JP3886858B2 - 電圧変動補償装置 - Google Patents

電圧変動補償装置 Download PDF

Info

Publication number
JP3886858B2
JP3886858B2 JP2002216915A JP2002216915A JP3886858B2 JP 3886858 B2 JP3886858 B2 JP 3886858B2 JP 2002216915 A JP2002216915 A JP 2002216915A JP 2002216915 A JP2002216915 A JP 2002216915A JP 3886858 B2 JP3886858 B2 JP 3886858B2
Authority
JP
Japan
Prior art keywords
voltage
phase
energy storage
storage means
voltage compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002216915A
Other languages
English (en)
Other versions
JP2004064831A (ja
Inventor
行盛 岸田
昭弘 鈴木
正樹 山田
寛 伊藤
明彦 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002216915A priority Critical patent/JP3886858B2/ja
Publication of JP2004064831A publication Critical patent/JP2004064831A/ja
Application granted granted Critical
Publication of JP3886858B2 publication Critical patent/JP3886858B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、負荷に供給される電力系統の電圧が瞬時的に変動した際に、それを検出して電圧変動を補償する電圧変動補償装置に関するものである。
【0002】
【従来の技術】
雷などにより電力系統の電圧が瞬時的に低下し、工場などの精密機器などが誤作動や一時停止することにより、生産ラインで多大な被害を被ることがある。このような被害を防ぐために、電力系統の瞬時的電圧低下などの電圧変動を監視して、電圧低下を補償する電圧変動補償装置が用いられている。
従来の電圧変動補償装置の概略構成図を図7に示す。図に示すように、送電線1からの電力は、変圧器2により降圧されて、電圧変動補償装置を介して需要家3(負荷)に接続され、電力が供給される。電圧変動補償装置は、直流電源4、インバータ5、平滑フィルタ6および大容量トランス7で構成される。
このような従来の電圧変動補償装置における、系統電圧の瞬時低下時(以下、瞬低時と称す)の電圧補償動作について以下に示す。
図8は、系統電圧の瞬低時の、系統電圧、電圧変動補償装置の補償電圧出力、および需要家3に供給される電圧をそれぞれ示したものである。図に示すように、系統電圧に瞬時的に電圧低下が発生すると、電圧変動を監視している検出部(図示せず)にて電圧低下を検出し、それに基づく給電制御により、電圧変動補償装置では、直流電源4とインバータ5とで交流電圧を発生させて、平滑フィルタ6と大容量のトランス7を介して電力系統に直列に接続することにより、電力系統の電圧低下を補償する。これにより、需要家3には、電圧低下した系統電圧に電圧変動補償装置から出力される補償電圧が加算されてほぼ正常な電圧で電力が供給される。
【0003】
上記のような電圧変動補償装置は、トランス7を介して電力系統に接続されるものであるが、近年、直列接続された複数個の電圧補償回路で構成される電圧変動補償装置を直接電力系統に直列に接続するものが開発されており、図9に基づいて以下に説明する。
図9に示すように、送電線1からの電力は、変圧器2により降圧されて、電圧変動補償装置100を介して需要家3(負荷)に接続され、電力が供給される。電圧変動補償装置100は、図に示すように、複数の電圧補償ユニット15と制御回路16とで構成され、正負いずれかの極性で補償電圧を出力する電圧補償回路PN1、PN2、PN3が電力系統に直列に接続される。各電圧補償ユニット15には、ダイオードが逆並列に接続された4個の半導体スイッチング素子9sw11〜9sw14、9sw21〜9sw24、9sw31〜9sw34から成るフルブリッジインバータ、およびエネルギ蓄積手段としての充電コンデンサ10pn1〜10pn3で構成される各電圧補償回路PN(PN1、PN2、PN3)と、充電コンデンサ10(10pn1〜10pn3)を充電するための充電ダイオード11と充電用トランス14の2次巻線13とが備えられる。また、充電コンデンサ10の充電電圧V1〜V3は、半導体スイッチング素子9(9sw11〜9sw14、9sw21〜9sw24、9sw31〜9sw34)のオン/オフ制御により正負いずれかの極性で電力系統に接続される。また、各電圧補償回路PNの出力端には、各電圧補償回路PNと並列に高速機械式の定常短絡スイッチ8が設けられる。
充電コンデンサ10は充電ダイオード11と充電用トランス14の2次巻線13によってそれぞれ異なる電圧が充電され、充電用トランス1次巻線12は、電力系統と接続される。各電圧補償回路PN1、PN2、PN3内の充電コンデンサ10に充電される電圧の比は概ね2のべき乗比に設定されている。つまり、以下の関係を満足させる。
V3=2×V2=2×2×V1
【0004】
定常短絡スイッチ8および各半導体スイッチング素子9は制御回路16に接続される。この制御回路16の構成および動作について、図10に基づいて以下に説明する。
図10に示すように、系統電圧は制御回路16に入力され、設定電圧20と比較される。このとき設定電圧20は、正常時の系統電圧とする。両者の差を誤差増幅器21にて増幅し、さらに絶対値変換を施した後、A/Dコンバータ22にて3ビットのデジタル信号(D1〜D3)に変換する。系統電圧と設定電圧20との差が、充電コンデンサ10pn1の充電電圧V1と等しくなったとき、A/Dコンバータ22からの出力信号における最下位ビットD1のみが1、即ち゛001゛となるよう、また、同様に゛010゛・・・゛111゛の場合も、充電コンデンサ10の充電電圧の組み合わせと等しくなるように誤差増幅器21のゲインは予め調整しておく。
D1〜D3の信号のいずれかが1となると、NOR回路23を通して、信号z(=0)により定常短絡スイッチ8をオフする。
一方、電圧瞬低制御回路16に入力された系統電圧は、極性判定回路24にも入力され、極性が判定される。25は、各電圧補償サブ回路PNのインバータの駆動信号を発生する駆動信号発生器で、系統電圧の極性が正・負の場合に応じて、デジタル信号D1〜D3にてアクテイブとなる信号g11〜g14、g21〜g24、g31〜g34を選択する。
【0005】
例えば、図9で示す電圧補償回路PN1においては、最下位ビットD1=1のときに、系統電圧の極性が正の場合、スイッチング素子9sw11、9sw14をオンし、スイッチング素子9sw12、9sw13をオフすることにより、充電電圧V1を正極性で出力する。また系統電圧の極性が負の場合、スイッチング素子9sw12、9sw13をオンし、スイッチング素子9sw11、9sw14をオフすることにより、充電電圧V1を負極性で出力する。またD1=0のとき、スイッチング素子9sw11〜9sw14、のうち上アーム側9sw12、9sw14あるいは下アーム側9sw11、9sw13のどちらか一方をオン状態とし他方をオフ状態として出力端を短絡し、電圧補償回路PN1からの出力をほぼゼロとする。
通常時、即ちデジタル信号D1〜D3が全て0の時は、定常短絡スイッチ8はオン状態で、電流は定常短絡スイッチ8を流れる。また電力系統の電圧低下時には、誤差電圧に応じて発生されたデジタル信号D1〜D3によって選択された各電圧補償回路PN1、PN2、PN3において、補償電圧が出力される。これらの出力は、系統にて組み合わされ、゛000゛〜゛111゛の8階調の電圧出力を発生することができ、最大の補償電圧は、7×V1となる。
【0006】
このような従来の電圧変動補償装置100は、複数の電圧補償回路PN1〜PN3を備えて補償電圧を階調制御により出力するため、系統電圧の瞬低時における高精度な電圧補償が可能であり、また直接系統電圧に接続するため装置全体が安価で小型に構成できるものである。
上記従来の電圧変動補償装置100の動作は、系統電圧の1相のみについて説明したが、実際には図11に示すように、3相交流のそれぞれの相について、コンデンサ10a、10b、10cを備えた電圧変動補償装置100a、100b、100cを直列に接続して独立に電圧変動を補償している。
【0007】
【発明が解決しようとする課題】
従来の電圧変動補償装置は以上のように構成され、充電コンデンサ10は充電ダイオード11と充電用トランス14によってそれぞれ異なる電圧が充電される。このため、設置場所が必要な充電トランスが必ず必要であり、電圧を出力するための配線、および充電コンデンサ10に充電をするための引き込み配線も必要となる。このため、装置をさらに小型化、簡略化するのは困難であった。
【0008】
この発明は、上記のような問題点を解消するために成されたものであって、電力系統の各相に各相電圧補償回路がそれぞれ直列に接続されて、エネルギ蓄積手段に蓄積された直流電圧を交流に変換して出力する電圧変動補償装置において、上記エネルギ蓄積手段への充電に係る構成を簡略にして、装置構成の小型化、簡略化を図ることを目的とする。
【0009】
【課題を解決するための手段】
この発明に係る電圧変動補償装置は、
多相交流の各相の電力線にそれぞれ接続される各相電圧補償回路と、
上記各相電圧補償回路にそれぞれ接続される各エネルギ蓄積手段と
を備え、
上記各相電圧補償回路が、上記各相電圧補償回路に接続される各エネルギ蓄積手段に蓄積された電力を出力し、上記各相の電力線の電圧変動を補償する電圧変動補償装置であって、
上記各相電圧補償回路は、上記各相の電力線に対して電圧変動の補償を行う場合に、上記各相の電力線から電力が供給される負荷に対し直列となるように接続され、
上記各エネルギ蓄積手段は、他相の電力線に接続され、
上記各エネルギ蓄積手段に電力を蓄積する場合の電力の経路は、一端が上記各エネルギ蓄積手段に接続される上記各相電圧補償回路であり、他端が上記各エネルギ蓄積手段に接続される上記他相の電力線であること
としたものである
【0015】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態1について説明する。図1はこの発明の実施の形態1による電圧変動補償装置の構成図である。
図1に示すように、3相交流(U相、V相、W相)の各相の電力線201、202、203に各相直列電圧補償回路210、211、212をそれぞれ直列に接続し、図示しない制御回路からの指令により、複数の電圧補償回路を直列接続した各相直列電圧補償回路210、211、212から各相に補償電圧を出力して、負荷204、205、206に供給する電圧変動を補償する。また各相直列電圧補償回路210、211、212の出力端には、並列に高速機械式の定常短絡スイッチ207、208、209が設けられ、電圧低下が発生しない通常時は、電流は定常短絡スイッチ207、208、209を流れる。各相直列電圧補償回路210、211、212は、各電圧補償回路にそれぞれエネルギ蓄積手段となるコンデンサを備えて、補償電圧を出力するが、当該相の電力線201、202、203から当該相の電圧補償回路を介して、多相の電力線203、201、202に接続される充電回路によりコンデンサは充電される。
【0016】
例えば、U相における各相直列電圧補償回路210の詳細な構成を図2に基づいて以下に説明する。
図2(a)に示すように、各相直列電圧補償回路210は、正負いずれかの極性で補償電圧を出力する電圧補償回路PN1、PN2、PN3がU相電力線201に直列に接続される。各電圧補償回路PN1、PN2、PN3は、ダイオードが逆並列に接続された4個のIGBT221〜224、225〜228、231〜234から成るフルブリッジインバータ、エネルギ蓄積手段としての充電コンデンサ(第一ビットコンデンサ260、第二ビットコンデンサ261、第三ビットコンデンサ262)、各充電コンデンサ260、261、262の負極側に接続された充電抵抗251、252、253およびチョッパスイッチ235を備える。各充電コンデンサ260、261、262の負極は、充電抵抗251、252、253およびチョッパスイッチ235を介し、さらに充電抵抗236、リアクトル237を介してW相の電力線203に接続される。なお、チョッパスイッチ235は、例えば、ダイオードが逆並列に接続されたIBGT等のスイッチング素子に直列にダイオードを組み合わせたもので、詳細を図2(b)に示す。
【0017】
また、各相直列電圧補償回路210の出力端には、上述したように、並列に高速機械式の定常短絡スイッチ207が設けられる。なお、この定常短絡スイッチ207は、各電圧補償回路PNと並列に複数個設けても良く、1つあるいは直列接続された複数の電圧補償回路PNの出力端毎に設けられていれば良い。また、フルブリッジインバータはIGBT以外の自己消弧型半導体スイッチング素子で構成しても良い。
各電圧補償回路PN1、PN2、PN3内の充電コンデンサ260、261、262に充電される電圧(V1、V2、V3)の比は概ね2のべき乗比に設定されている。つまり、以下の関係を満足させる。
V3=2×V2=2×2×V1
通常時、定常短絡スイッチ207はオン状態で、電流は定常短絡スイッチ207を流れる。また電力系統の電圧低下時(瞬低時)には、定常短絡スイッチ207をオフして、瞬低補償動作を開始する。即ち、誤差電圧に応じて選択された各電圧補償回路PN1、PN2、PN3において、補償電圧が出力される。これらの出力は、系統にて組み合わされ、゛000゛〜゛111゛の8階調の電圧出力を発生することができ、最大の補償電圧は、7×V1となる。この瞬低補償動作については、従来の電圧変動補償装置と同様の制御で行われるため、詳細は省略する。
【0018】
各電圧補償回路PN内の各充電コンデンサ260、261、262の充電について、以下に説明する。
各充電コンデンサ(第一ビットコンデンサ260、第二ビットコンデンサ261、第三ビットコンデンサ262)を充電する場合、各電圧補償回路PN1、PN2、PN3内のスイッチング素子224、228、234をオンにして、チョッパスイッチ235をオン/オフ動作させる。これにより、第一ビットコンデンサ260、第二ビットコンデンサ261、第三ビットコンデンサ262は、U相の電力線201からU相の各電圧補償回路PNを介して、W相の電力線203に接続される充電回路により、U相−W相の線間電圧にて所定の電圧に充電できる。
充電動作は装置を立ち上げる時に行うとともに、電力系統の瞬低が発生しない通常時に、各ビットの充電コンデンサ260、261、262の電圧が低下したときにも行う。充電中に瞬低が発生した場合、瞬低を検出した後、直ちにチョッパスイッチ235をオフにして、充電動作を停止し、瞬低補償動作を開始する。これにより、コンデンサ充電中に発生する瞬低に対処することが出来る。
【0019】
この実施の形態では、上述したように、当該相の電力線201、202、203から当該相の電圧補償回路PNを介して、多相の電力線203、201、202に接続される充電回路により、電力系統の線間電力を用いて充電コンデンサ260、261、262を充電するようにしたため、充電トランスを省略することができ、充電回路の配線も簡略化できる。このため、小型で簡略な構成の電圧変動補償装置が得られる。また、チョッパスイッチ235のオン/オフ制御により充電動作を行うため、所望の電圧に精度良く充電できる。
【0020】
なお、チョッパスイッチ235は線間電圧に耐えるように、スイッチを複数個、直列に接続して構成しても良く、定格電圧の低いスイッチング素子を用いることができる。
【0021】
また、この実施の形態では、各電圧補償回路PN1、PN2、PN3内の充電コンデンサ260、261、262に充電される電圧(V1、V2、V3)の比は概ね2のべき乗比としたが、これに限るものではなく、それぞれ異なる電圧を蓄積し、誤差電圧に応じて選択された各電圧補償回路PN1、PN2、PN3にて出力される補償電圧の総和で、電力系統の瞬低を補償する。さらにまた、各電圧補償回路PN1、PN2、PN3にて出力される補償電圧は、系統電圧と逆極性のものを含んでも良い。
【0022】
実施の形態2.
次に、この発明の実施の形態2を図について説明する。
図3は、この発明の実施の形態2による電圧変動補償装置の構成を示す図である。なお、ここでは便宜上、U相における各相直列電圧補償回路210aの構成のみを示すが、V相、W相についても同様に構成される。
図3において、PN1〜PN3、201、203、207、221〜224、225〜228、231〜234、および260〜262は、上記実施の形態1と同じもの、270、271、272は各充電コンデンサ260、261、262に並列に接続された並列抵抗、275、276、277は各充電コンデンサ260、261、262に直列に接続された直列抵抗、273、274はダイオードである。
【0023】
各電圧補償回路PN内の各充電コンデンサ260、261、262の充電について、以下に説明する。
各充電コンデンサ(第一ビットコンデンサ260、第二ビットコンデンサ261、第三ビットコンデンサ262)は、上記実施の形態1と同様に、U相の電力線201からU相の各電圧補償回路PNを介して、W相の電力線203に接続される充電回路により、U相−W相の線間電圧にて所定の電圧に充電される。この場合、充電回路内には、各充電コンデンサ260、261、262に並列抵抗270、271、272と直列抵抗275、276、277とを接続して備えているため、各充電コンデンサ260、261、262は、これらの抵抗で分圧された所定の充電電圧となるように充電される。即ち、U相−W相の線間電圧を(並列抵抗の抵抗値)/(直列抵抗の抵抗値+並列抵抗の抵抗値)の値で分圧した一定の充電電圧となる。
【0024】
この実施の形態においても、上記実施の形態1と同様に、充電トランスを必要とすることなく各充電コンデンサ260、261、262を充電でき、充電回路の配線も簡略化できる。このため、小型で簡略な構成の電圧変動補償装置が得られる。また、各充電コンデンサ260、261、262に直列抵抗275、276、277と並列抵抗270、271、272とを備えて、これらの抵抗で分圧された所定の充電電圧に充電するため、容易に一定の電圧に充電できる。
【0025】
実施の形態3.
次に、この発明の実施の形態3を図について説明する。
図4は、この発明の実施の形態3による電圧変動補償装置の構成を示す図である。なお、ここでも便宜上、U相における各相直列電圧補償回路210bの構成のみを示すが、V相、W相についても同様に構成される。
図4において、PN1〜PN3、201、203、207、221〜224、225〜228、231〜234、および260〜262、273、274、および275〜277は上記実施の形態2と同じもの、280はツェナーダイオード、281はダイオード、282は抵抗である。
【0026】
図に示すように、各電圧補償回路PN1、PN2、PN3は、それぞれ4個のスイッチング素子221〜224、225〜228、231〜234から成るフルブリッジインバータと、各充電コンデンサ260、261、262とを備えているが、この充電コンデンサ260、261、262の両極間に接続されたスイッチング素子223・224、227・228、233・234のゲート−エミッタ間に抵抗282を接続し、コレクタ−ゲート間にダイオード281とツェナーダイオード280との逆直列接続したものを接続する。また、各充電コンデンサ260、261、262は直列抵抗275、276、277を介してW相の電力線203に接続される。
【0027】
各電圧補償回路PN内の各充電コンデンサ260、261、262の充電について、以下に説明する。
各充電コンデンサ(第一ビットコンデンサ260、第二ビットコンデンサ261、第三ビットコンデンサ262)は、上記実施の形態1と同様に、U相の電力線201からU相の各電圧補償回路PNを介して、W相の電力線203に接続される充電回路により、U相−W相の線間電圧にて所定の電圧に充電される。この場合、各充電コンデンサ260、261、262の両極間に接続されたスイッチング素子223・224、227・228、233・234にツェナーダイオード280および抵抗281を設け、このツェナーダイオード280と抵抗282とで分圧される電圧をゲートに入力する点信号に用いて、スイッチング素子223・224、227・228、233・234をオンさせる。即ち、充電回路により充電される各充電コンデンサ260、261、262の電圧が所定の値以上になると、各充電コンデンサ260、261、262の両極間に接続されたスイッチング素子223・224、227・228、233・234がオンして放電する。このスイッチング素子223・224、227・228、233・234の動作による、各充電コンデンサ260、261、262の充電および放電は、次のように行われる。
【0028】
図5にツェナーダイオード280の特性を示す。ツェナーダイオート280の正極には負電圧が印加され、各充電コンデンサ260、261、262の充電電圧が所定値に満たないとき、ツェナーダイオード280はオンしない。この状態では、スイッチング素子223・224、227・228、233・234はオンせず、各充電コンデンサ260、261、262は充電されて電圧は上昇する。各充電コンデンサの電圧が上昇し、所定値以上になると、ツェナーダイオート280には、ブレークダウン電圧を超える負電圧が印加されてオンし、ゲート−エミッタ間に電圧がかかる。この場合、ゲート−エミッタ間電圧はツェナーダイオード280と抵抗282とで分圧される電圧となり、これが点信号となり、スイッチング素子223・224、227・228、233・234はオンする。
【0029】
一般に、コレクタ−エミッタ間電圧が増加しても、ゲート−エミッタ間電圧、またはベース電流が小さいとコレクタ電流は小さいものであるため、各充電コンデンサ260、261、262の両極間は短絡状態にはならないで、スイッチング素子223・224、227・228、233・234のオンにより放電する。こうして、各充電コンデンサ260、261、262の充電電圧が低くなり、スイッチング素子223・224、227・228、233・234のゲートにかかるゲート−エッミッタ間電圧が所定の電圧よりも低くなると、スイッチング素子223・224、227・228、233・234はオフする。そして、再び、各充電コンデンサ260、261、262はW相の電力線203に接続される充電回路により充電されて電圧が上昇する。
このように充電と放電とを繰り返して、充電電圧を制御する。なお、瞬低発生時には、これらの動作を停止して瞬低補償動作を行う。
【0030】
この実施の形態においても、上記実施の形態1と同様に、充電トランスを必要とすることなく各充電コンデンサ260、261、262を充電でき、充電回路の配線も簡略化できる。このため、小型で簡略な構成の電圧変動補償装置が得られる。また、チョッパスイッチなど、制御用のスイッチを設けることなく、各電圧補償回路PN内に備えられたスイッチング素子を利用して、各充電コンデンサ260、261、262の充電電圧を所定の範囲内に保つことができる。
【0031】
なお、図6に示すように、上記実施の形態1で示したチョッパスイッチ235を併設することもでき、その場合、各充電コンデンサ260、261、262の充電、放電の回数を減らすことができ、充電に要する電力消費を低減できる。
【0032】
上記実施の形態1〜3では、各相の電力線201、202、203のそれぞれに、複数の電圧補償回路PNを直列の接続して電圧変動補償装置を構成したが、各相電圧補償装置PNは、相毎に1つとしても良く、同様に充電コンデンサは多相との線間電圧で充電でき、同様の効果が得られる。
【0033】
【発明の効果】
以上のようにこの発明に係る電圧変動補償装置は、多相交流の各相の電力線にそれぞれ接続される各相電圧補償回路と、上記各相電圧補償回路にそれぞれ接続される各エネルギ蓄積手段とを備え、上記各相電圧補償回路が、上記各相電圧補償回路に接続される各エネルギ蓄積手段に蓄積された電力を出力し、上記各相の電力線の電圧変動を補償する電圧変動補償装置であって、上記各相電圧補償回路は、上記各相の電力線に対して電圧変動の補償を行う場合に、上記各相の電力線から電力が供給される負荷に対し直列となるように接続され、上記各エネルギ蓄積手段は、他相の電力線に接続され、上記各エネルギ蓄積手段に電力を蓄積する場合の電力の経路は、一端が上記各エネルギ蓄積手段に接続される上記各相電圧補償回路であり、他端が上記各エネルギ蓄積手段に接続される上記他相の電力線であることとしたので、装置構成が小型化、簡略化できる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1による電圧変動補償装置の構成図である。
【図2】 この発明の実施の形態1による各相直列電圧補償回路の構成図である。
【図3】 この発明の実施の形態2による電圧変動補償装置(各相直列電圧補償回路)の構成図である。
【図4】 この発明の実施の形態3による電圧変動補償装置(各相直列電圧補償回路)の構成図である。
【図5】 この発明の実施の形態3によるツェナーダイオードの特性を示す図である。
【図6】 この発明の実施の形態3の別例による電圧変動補償装置(各相直列電圧補償回路)の構成図である。
【図7】 従来の電圧変動補償装置の概略構成図である。
【図8】 従来の電圧変動補償装置の動作を説明する図である。
【図9】 従来の別例による電圧変動補償装置の概略構成図である。
【図10】 図9における電圧変動補償装置の制御回路の構成図である。
【図11】 従来の電圧変動補償装置による3相交流電圧補償を示す図である。
【符号の説明】
201〜203 各相電力線、204〜206 負荷、
210〜212 各相直列電圧補償装置、
221〜224,225〜228,231〜234 スイッチング素子、
235 チョッパスイッチ、
260〜262 充電コンデンサ(第一ビットコンデンサ,第二ビットコンデンサ,第三ビットコンデンサ)、
270〜272 並列抵抗、275〜277 直列抵抗、
280 ツェナーダイオード、282 抵抗、
PN1,PN2,PN3 各相電圧補償回路。

Claims (7)

  1. 多相交流の各相の電力線にそれぞれ接続される各相電圧補償回路と、
    上記各相電圧補償回路にそれぞれ接続される各エネルギ蓄積手段と
    を備え、
    上記各相電圧補償回路が、上記各相電圧補償回路に接続される各エネルギ蓄積手段に蓄積された電力を出力し、上記各相の電力線の電圧変動を補償する電圧変動補償装置であって、
    上記各相電圧補償回路は、上記各相の電力線に対して電圧変動の補償を行う場合に、上記各相の電力線から電力が供給される負荷に対し直列となるように接続され、
    上記各エネルギ蓄積手段は、他相の電力線に接続され、
    上記各エネルギ蓄積手段に電力を蓄積する場合の電力の経路は、一端が上記各エネルギ蓄積手段に接続される上記各相電圧補償回路であり、他端が上記各エネルギ蓄積手段に接続される上記他相の電力線であること
    を特徴とする電圧変動補償装置。
  2. 上記多相交流は三相交流であり、
    第1のエネルギ蓄積手段は、第1相の電力線に接続される第1相の電圧補償回路と、第3相の電力線とにそれぞれ接続され、
    第2のエネルギ蓄積手段は、第2相の電力線に接続される第2相の電圧補償回路と、上記第1相の電力線とにそれぞれ接続され、
    第3のエネルギ蓄積手段は、上記第3相の電力線に接続される第3相の電圧補償回路と、上記第2相の電力線とにそれぞれ接続されること
    を特徴とする請求項1に記載の電圧補償装置。
  3. 上記各相電圧補償回路は、1つ以上の電圧補償回路を直列に接続して構成され、
    上記各エネルギ蓄積手段は、上記1つ以上の電圧補償回路にそれぞれ接続され、
    上記各エネルギ蓄積手段に蓄積される電力値は、上記エネルギ蓄積手段毎に設定され、
    上記複数の電圧補償回路を制御する制御回路を備え、
    上記制御回路は、上記各相の電力線に対して電圧変動の補償を行う場合、上記1つ以上の電圧補償回路のそれぞれに接続された各エネルギ蓄積手段から出力される電力値の総和が所定値となるよう、上記1つ以上の電圧補償回路を制御すること
    を特徴とする請求項1または2に記載の電圧変動補償装置。
  4. 上記電圧補償回路は、スイッチング素子を複数備え、
    上記制御回路は、上記複数のスイッチング素子のうち、上記エネルギ蓄積手段の両極にそれぞれ接続される上記スイッチング素子を制御して、上記エネルギ蓄積手段に蓄積された電力を出力させること
    を特徴とする請求項3に記載の電圧変動補償装置。
  5. 上記各エネルギ蓄積手段は、スイッチを介して上記他相の電力線に接続されること
    を特徴とする請求項1から4のいずれか1項に記載の電圧変動補償装置。
  6. 各エネルギ蓄積手段に対し並列に接続される並列抵抗と、
    上記各エネルギ蓄積手段に対し直列に接続される直列抵抗と
    を備え、
    上記各エネルギ蓄積手段に電力を蓄積する場合、上記各エネルギ蓄積手段に加わる電圧は、上記並列抵抗と上記直列抵抗とにより分圧された値であること
    を特徴とする請求項1から4のいずれか1項に記載の電圧補償装置。
  7. 上記電圧補償回路は、スイッチング素子を複数備え、
    上記複数のスイッチング素子のうち、上記エネルギ蓄積手段の両極にそれぞれ接続される上記スイッチング素子にツェナーダイオードと抵抗とが接続され、
    上記スイッチング素子のゲートに印加される点弧信号は、上記ツェナーダイオードと上記抵抗とにより分圧された電圧であること
    を特徴とする請求項1から3のいずれか1項に記載の電圧補償装置。
JP2002216915A 2002-07-25 2002-07-25 電圧変動補償装置 Expired - Fee Related JP3886858B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002216915A JP3886858B2 (ja) 2002-07-25 2002-07-25 電圧変動補償装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002216915A JP3886858B2 (ja) 2002-07-25 2002-07-25 電圧変動補償装置

Publications (2)

Publication Number Publication Date
JP2004064831A JP2004064831A (ja) 2004-02-26
JP3886858B2 true JP3886858B2 (ja) 2007-02-28

Family

ID=31938537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002216915A Expired - Fee Related JP3886858B2 (ja) 2002-07-25 2002-07-25 電圧変動補償装置

Country Status (1)

Country Link
JP (1) JP3886858B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299518A (zh) * 2011-08-29 2011-12-28 上海美迪馨电子科技有限公司 一种三相交流补偿式稳压器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103606927B (zh) * 2013-12-01 2016-03-30 福建阳谷智能技术有限公司 一种单相调压变压系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299518A (zh) * 2011-08-29 2011-12-28 上海美迪馨电子科技有限公司 一种三相交流补偿式稳压器
CN102299518B (zh) * 2011-08-29 2016-08-03 上海美迪馨电子科技有限公司 一种三相交流补偿式稳压器

Also Published As

Publication number Publication date
JP2004064831A (ja) 2004-02-26

Similar Documents

Publication Publication Date Title
US10483871B2 (en) Power conversion apparatus and power system
USRE40528E1 (en) Voltage fluctuation compensating apparatus
US9246407B2 (en) Voltage balancing system and method for multilevel converters
US20080252142A1 (en) Apparatus for Electrical Power Transmission
KR20110028304A (ko) 전력 변환 장치
AU2013227754B2 (en) Indirect matrix converter
JP6861923B1 (ja) 蓄電装置および電力系統安定化システム
EP1450476B1 (en) Power converter circuit
KR20140087450A (ko) 고장전류 감소기능을 가지는 컨버터
JP4859932B2 (ja) 瞬時電圧低下・停電対策機能を有する電力変換システムの制御装置および制御方法
JP2011067087A (ja) 無停電電源装置
KR20090045328A (ko) Ac-dc 변환 장치
JP2018093558A (ja) 電力変換装置
JP3886858B2 (ja) 電圧変動補償装置
JP3259308B2 (ja) インバータ装置及びそれを使用した無停電電源装置
JP2014033553A (ja) Dc/dc電力変換装置および太陽光発電システム用パワーコンディショナ
JP3872370B2 (ja) 電圧変動補償装置
JP2005130562A (ja) 電力変換装置
JP4010999B2 (ja) 電圧変動補償装置
JP2002320390A (ja) 蓄電装置
JP3887007B2 (ja) 電力出力装置
JP7118328B1 (ja) 電力制御システム
JP4005110B2 (ja) 電力出力装置
JP4113071B2 (ja) 電圧変動補償装置
JP3903421B2 (ja) 電圧変動補償装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees