且つ誤り率測定器12の測定結果に応じて増減可変し、誤り率が所定値以内に入る最大のジッタ量を、測定対象1のジッタ耐力値として求める。
【0031】
このジッタ耐力検出部13の処理は、基本的には前記した図6のフローチャートの手順と同じであるが、誤り測定の開始を指示する情報は、後述する誤り測定規制手段23から誤り測定器12へ通知される。
【0032】
特定エラー判定手段21は、ジッタ耐力検出部13がデータ信号Dに付与するジッタ量を可変制御する毎に、測定対象1から出力されるデータ信号D′を解析して測定対象1が前記LOF(フレーム同期外れ)、LOS(出力遮断)、Pattern Syc.Loss(ペイロード同期外れ)等の特定エラー状態になっているか否かを判定する。
【0033】
復帰時間メモリ22には、測定対象1が特定エラー状態になってから復帰するまでに必要な復帰時間T1〜Tnが予め記憶されている。この復帰時間は予め測定対象1について測定された時間に余裕度を与えてその時間の例えば1.2倍に設定されている。
【0034】
誤り測定規制手段23は、特定エラー判定手段21によって特定エラー状態と判定されたとき、誤り測定器12による誤り測定動作を復帰時間メモリ22に記憶されている復帰時間だけ停止させ、この復帰時間経過後に誤り測定動作を開始させる。つまり、誤り測定器12の測定開始タイミングを復帰時間分遅延させる。
【0035】
復帰時間設定手段24は、図示しない操作部等の操作によって特定エラーに対応する復帰時間を復帰時間メモリ22に記憶するためのものである。
【0036】
図2は、ジッタ耐力検出部13、特定エラー判定手段21、誤り測定規制手段23による処理手順を示すフローチャートである。
【0037】
以下、このフローチャートにしたがって実施形態のジッタ耐力測定装置20の動作を説明する。なお、この図2のフローチャートにおいて、前記図6のフローチャートと同一処理については同一符号を付している。
【0038】
始めに、前記同様に、データ信号Dに付与するジッタの変調周波数fjを初期値f0に設定し、ジッタ量の可変回数を表す変数nを1にセットし、ジッタ量Jを付与可能な最大値Jmaxに設定する(S1〜S3)。なお、実際の可変対象は変調信号Mの振幅値Vmであるが、前記したように、ジッタ量は変調信号Mの振幅値Vmに比例しているので、ここでは、ジッタ量(UI)を可変するものとして説明する。
【0039】
上記のようにジッタ量が設定されたとき、前記特定エラー判定手段21によって測定対象1が特定エラー状態か否かが判定され、特定エラー状態で無ければ、直ちに誤り測定器12に対して測定の開始が指示され、データ信号D′に対する誤り測定が開始される(S21、S5)。
【0040】
そして、前記同様に、誤り測定器12で測定された誤り率Eが所定値Rより大きいか否かを判定し、誤り率Eが所定値Rより大きいと判定されたとき、前回と同一判定か否かが判定され、同一判定であれば、次のジッタ量JをJmax/2だけ小さくして、nを1だけ増加更新して処理S21に戻る(S5〜S8)。
【0041】
また、誤り率Eが所定値R以下と判定されたとき、前回と同一判定か否かが判定され、同一判定であれば、ジッタ量JをJmax/2だけ大きくして、nを1だけ増加更新して処理S21に戻る(S9〜S11)。なお、処理S6、S9において初回(n=1)のときには同一判定とする。
【0042】
また、処理S6において、前回と判定が異なる場合には、前回のジッタ量J(n−1)と今回のジッタ量J(n)との差の絶対値ΔJを求め、その値ΔJが許容値rより小さいか否かを判定し、許容値rより大きいときには処理S7へ移行し、許容値以内であれば、前回のジッタ量J(n−1)をジッタ耐力と決定する(S12〜S14)。
【0043】
また、処理S9において、前回と判定が異なる場合には、前回のジッタ量J(n−1)と今回のジッタ量Jnとの差の絶対値ΔJを求め、その値ΔJが許容値rより小さいか否かを判定し、許容値rより大きいときには処理S10へ移行し、許容値以内であれば、今回のジッタ量J(n)をジッタ耐力と決定する(S15〜S17)。
【0044】
また、ジッタ量が可変されたときに、処理S21で特定エラー状態と判定されると、その特定エラーに対応する復帰時間Th分だけ待機状態となり、その復帰時間Thが経過した後に誤り測定器12に対して測定の開始が指示され、データ信号D′に対する誤り測定が開始されることになる(S22)。
【0045】
図3は、あるジッタ変調周波数における測定対象1のジッタ耐力値Jxに対する上記処理によるジッタ量の変化例を示す図であり、最大のジッタJmaxを付与したときに特定エラーEsが発生した場合、その時点から特定エラーに対応した復帰時間Thの待機状態となり、その間誤り測定は停止される。この待機時間中に測定対象1は特定エラー状態から正常状態に復帰する。
【0046】
そして、復帰時間Thが経過して特定エラー状態でなくなったタイミングから誤り測定が開始されるが、この段階では付与したジッタ量がジッタ耐力値Jxより大きいため、測定で得られた誤り率Eは所定値Rより大きくなる。
【0047】
したがって、ジッタ量がJmax/2に減少可変される。ここで、測定対象1が再び特定エラー状態になると、その特定エラーに対応した復帰時間Thだけ待機状態となり、復帰時間Thが経過した後に誤り測定が開始される。
【0048】
この段階では付与したジッタ量がジッタ耐力値Jxよりまだ大きいため、測定で得られた誤り率Eは所定値Rより大きくなり、ジッタ量がJxより小さいJmax/4に減少可変される。
【0049】
ここで、測定対象1が特定エラー状態でないとすれば、直ちに誤り測定が開始されるが、この段階では付与したジッタ量がジッタ耐力値Jxより小さくなっているので、測定で得られた誤り率Eは所定値R以下となる。
【0050】
したがって、ジッタ量は(Jmax/4)+(Jmax/8)に増大可変される。ここで、測定対象1が再び特定エラー状態になると、その特定エラーに対応した復帰時間Thだけ待機状態となり、復帰時間Thが経過した後に誤り測定が開始されるが、この段階で付与したジッタ量がジッタ耐力値Jxを再び越えるためため、測定で得られた誤り率Eは再び所定値Rより大きくなり、ジッタ量が(Jmax/4)+(Jmax/8)−(Jmax/16)に可変される。
【0051】
以下同様の可変処理がなされ、データ信号Dに付与されるジッタ量がジッタ耐力Jxに漸近して、誤り率Eが所定値Rより大きい状態と小さい状態とが交互に現れて、そのジッタ量の偏差ΔJが許容値r内に入ったときのジッタ量またはその前のジッタ量がジッタ耐力値として検出される。
【0052】
上記ジッタ耐力の検出処理を、全てのジッタ変調周波数について行なうことで、測定対象1のジッタ耐力特性を得ることができる(S18、S19)。
【0053】
このようにして得られた測定対象のジッタ耐力特性JTは、前記図4で示したように、規格特性Rと対比可能な状態で図示しない表示器に表示され、この表示から測定対象1のジッタ耐力特性JTが規格特性Rを満足しているか否かを把握することができる。
【0054】
このように実施形態のジッタ耐力測定装置20は、ジッタの付与時や変化時に測定対象が特定のエラー状態になった場合に、その特定エラーに対応した復帰時間だけ待ってから誤り測定を開始しているので、特定エラー状態の誤り測定による誤った耐力値の検出を防ぐことができ、測定対象1のジッタ耐力を正しく測定することができる。
【0055】
なお、上記したジッタ耐力測定装置20では、付与するジッタ量の可変幅を1/2ずつ小さくしているが、ジッタ量の可変方法は任意であり、この実施形態に限定されるものではない。例えば、誤り率Eと所定値Rの大小関係が変わるまでは同一幅で可変し、大小関係が変わる毎に順次可変幅を小さくしていって、ジッタ耐力値を求めてもよい。
【0056】
また、上記したジッタ耐力測定装置20では、特定エラーが検出されたとき、誤り測定の開始を予め復帰時間メモリ22に記憶されている復帰時間だけ遅らせていたが、復帰時間メモリ22を用いずに、特定エラー判定手段21による特定エラーの検出動作を継続的に行い、測定対象1が特定エラー状態から復帰したと判定されたときに、誤り測定を開始するようにしてもよい。この場合には、実際の復帰時間分の遅れだけで済む。
【0057】
【発明の効果】
以上説明したように、本発明のジッタ耐力測定装置は、ジッタ量の設定時や可変時に、測定対象が特定のエラー状態か否かを判定し、特定エラー状態と判定された場合に、少なくともその特定エラーが復帰する時間だけ待ってから誤り測定を開始している。
【0058】
このため、特定エラー状態の誤り測定による誤った耐力値の検出を防ぐことができ、測定対象1のジッタ耐力を正しく測定することができる。
【図面の簡単な説明】
【図1】本発明の実施形態の構成を示す図
【図2】実施形態の要部の処理手順を示すフローチャート
【図3】実施形態の動作を説明するための図
【図4】測定対象のジッタ耐力特性と規格特性の一例を示す図
【図5】従来装置の構成を示す図
【図6】従来装置のジッタ耐力検出処理の手順を示すフローチャート
【図7】従来装置の動作を説明するための図
【図8】特定エラーがあるときの従来装置の動作を説明するための図
【符号の説明】
1……測定対象、11……ジッタ発生部、11a……変調信号発生器、11b……ジッタ信号発生器、12……誤り測定器、13……ジッタ耐力検出部、20……ジッタ耐力測定装置、21……特定エラー判定手段、22……復帰時間メモリ、23……誤り測定規制手段、24……復帰時間設定手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for enabling an accurate jitter tolerance characteristic to be measured in a jitter tolerance measurement apparatus even when a measurement target is in a specific error state due to a variable amount of jitter.
[0002]
[Prior art]
Regarding the jitter characteristics of devices connected to networks such as SDH, SONET, and OTN, there is a jitter tolerance characteristic as a typical characteristic defined in international standards such as ITU-T and Telcordia.
[0003]
The jitter tolerance characteristic indicates how much jitter the device to be measured can withstand for each jitter frequency, and the characteristic JT obtained by measurement and the standard characteristic R are compared as shown in FIG. Thus, the quality of the jitter tolerance of the measurement object can be determined.
[0004]
In order to automatically measure the jitter tolerance, a jitter tolerance measuring apparatus 10 shown in FIG. 5 is used.
[0005]
The jitter tolerance measuring apparatus 10 includes a jitter generator 11 that generates a data signal D to which jitter has been added and inputs the data signal D to the measurement target 1, and a data signal D ′ output from the measurement target 1 that has received the data signal D. An error measuring device 12 for measuring the error rate of the error rate, and a jitter amount provided to the data signal D by the jitter generating unit 11 within a predetermined change width and variable according to the measurement result of the error rate measuring device 12, And a jitter tolerance detecting unit 13 for obtaining a maximum jitter amount in which the error rate E falls within a predetermined value as a jitter tolerance value of the measurement object 1.
[0006]
The jitter generator 11 includes a modulation signal generator 11a that generates a modulation signal M having a specified modulation frequency and amplitude, and a jitter signal generator that generates a data signal D that is synchronized with a clock signal phase-modulated by the modulation signal M. 11b, and generates a data signal D to which a jitter amount proportional to the amplitude of the modulation signal M is given.
[0007]
The jitter tolerance detector 13 variably controls the modulation frequency and amplitude of the modulation signal M output from the modulation signal generator 11a to obtain the jitter tolerance characteristics of the measurement object 1, but the jitter tolerance value for each modulation frequency is efficiently obtained. Therefore, processing according to the flowchart shown in FIG. 6 is performed.
[0008]
That is, first, the jitter modulation frequency fj to be applied to the data signal D is set to the initial value f0, the variable n representing the variable number of jitters is set to 1, and the jitter value J is set to the maximum value Jmax that can be given. Then, the start of error measurement is instructed (S1 to S4). Note that the actual variable object is the amplitude value of the modulation signal M, but here it will be described by the jitter amount (UI).
[0009]
Then, it is determined whether or not the error rate E measured by the error measuring device 12 is larger than a predetermined value R (S5).
[0010]
Here, when it is determined that the error rate E is greater than the predetermined value R, it is determined whether or not it is the same determination as the previous time. If the determination is the same, the next jitter amount J is reduced by Jmax / 2n , n is incremented by 1 and the process returns to step S4 (S6 to S8).
[0011]
When it is determined that the error rate E is equal to or less than the predetermined value R, it is determined whether or not it is the same determination as the previous time. If the determination is the same, the jitter amount J is increased by Jmax / 2n and n is set to 1. The update is increased and the process returns to step S4 (S9 to S11). In the processes S6 and S9, the same determination is made for the first time (n = 1).
[0012]
If the determination in step S6 is different from the previous time, an absolute value ΔJ of the difference between the previous jitter amount J (n−1) and the current jitter amount J (n) is obtained, and the value ΔJ is an allowable value. It is determined whether or not the value is smaller than r. If the value is larger than the allowable value r, the process proceeds to step S7. If the value is within the allowable value, the previous jitter amount J (n-1) is determined as the jitter tolerance value (S12 to S14). ).
[0013]
If the determination in step S9 is different from the previous determination, an absolute value ΔJ of the difference between the previous jitter amount J (n−1) and the current jitter amount Jn is obtained, and the value ΔJ is smaller than the allowable value r. If it is larger than the allowable value r, the process proceeds to step S10. If it is within the allowable value, the current jitter amount J (n) is determined as the jitter tolerance value (S15 to S17).
[0014]
FIG. 7 is a diagram showing an example of a change in the jitter amount by the above processing with respect to the jitter tolerance value Jx of the measuring object 1 at a certain jitter modulation frequency. The jitter amount to be applied is changed from the maximum value Jmax to Jmax / 2, and further Jx When the value is changed to a smaller Jmax / 4, the error rate E becomes a predetermined value R or less.
[0015]
On the contrary, when the jitter amount increases to (Jmax / 4) + (Jmax / 8) and the error rate E exceeds a predetermined value R, the jitter amount becomes (Jmax / 4) + (Jmax / 8). -(Jmax / 16) is varied, and the error rate E becomes smaller than the predetermined value R again.
[0016]
Thereafter, the same jitter amount variable processing is repeated, and the jitter amount given to the data signal D asymptotically approaches the jitter tolerance Jx, so that the error rate E is alternately larger and smaller than the predetermined value R. The jitter amount when the deviation ΔJ of the jitter amount falls within the allowable value r or the previous jitter amount is detected as the jitter tolerance value.
[0017]
By performing such jitter tolerance detection processing for all jitter modulation frequencies, the above-described jitter tolerance characteristics of FIG. 4 can be obtained (S18, S19).
[0018]
The technique for automatically measuring the jitter tolerance by varying the jitter amount as described above is disclosed in the following Patent Document 1.
[0019]
[Patent Document 1]
JP-A-8-50156 [0020]
[Problems to be solved by the invention]
However, when measurement is performed using frame data used in a network such as SDH, SONET, and OTN with the conventional jitter tolerance measuring apparatus as described above, the measurement object is in a specific error state, for example, out of frame synchronization. LOF representing Pattern, Pattern Sync. A state such as Loss or LOS indicating output interruption occurs.
[0021]
These specific error states are those in which the measurement target is temporarily generated in response to a sudden addition or change in jitter, and the frequency of occurrence varies depending on the jitter modulation frequency. In the conventional jitter tolerance measuring apparatus described above, Since the specific error state is not taken into account, the error rate for the data signal D ′ is measured even when the specific error state occurs, and the jitter amount is variably processed for the result. There has been a problem that the jitter tolerance of the laser cannot be measured correctly.
[0022]
That is, as shown in FIG. 8, when a specific error Es occurs when jitter is applied or variable, the error rate E exceeds a predetermined value R due to the specific error, and the amount of jitter to be applied becomes abnormal with respect to the jitter tolerance value Jx. Even if there is no specific error when the variable width is reduced or the variable width becomes small, it becomes impossible to asymptotically approach the jitter tolerance value Jx, and the jitter tolerance of the measurement target cannot be obtained correctly.
[0023]
An object of the present invention is to solve this problem and to provide a jitter tolerance measuring apparatus capable of correctly and automatically measuring the jitter tolerance of a measurement object even if a specific error state occurs.
[0024]
[Means for Solving the Problems]
In order to achieve the above object, a jitter tolerance measuring apparatus according to claim 1 of the present invention comprises:
A jitter generator (11) for generating a data signal to which jitter is added and inputting the data signal to a measurement target;
An error measuring device (12) for measuring an error rate of a data signal output from a measurement object receiving the data signal;
The jitter amount given to the data signal by the jitter generator is increased or decreased in accordance with a preset change width and the measurement result of the error rate measuring device, and the maximum jitter amount within which the error rate falls within a predetermined value In a jitter tolerance measuring apparatus having a jitter tolerance detector (13) for obtaining a jitter tolerance value of a measurement object,
Specific error determination means (21) for determining whether or not the measurement target is in a specific error state each time the jitter tolerance detector varies the jitter amount;
An error measurement restricting means (23) for stopping the measurement operation by the error measuring device while the measurement target is in the specific error state is provided.
[0025]
A jitter tolerance measuring apparatus according to claim 2 of the present invention is the jitter tolerance measuring apparatus according to claim 1,
A return time memory (22) for storing in advance a return time required for the measurement object to return after it enters the specific error state;
The error measurement restricting means stops the measurement operation by the error measuring device for a return time stored in the return time memory when the specific error determination means determines that the specific error state has occurred. .
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows the configuration of a jitter tolerance measuring apparatus 20 to which the present invention is applied.
[0027]
In FIG. 1, the jitter generator 11, the error measuring device 12, and the jitter tolerance detector 13 are the same as those of the conventional jitter tolerance measuring apparatus 10 described above, and are therefore given the same reference numerals.
[0028]
That is, the jitter generator 11 of the jitter tolerance measuring apparatus 20 includes a modulation signal generator 11 a that generates a modulation signal M having a jitter modulation frequency fj and an amplitude Vm designated by the jitter tolerance detector 13, and a phase based on the modulation signal M. A jitter signal generator 11b that generates a data signal D synchronized with the modulated clock signal is generated, and a data signal D to which a jitter amount proportional to the amplitude Vm of the modulation signal M is given is generated and input to the measurement object 1. To do.
[0029]
Each time the error measuring device 12 receives a measurement instruction, the error measuring device 12 measures the error rate of the data signal D ′ output from the measurement target 1 and outputs the measurement result E to the jitter tolerance detecting unit 13.
[0030]
The jitter tolerance detecting unit 13 varies the amount of jitter given to the data signal D by the jitter generating unit 11 in accordance with a preset change width and the measurement result of the error rate measuring device 12, and the error rate is a predetermined value. The maximum jitter amount falling within the range is obtained as the jitter tolerance value of the measurement object 1.
[0031]
The processing of the jitter tolerance detecting unit 13 is basically the same as the procedure of the flowchart of FIG. 6 described above, but information for instructing the start of error measurement is sent from the error measurement restricting means 23 described later to the error measuring device 12. To be notified.
[0032]
The specific error determination unit 21 analyzes the data signal D ′ output from the measurement target 1 every time the jitter tolerance detection unit 13 variably controls the jitter amount given to the data signal D, and the measurement target 1 determines that the LOF ( Out of frame synchronization), LOS (output cut-off), Pattern Sync. It is determined whether or not a specific error state such as Loss (payload synchronization loss) has occurred.
[0033]
The return time memory 22 stores in advance the return times T1 to Tn necessary for the measurement object 1 to return after returning to the specific error state. This return time is set to, for example, 1.2 times as long as a margin is given to the time previously measured for the measuring object 1.
[0034]
The error measurement restricting means 23 stops the error measurement operation by the error measuring device 12 for the return time stored in the return time memory 22 when the specific error determination means 21 determines that the specific error state has occurred, and this return time elapses. The error measurement operation is started later. That is, the measurement start timing of the error measuring device 12 is delayed by the return time.
[0035]
The return time setting means 24 is for storing a return time corresponding to a specific error in the return time memory 22 by operating an operation unit (not shown).
[0036]
FIG. 2 is a flowchart showing a processing procedure performed by the jitter tolerance detection unit 13, the specific error determination unit 21, and the error measurement regulation unit 23.
[0037]
The operation of the jitter tolerance measuring apparatus 20 according to the embodiment will be described below according to this flowchart. In the flowchart of FIG. 2, the same processes as those in the flowchart of FIG.
[0038]
First, similarly to the above, the modulation frequency fj of the jitter to be added to the data signal D is set to the initial value f0, the variable n indicating the variable number of jitters is set to 1, and the maximum value that can give the jitter amount J is set. Set to Jmax (S1 to S3). Note that the actual variable object is the amplitude value Vm of the modulation signal M. However, as described above, the jitter amount is proportional to the amplitude value Vm of the modulation signal M, and therefore the jitter amount (UI) is variable here. It will be described as being.
[0039]
When the jitter amount is set as described above, it is determined by the specific error determining means 21 whether or not the measurement object 1 is in the specific error state. Start is instructed, and error measurement for the data signal D ′ is started (S21, S5).
[0040]
Then, similarly to the above, it is determined whether or not the error rate E measured by the error measuring device 12 is greater than the predetermined value R. When it is determined that the error rate E is greater than the predetermined value R, is the same determination as the previous time? If the determination is the same, the next jitter amount J is decreased by Jmax / 2n , n is increased by 1, and the process returns to step S21 (S5 to S8).
[0041]
When it is determined that the error rate E is equal to or less than the predetermined value R, it is determined whether or not it is the same determination as the previous time. If the determination is the same, the jitter amount J is increased by Jmax / 2n and n is set to 1. The update is increased and the process returns to S21 (S9 to S11). In the processes S6 and S9, the same determination is made for the first time (n = 1).
[0042]
If the determination in step S6 is different from the previous time, an absolute value ΔJ of the difference between the previous jitter amount J (n−1) and the current jitter amount J (n) is obtained, and the value ΔJ is an allowable value. It is determined whether or not the value is smaller than r. If the value is larger than the allowable value r, the process proceeds to step S7. If the value is within the allowable value, the previous jitter amount J (n-1) is determined as the jitter tolerance (S12 to S14). .
[0043]
If the determination in step S9 is different from the previous determination, an absolute value ΔJ of the difference between the previous jitter amount J (n−1) and the current jitter amount Jn is obtained, and the value ΔJ is smaller than the allowable value r. If it is larger than the allowable value r, the process proceeds to step S10. If it is within the allowable value, the current jitter amount J (n) is determined as the jitter tolerance (S15 to S17).
[0044]
Further, when the jitter amount is varied, if it is determined in the processing S21 that the specific error state has occurred, the error measuring device 12 enters a standby state for the return time Th corresponding to the specific error, and after the return time Th has elapsed. Is started, and error measurement for the data signal D 'is started (S22).
[0045]
FIG. 3 is a diagram showing an example of a change in the jitter amount by the above processing with respect to the jitter tolerance value Jx of the measuring object 1 at a certain jitter modulation frequency. When a specific error Es occurs when the maximum jitter Jmax is given, From the time point, a return time Th corresponding to the specific error is entered, and error measurement is stopped during that time. During this waiting time, the measuring object 1 returns from the specific error state to the normal state.
[0046]
Then, error measurement is started from the timing when the return time Th elapses and the specific error state disappears. At this stage, since the added jitter amount is larger than the jitter tolerance value Jx, the error rate E obtained by the measurement is It becomes larger than the predetermined value R.
[0047]
Therefore, the jitter amount is reduced and varied to Jmax / 2. Here, when the measurement object 1 again enters the specific error state, the measurement object 1 enters a standby state for the return time Th corresponding to the specific error, and error measurement is started after the return time Th has elapsed.
[0048]
At this stage, since the applied jitter amount is still larger than the jitter tolerance value Jx, the error rate E obtained by measurement becomes larger than the predetermined value R, and the jitter amount is decreased and varied to Jmax / 4 smaller than Jx.
[0049]
Here, if the measurement object 1 is not in the specific error state, error measurement is started immediately. At this stage, since the added jitter amount is smaller than the jitter tolerance value Jx, the error rate obtained by the measurement is E becomes a predetermined value R or less.
[0050]
Therefore, the jitter amount is increased and varied to (Jmax / 4) + (Jmax / 8). Here, when the measurement object 1 again enters the specific error state, the measurement object 1 enters a standby state for the return time Th corresponding to the specific error, and error measurement is started after the return time Th has elapsed. , The error rate E obtained by the measurement again becomes larger than the predetermined value R, and the jitter amount is variable to (Jmax / 4) + (Jmax / 8) − (Jmax / 16). Is done.
[0051]
Thereafter, the same variable processing is performed, and the jitter amount given to the data signal D gradually approaches the jitter tolerance Jx, so that the error rate E is alternately larger and smaller than the predetermined value R. The jitter amount when the deviation ΔJ falls within the allowable value r or the previous jitter amount is detected as the jitter tolerance value.
[0052]
By performing the jitter tolerance detection process for all jitter modulation frequencies, the jitter tolerance characteristics of the measurement object 1 can be obtained (S18, S19).
[0053]
The jitter tolerance characteristic JT of the measurement target obtained in this way is displayed on a display (not shown) in a state that can be compared with the standard characteristic R as shown in FIG. Whether or not the proof stress characteristic JT satisfies the standard characteristic R can be grasped.
[0054]
As described above, the jitter tolerance measuring apparatus 20 according to the embodiment starts error measurement after waiting for a return time corresponding to a specific error when a measurement target is in a specific error state when jitter is applied or changed. Therefore, it is possible to prevent detection of an erroneous proof strength value due to error measurement in a specific error state, and it is possible to correctly measure the jitter proof strength of the measurement target 1.
[0055]
In the jitter tolerance measuring apparatus 20 described above, the variable width of the jitter amount to be applied is reduced by ½, but the method of changing the jitter amount is arbitrary and is not limited to this embodiment. For example, the jitter tolerance value may be obtained by varying the same width until the magnitude relationship between the error rate E and the predetermined value R changes, and gradually reducing the variable width every time the magnitude relationship changes.
[0056]
In the jitter tolerance measuring apparatus 20 described above, when a specific error is detected, the start of error measurement is delayed by the return time stored in the return time memory 22 in advance, but the return time memory 22 is not used. Alternatively, the specific error detection unit 21 may continuously perform the specific error detection operation, and may start error measurement when it is determined that the measurement target 1 has returned from the specific error state. In this case, only a delay corresponding to the actual return time is required.
[0057]
【The invention's effect】
As described above, the jitter tolerance measuring apparatus according to the present invention determines whether or not the measurement target is in a specific error state when setting or changing the jitter amount. Error measurement is started after waiting for a time for the specific error to recover.
[0058]
For this reason, it is possible to prevent erroneous tolerance values from being detected by error measurement in a specific error state, and to correctly measure the jitter tolerance of the measurement object 1.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of an embodiment of the present invention. FIG. 2 is a flowchart showing a processing procedure of a main part of the embodiment. FIG. 3 is a diagram for explaining an operation of the embodiment. FIG. 5 is a diagram showing an example of jitter tolerance characteristics and standard characteristics. FIG. 5 is a diagram showing a configuration of a conventional apparatus. FIG. 6 is a flowchart showing a procedure of jitter tolerance detection processing of the conventional apparatus. Fig. 8 is a diagram for explaining the operation of the conventional device when there is a specific error.
DESCRIPTION OF SYMBOLS 1 ... Measurement object, 11 ... Jitter generator, 11a ... Modulation signal generator, 11b ... Jitter signal generator, 12 ... Error measuring device, 13 ... Jitter tolerance detector, 20 ... Jitter tolerance measurement Device 21... Specific error judging means 22... Recovery time memory 23. Error measuring regulation means 24 .. return time setting means

Claims (2)

ジッタが付与されたデータ信号を生成して測定対象に入力するジッタ発生部(11)と、
前記データ信号を受けた測定対象から出力されるデータ信号の誤り率を測定する誤り測定器(12)と、
前記ジッタ発生部がデータ信号に付与するジッタ量を、予め設定された変化幅で且つ前記誤り率測定器の測定結果に応じて増減可変し、前記誤り率が所定値以内に入る最大のジッタ量を、測定対象のジッタ耐力値として求めるジッタ耐力検出部(13)とを有するジッタ耐力測定装置において、
前記ジッタ耐力検出部がジッタ量を可変する毎に、測定対象が特定エラー状態か否かを判定する特定エラー判定手段(21)と、
測定対象が前記特定エラー状態になっている間、前記誤り測定器による測定動作を停止させる誤り測定規制手段(23)とを設けたことを特徴とするジッタ耐力測定装置。
A jitter generator (11) for generating a data signal to which jitter is added and inputting the data signal to a measurement target;
An error measuring device (12) for measuring an error rate of a data signal output from a measurement object receiving the data signal;
The jitter amount given to the data signal by the jitter generator is increased or decreased in accordance with a preset change width and the measurement result of the error rate measuring device, and the maximum jitter amount within which the error rate falls within a predetermined value In a jitter tolerance measuring apparatus having a jitter tolerance detector (13) for obtaining a jitter tolerance value of a measurement object,
Specific error determination means (21) for determining whether or not the measurement target is in a specific error state each time the jitter tolerance detector varies the jitter amount;
A jitter tolerance measuring apparatus comprising an error measurement restricting means (23) for stopping the measurement operation by the error measuring device while the measurement target is in the specific error state.
測定対象が前記特定エラー状態になってから復帰するまでに必要な復帰時間を予め記憶している復帰時間メモリ(22)を有し、
前記誤り測定規制手段は、前記特定エラー判定手段によって前記特定エラー状態と判定されたとき、前記誤り測定器による測定動作を前記復帰時間メモリに記憶されている復帰時間だけ停止させることを特徴とする請求項1記載のジッタ耐力測定装置。
A return time memory (22) for storing in advance a return time required for the measurement object to return after it enters the specific error state;
The error measurement restricting means stops the measurement operation by the error measuring device for a return time stored in the return time memory when the specific error determination means determines that the specific error state is present. The jitter tolerance measuring apparatus according to claim 1.
JP2003195252A 2003-07-10 2003-07-10 Jitter tolerance measuring device Expired - Fee Related JP3886941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003195252A JP3886941B2 (en) 2003-07-10 2003-07-10 Jitter tolerance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003195252A JP3886941B2 (en) 2003-07-10 2003-07-10 Jitter tolerance measuring device

Publications (2)

Publication Number Publication Date
JP2005030868A JP2005030868A (en) 2005-02-03
JP3886941B2 true JP3886941B2 (en) 2007-02-28

Family

ID=34206158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003195252A Expired - Fee Related JP3886941B2 (en) 2003-07-10 2003-07-10 Jitter tolerance measuring device

Country Status (1)

Country Link
JP (1) JP3886941B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7313496B2 (en) * 2005-02-11 2007-12-25 Advantest Corporation Test apparatus and test method for testing a device under test
US7412341B2 (en) * 2006-03-28 2008-08-12 Advantest Corporation Jitter amplifier, jitter amplification method, electronic device, testing apparatus, and testing method
US8090009B2 (en) * 2007-08-07 2012-01-03 Advantest Corporation Test apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0850156A (en) * 1994-08-05 1996-02-20 Anritsu Corp Jitter resistance measuring device
WO2003007578A1 (en) * 2001-07-13 2003-01-23 Anritsu Corporation Jitter resistance measuring instrument and method for enabling efficient measurement of jitter resistance characteristic and adequate evaluation
DE10392318T5 (en) * 2002-02-26 2005-07-07 Advantest Corp. Measuring device and measuring method
US7054358B2 (en) * 2002-04-29 2006-05-30 Advantest Corporation Measuring apparatus and measuring method
JP4323873B2 (en) * 2003-06-13 2009-09-02 富士通株式会社 I / O interface circuit

Also Published As

Publication number Publication date
JP2005030868A (en) 2005-02-03

Similar Documents

Publication Publication Date Title
EP2528255B1 (en) A method and a device for controlling frequency synchronization
WO2018137548A1 (en) Clock synchronization device and method
EP2749968A1 (en) Time control device, time control method, and program
JP6133986B2 (en) System for generating system clock and temperature gradient detection system
JP2518148B2 (en) Clock dependent synchronization method
CN107800529B (en) Clock frequency synchronization method of network node
JP3886941B2 (en) Jitter tolerance measuring device
WO2022267591A1 (en) Clock switching method and apparatus, electronic device, and computer readable storage medium
JP2007251925A (en) Clock generation circuit
CN115918027B (en) Data transmission circuit and communication device
JP2009014363A (en) Semiconductor testing device
EP2190119A1 (en) Control apparatus and clock synchronizing method
JP2003188718A (en) Automatic frequency control method and apparatus for reference clock generator
JP3664393B2 (en) Method and circuit for determining frequency stability of network clock
JP4032526B2 (en) DPLL circuit
JP3034388B2 (en) Phase locked oscillator
KR100423155B1 (en) Jitter Attenuation Apparatus and Method of DP-PLL
JP6082419B2 (en) Data signal generating apparatus and data signal generating method
KR0131196B1 (en) Dp-pll phase error processing method
JP2001244812A (en) Method and device for clock switching
JP2833844B2 (en) Phase holding circuit
JP3177394B2 (en) Digital PLL circuit
JPH10215172A (en) Pll circuit
JPH04168824A (en) Phase synchronizing oscillation circuit
JPH02162407A (en) Controller

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees