JP3880684B2 - Optical monitoring apparatus and specimen monitoring method using the same - Google Patents

Optical monitoring apparatus and specimen monitoring method using the same Download PDF

Info

Publication number
JP3880684B2
JP3880684B2 JP10988997A JP10988997A JP3880684B2 JP 3880684 B2 JP3880684 B2 JP 3880684B2 JP 10988997 A JP10988997 A JP 10988997A JP 10988997 A JP10988997 A JP 10988997A JP 3880684 B2 JP3880684 B2 JP 3880684B2
Authority
JP
Japan
Prior art keywords
light
specimen
light source
transmitted
optical monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10988997A
Other languages
Japanese (ja)
Other versions
JPH10300688A (en
Inventor
勝敏 石塚
昌好 勝又
誠 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimori Kogyo Co Ltd
Original Assignee
Fujimori Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimori Kogyo Co Ltd filed Critical Fujimori Kogyo Co Ltd
Priority to JP10988997A priority Critical patent/JP3880684B2/en
Publication of JPH10300688A publication Critical patent/JPH10300688A/en
Application granted granted Critical
Publication of JP3880684B2 publication Critical patent/JP3880684B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、検体に投光し、その反射光や透過光から、検体の色や欠陥の有無等を監視する光学式監視装置及びこれを用いた検体の監視方法に関する。
【0002】
【従来の技術】
この種の光学式監視装置の概略構成を図4及び図5に示す。図4中符合1は検体で、この検体1には、例えば連続したシート状物品や、ベルト等の搬送手段で搬送される非連続の物品が挙げられる。図の場合、検体1には、図中右方から左方に向け定速で移動するシート状物品が用いられている。
【0003】
符合2は光源で、この光源2は検体1の表面上方に設置され、検体1の表面に向け投光するものである。符合3はカメラ(受光器)で、このカメラ3は検体1の表面上方に、その視線Eを検体1に向け、かつ視線E内に、光源2からの光を検体1に照射した結果生じる正反射光Rが入射しないよう設置されている。また、カメラ3には、例えば光学系カメラや、CCDカメラ等が使用される。
【0004】
この装置では、光源2からの光を検体1に照射した結果生じる乱反射光をカメラ3の視線E内に受光することにより、検体1の色や欠陥の有無等を監視する。
【0005】
一方、図5に示す装置は、検体1(この場合にはシート状物品)の表面及び裏面に向けそれぞれ投光する光源2a,2bと、光源2a,2bからの光を検体1に透過させて得られる透過光P1,P2をそれぞれ受光するカメラ3a,3bとを、検体1を挟んで対称的に配置したものである。この装置では、透過光P1,P2をそれぞれカメラ3a,3bにて受光することにより、検体1の色や欠陥の有無等を監視する。
【0006】
【発明が解決しようとする課題】
ところで、検体1には、例えば図6中符合1aで示すような凹凸を有するものがある。その結果、図4に示す装置の場合、凹凸1aの位置によっては、凹凸1aからの正反射光Rが、図6に示すようにカメラ3の視線E内に入射してカメラ3がハレーション等を起こし、検体1の色や欠陥を正確に監視できなくなることがあった。
【0007】
また、図5に示す装置でも、光源2a,2bからの光を検体1に照射した結果生じる正反射光R1,R2が、検体1の同一面側に配置されたカメラ3b,3aの視線内にそれぞれ入射してカメラ3a,3bがハレーション等を起こし、検体1の色や欠陥を正確に監視できなくなることがあった。
【0008】
本発明は上記事情に鑑みてなされたもので、例えば上記のような構成を有する光学式監視装置における、光源2,2a,2b由来の正反射光R,R1,R2のカメラ3,3a,3bの視線内への入射と、それに伴う装置の監視機能低下を防止することをその目的としている。
【0009】
【課題を解決するための手段】
本発明は、検体の表面に向け投光する光源と、検体の表面にて反射した反射光を受光する受光器とを具備する光学式監視装置において、前記光源の投光側及び前記受光器の受光側に、それぞれ偏光子を、その偏光軸を90度ずらした状態で設けたことを特徴としている。
【0010】
また、本発明は、検体の表面及び裏面に向けそれぞれ投光する光源と、検体を透過した透過光をそれぞれ受光する受光器とが、検体を挟んで対称的に配置された光学式監視装置において、前記検体の同一面側に配置された前記光源の投光側及び前記受光器の受光側に、それぞれ偏光子を、その偏光軸を90度ずらした状態で設けたことをもその特徴としている。
【0011】
後者の場合、前記透過光の振動方位と、前記透過光を受ける前記受光器に設けられた前記偏光子の偏光軸方向とを同一とすることが望ましい。また、前記透過光の振動方位と、前記透過光を受ける前記受光器に設けられた前記偏光子の偏光軸方向とを同一とするためには、前記光源及び/または前記受光器にそれぞれ設けられた前記偏光子の偏光軸を調節可能とすることが望ましい。
【0012】
【発明の実施の形態】
以下、図面に基づき、本発明の具体的な実施形態について説明する。なお、本発明は、上記図4ないし図6に示す光学式監視装置に偏光子を設けたことを構成上の特徴とするものであるため、光学式監視装置における他の構成については、上記図4ないし図6と同一の符合を付して、その説明を省略する。
【0013】
図1に記載の装置は、図4に示す構成に加え、光源2の投光側及びカメラ3の受光側に、それぞれ偏光子として、偏光フィルタ4a,4bを、その偏光軸を90度ずらした状態で設けたものである。
【0014】
この装置の場合、光源2から投光された光の振動方位が、偏光フィルタ4aの通過に伴い一定となるため、この光を検体1に照射した結果生じる正反射光Rの振動方位も一定となる。従って、正反射光Rは、カメラ3への入射前に、偏光子4aと偏光軸が90度ずれた偏光フィルタ4bにて殆どカットされ、正反射光Rの入射によるカメラ3のハレーションが防止される。
【0015】
一方、光源2から投光された光を検体1に照射した結果生じる乱反射光では、乱反射時に振動方位が多極化されるため、偏光フィルタ4aと偏光軸が90度ずれた偏光子4bであっても通過可能である。従って、乱反射光は、偏光フィルタ4bにてカットされることなく、カメラ3に入射される。
【0016】
その結果、検体1が例えば図2中符合1aで示すような凹凸を有し、凹凸1aからの正反射光Rがカメラ3の視線E内に入射する恐れがある場合でも、カメラ3への正反射光Rの入射が偏光フィルタ4a,4bにより防止され、乱反射光のみがカメラ3に入射される。すなわち、この装置では、正反射光Rの影響を殆ど受けることなく、検体1の色や欠陥の有無等を、常時正確に監視することができる。
【0017】
図3に記載の装置は、図5に示す構成に加え、検体1の同一面側に配置された光源及びカメラ(図中符合2aと3b、符合2bと3a)の、それぞれ投光側及び受光側に、偏光フィルタ(図中符合4cと4f、符合4eと4d)を、その偏光軸を90度ずらした状態で設けたものである。また、検体1を挟んで対向して配置された光源及びカメラ(図中符合2aと3a、符合2bと3b)にそれぞれ設けた偏光フィルタ(図中符合4cと4d、符合4eと4f)の偏光軸方向は、同一とされている。
【0018】
この装置の場合でも、光源2a,2bから投光された光の振動方位が、偏光子4c,4eの通過に伴いそれぞれ一定となるため、これらの光を検体1に照射した結果生じる正反射光R1,R2の振動方位もそれぞれ一定となる。従って、これらの正反射光R1,R2は、検体1の同一面側に配置されたカメラ3b,3aへの入射前に、偏光フィルタ4c,4eと偏光軸が90度ずれた偏光フィルタ4f,4dにて殆どカットされ、正反射光R1,R2の入射によるカメラ3b,3aのハレーションが防止される。
【0019】
一方、検体1を挟んで対向して配置された偏光フィルタ(図中符合4cと4d、符合4eと4f)の偏光軸方向が同一であるため、光源2a,2bからの光を偏光フィルタ4c,4e及び検体1に透過させて得られる透過光P1,P2は、偏光フィルタ4d,4fを通過可能である。従って、透過光P1,P2は、偏光フィルタ4d,4fにてカットされることなく、カメラ3a,3bに入射される。
【0020】
その結果、この装置では、カメラ3a,3bへの正反射光R1,R2の入射が偏光フィルタ4c,4d,4e,4fにより防止され、同一の振動方位を有する透過光のみがカメラ3a,3bに入射される。すなわち、この装置でも、正反射光R1,R2の影響を受けることなく、検体1の色や欠陥の有無等を、常時正確に監視することができる。
【0021】
なお、図3に示す装置では、検体1の材質等により、光源2a,2bから投光された光の振動方位が検体1を透過中に変化する場合がある。この場合には、光源2a,2b及び/またはカメラ3a,3bにそれぞれ設けられた偏光フィルタ4a,4b,4c,4dの偏光軸を調節して、透過光P1,P2の振動方位と、透過光P1,P2を受けるカメラ3a,3bに設けられた偏光フィルタ4d,4fの偏光軸方向とを同一とする。その結果、透過光P1,P2における振動方位の変化に係わらず、検体1を監視することができる。
【0022】
【発明の効果】
以上説明した通り、本発明の装置によれば、光源の投光側及び受光器の受光側に、それぞれ偏光子を、その偏光軸を90度ずらした状態で設けることにより、受光器への正反射光の入射を防止し、その結果、正反射光の影響を受けることなく、検体の色や欠陥の有無等を、常時正確に監視することができる。
【図面の簡単な説明】
【図1】 本発明に係る光学式監視装置の概略構成を示す図である。
【図2】 本発明に係る光学式監視装置における、受光器への正反射光の入射防止状況を示す図である。
【図3】 本発明に係る光学式監視装置の概略構成を示す図である。
【図4】 従来の光学式監視装置の概略構成を示す図である。
【図5】 従来の光学式監視装置における、受光器への正反射光の入射状況を示す図である。
【図6】 従来の光学式監視装置の概略構成を示す図である。
【符号の説明】
1 検体
2,2a,2b 光源
3,3a,3b カメラ(受光器)
4a,4b,4c,4d,4e,4f 偏光フィルタ(偏光子)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical monitoring device that projects light onto a specimen and monitors the color of the specimen, the presence or absence of defects, and the like from the reflected light and transmitted light, and a specimen monitoring method using the same .
[0002]
[Prior art]
A schematic configuration of this type of optical monitoring apparatus is shown in FIGS. In FIG. 4, reference numeral 1 is a sample. Examples of the sample 1 include a continuous sheet-like article and a discontinuous article conveyed by a conveying means such as a belt. In the figure, the specimen 1 is a sheet-like article that moves at a constant speed from the right to the left in the figure.
[0003]
Reference numeral 2 is a light source, and this light source 2 is installed above the surface of the sample 1 and projects light toward the surface of the sample 1. Reference numeral 3 denotes a camera (light receiver). This camera 3 is a positive image generated as a result of irradiating the specimen 1 with light from the light source 2 in the line of sight E with the line of sight E directed to the specimen 1. It is installed so that the reflected light R does not enter. As the camera 3, for example, an optical system camera or a CCD camera is used.
[0004]
In this apparatus, the color of the specimen 1 and the presence or absence of defects are monitored by receiving diffusely reflected light generated as a result of irradiating the specimen 1 with light from the light source 2 in the line of sight E of the camera 3.
[0005]
On the other hand, the apparatus shown in FIG. 5 transmits light from the light sources 2a and 2b that project toward the front and back surfaces of the specimen 1 (in this case, a sheet-like article) and the light from the light sources 2a and 2b to the specimen 1. Cameras 3 a and 3 b that receive the obtained transmitted lights P 1 and P 2 , respectively, are arranged symmetrically with respect to the specimen 1. In this apparatus, the transmitted light P 1 and P 2 are received by the cameras 3a and 3b, respectively, thereby monitoring the color of the specimen 1 and the presence or absence of defects.
[0006]
[Problems to be solved by the invention]
By the way, some specimens 1 have, for example, irregularities as indicated by reference numeral 1a in FIG. As a result, in the case of the apparatus shown in FIG. 4, depending on the position of the unevenness 1a, the regular reflected light R from the unevenness 1a enters the line of sight E of the camera 3 as shown in FIG. As a result, the color and defects of the specimen 1 may not be accurately monitored.
[0007]
Also in the apparatus shown in FIG. 5, the specularly reflected lights R 1 and R 2 generated as a result of irradiating the specimen 1 with light from the light sources 2 a and 2 b are the lines of sight of the cameras 3 b and 3 a disposed on the same surface side of the specimen 1. In some cases, the cameras 3a and 3b enter the inside and cause halation and the like, and the color and defects of the specimen 1 cannot be accurately monitored.
[0008]
The present invention has been made in view of the above circumstances, for example in an optical monitoring apparatus having the above configuration, the light source 2, 2a, 2b specularly reflected light R from, R 1, the R 2 cameras 3,3a , 3b is prevented from entering the line of sight and the accompanying deterioration of the monitoring function of the apparatus.
[0009]
[Means for Solving the Problems]
The present invention relates to an optical monitoring device comprising a light source that projects light toward the surface of a specimen, and a light receiver that receives reflected light reflected from the surface of the specimen. It is characterized in that each polarizer is provided on the light receiving side with its polarization axis shifted by 90 degrees.
[0010]
The present invention also relates to an optical monitoring apparatus in which a light source that projects light toward the front and back surfaces of a specimen and a light receiver that receives transmitted light that has passed through the specimen are arranged symmetrically across the specimen. Further, it is also characterized in that a polarizer is provided on each of the light projecting side of the light source and the light receiving side of the light receiver arranged on the same surface side of the specimen with the polarization axis thereof being shifted by 90 degrees. .
[0011]
In the latter case, it is preferable that the vibration direction of the transmitted light is the same as the polarization axis direction of the polarizer provided in the light receiver that receives the transmitted light. Further, in order to make the vibration direction of the transmitted light the same as the polarization axis direction of the polarizer provided in the light receiver that receives the transmitted light, the light source and / or the light receiver are provided respectively. It is desirable that the polarization axis of the polarizer be adjustable.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. Since the present invention is characterized in that a polarizer is provided in the optical monitoring device shown in FIGS. 4 to 6, the other configurations in the optical monitoring device are the same as those described above. The same reference numerals as those in FIGS. 4 to 6 are given, and the description thereof is omitted.
[0013]
In addition to the configuration shown in FIG. 4, the apparatus shown in FIG. 1 has polarizing filters 4a and 4b as polarizers on the light projecting side of the light source 2 and the light receiving side of the camera 3, and the polarization axes thereof are shifted by 90 degrees. It is provided in the state.
[0014]
In the case of this apparatus, since the vibration direction of the light projected from the light source 2 becomes constant as it passes through the polarizing filter 4a, the vibration direction of the regular reflection light R generated as a result of irradiating the specimen 1 with this light is also constant. Become. Therefore, the specularly reflected light R is almost cut by the polarizing filter 4b whose polarization axis is shifted by 90 degrees from the polarizer 4a before entering the camera 3, and the halation of the camera 3 due to the incidence of the specularly reflected light R is prevented. The
[0015]
On the other hand, in the irregularly reflected light generated as a result of irradiating the specimen 1 with the light projected from the light source 2, the vibration orientation is multipolarized during irregular reflection, so even the polarizer 4b whose polarization axis is shifted by 90 degrees is used. It can pass. Therefore, the irregularly reflected light is incident on the camera 3 without being cut by the polarizing filter 4b.
[0016]
As a result, even when the specimen 1 has irregularities as indicated by reference numeral 1a in FIG. 2 and the specularly reflected light R from the irregularities 1a is likely to enter the line of sight E of the camera 3, it can The incident of the reflected light R is prevented by the polarizing filters 4 a and 4 b, and only the irregularly reflected light is incident on the camera 3. That is, in this apparatus, the color of the specimen 1 and the presence / absence of a defect can be always accurately monitored without being substantially affected by the regular reflection light R.
[0017]
In addition to the configuration shown in FIG. 5 , the apparatus shown in FIG. 3 includes a light source and a camera (reference numerals 2a and 3b, reference numerals 2b and 3a in the figure) arranged on the same surface side of the specimen 1, respectively. On the side, polarizing filters (reference numerals 4c and 4f, reference numerals 4e and 4d in the figure) are provided with their polarization axes shifted by 90 degrees. Polarization filters (reference numerals 4c and 4d, reference numerals 4e and 4f in the figure) provided on the light source and the camera (reference numerals 2a and 3a, reference numerals 2b and 3b in the figure) disposed opposite to each other with the specimen 1 interposed therebetween. The axial direction is the same.
[0018]
Even in the case of this apparatus, the vibration azimuths of the light projected from the light sources 2a and 2b become constant as the polarizers 4c and 4e pass, so that the specularly reflected light generated as a result of irradiating the specimen 1 with these lights The vibration directions of R 1 and R 2 are also constant. Therefore, these regular reflection lights R 1 and R 2 are polarized filters 4f whose polarization axes are shifted by 90 degrees from the polarization filters 4c and 4e before entering the cameras 3b and 3a disposed on the same surface side of the specimen 1. most are cut at 4d, the camera 3b by the incident of the specularly reflected light R 1, R 2, 3a halation of being prevented.
[0019]
On the other hand, since the polarization axes of the polarizing filters (reference numerals 4c and 4d, reference numerals 4e and 4f in the figure) arranged opposite to each other with the specimen 1 interposed therebetween are the same, the light from the light sources 2a and 2b is converted into the polarizing filters 4c and 4c, Transmitted lights P 1 and P 2 obtained by transmitting through 4e and the specimen 1 can pass through the polarizing filters 4d and 4f. Accordingly, the transmitted lights P 1 and P 2 are incident on the cameras 3a and 3b without being cut by the polarizing filters 4d and 4f.
[0020]
As a result, in this apparatus, incidence of the regular reflection lights R 1 and R 2 on the cameras 3a and 3b is prevented by the polarizing filters 4c, 4d, 4e and 4f, and only the transmitted light having the same vibration direction is transmitted to the cameras 3a and 3b. It is incident on 3b. That is, even with this apparatus, the color of the specimen 1 and the presence or absence of defects can be always accurately monitored without being affected by the regular reflection lights R 1 and R 2 .
[0021]
In the apparatus shown in FIG. 3, the vibration direction of the light projected from the light sources 2 a and 2 b may change during transmission through the specimen 1 depending on the material of the specimen 1 and the like. In this case, by adjusting the polarization axes of the polarization filters 4a, 4b, 4c, and 4d provided in the light sources 2a and 2b and / or the cameras 3a and 3b, respectively, the vibration azimuths of the transmitted light P 1 and P 2 , The polarization axes of the polarizing filters 4d and 4f provided in the cameras 3a and 3b that receive the transmitted lights P 1 and P 2 are the same. As a result, the specimen 1 can be monitored regardless of changes in the vibration direction in the transmitted lights P 1 and P 2 .
[0022]
【The invention's effect】
As described above, according to the apparatus of the present invention, the polarizers are provided on the light projecting side of the light source and the light receiving side of the light receiver, respectively, with their polarization axes shifted by 90 degrees, so The incidence of reflected light is prevented, and as a result, the color of the specimen, the presence or absence of defects, etc. can always be accurately monitored without being affected by the specularly reflected light.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of an optical monitoring apparatus according to the present invention.
FIG. 2 is a diagram showing a state of preventing incidence of regular reflection light on a light receiver in the optical monitoring apparatus according to the present invention.
FIG. 3 is a diagram showing a schematic configuration of an optical monitoring apparatus according to the present invention.
FIG. 4 is a diagram showing a schematic configuration of a conventional optical monitoring device.
FIG. 5 is a diagram showing a state of incidence of specularly reflected light on a light receiver in a conventional optical monitoring device.
FIG. 6 is a diagram showing a schematic configuration of a conventional optical monitoring device.
[Explanation of symbols]
1 Sample 2, 2a, 2b Light source 3, 3a, 3b Camera (receiver)
4a, 4b, 4c, 4d, 4e, 4f Polarizing filter (polarizer)

Claims (4)

検体の表面に向け該検体の表面に対して斜めに投光する第1の光源と、検体の裏面に向け該検体の裏面に対して斜めに投光する第2の光源とが、検体が配置される平面に関して対称的に配置されるとともに、
前記第1の光源から投光されて前記検体を斜めに透過した透過光を受光する第1の受光器と、前記第2の光源から投光されて前記検体を斜めに透過した透過光を受光する第2の受光器とが、検体が配置される平面に関して対称的に配置され、
前記第1の光源から投光された光と、前記第2の光源から投光された光とが、前記検体上の同一位置において前記検体を透過するように、これら光源及び受光器が配置された光学式監視装置であって、
前記検体の同一側に配置された前記光源の投光側及び前記受光器の受光側に、それぞれ偏光子が、その偏光軸を90度ずらした状態で設けられているとともに、
前記透過光の振動方位と、前記透過光を受ける前記受光器に設けられた前記偏光子の偏光軸方向とが同一とされていることを特徴とする光学式監視装置。
The sample is arranged with a first light source that projects obliquely toward the surface of the sample and obliquely with respect to the surface of the sample, and a second light source that projects obliquely with respect to the back surface of the sample and toward the back surface of the sample Arranged symmetrically with respect to the plane to be
A first light receiver that receives light transmitted from the first light source and obliquely transmitted through the specimen, and a light that is transmitted from the second light source and obliquely transmitted through the specimen are received. The second light receiver is arranged symmetrically with respect to the plane on which the specimen is arranged,
The light source and the light receiver are arranged so that the light projected from the first light source and the light projected from the second light source pass through the sample at the same position on the sample. An optical monitoring device,
A polarizer is provided on each of the light projecting side of the light source and the light receiving side of the light receiver arranged on the same side of the specimen, with the polarization axis thereof being shifted by 90 degrees,
An optical monitoring device characterized in that a vibration azimuth of the transmitted light is the same as a polarization axis direction of the polarizer provided in the light receiver that receives the transmitted light.
前記透過光の振動方位と、前記透過光を受ける前記受光器に設けられた前記偏光子の偏光軸方向とが同一となるよう、前記光源及び/または前記受光器にそれぞれ設けられた前記偏光子の偏光軸が調節可能とされていることを特徴とする請求項1記載の光学式監視装置。  The polarizer provided in the light source and / or the light receiver so that the vibration direction of the transmitted light is the same as the polarization axis direction of the polarizer provided in the light receiver that receives the transmitted light. The optical monitoring apparatus according to claim 1, wherein the polarization axis of the optical monitoring apparatus is adjustable. 請求項1又は2に記載の光学式監視装置を用いて、前記第1の光源及び第2の光源から検体の表面及び裏面に向けそれぞれ投光して得られる透過光を、前記第1の受光器及び第2の受光器にてそれぞれ受光することにより、検体を監視することを特徴とする、光学式監視装置を用いた検体の監視方法。Using the optical monitoring apparatus according to claim 1, transmitted light obtained by projecting light from the first light source and the second light source toward the front surface and the back surface of the specimen, respectively, is used for the first light reception. A specimen monitoring method using an optical monitoring device, wherein the specimen is monitored by receiving light at each of the detector and the second light receiver . 請求項2に記載の光学式監視装置を用いて、前記第1の光源及び第2の光源から検体の表面及び裏面に向けそれぞれ投光して得られる透過光を、前記第1の受光器及び第2の受光器にてそれぞれ受光することにより、検体を監視する方法であって、
光の振動方位が検体を透過中に変化する場合に、前記光源及び/または前記受光器にそれぞれ設けられた前記偏光子の偏光軸を調節して、前記透過光の振動方位と、前記透過光を受ける前記受光器に設けられた前記偏光子の偏光軸方向とを同一とすることを特徴とする、光学式監視装置を用いた検体の監視方法。
Using an optical monitoring device as claimed in claim 2, the first light source and the transmitted light obtained by projecting respectively toward the front and rear surfaces of the specimens from the second light source, the first light receiver and A method of monitoring a specimen by receiving light with a second light receiver ,
When the vibration direction of light changes during transmission through the specimen, the polarization axis of the polarizer provided in the light source and / or the light receiver is adjusted to adjust the vibration direction of the transmitted light and the transmitted light. A specimen monitoring method using an optical monitoring device, characterized in that a polarization axis direction of the polarizer provided in the light receiving device is the same.
JP10988997A 1997-04-25 1997-04-25 Optical monitoring apparatus and specimen monitoring method using the same Expired - Fee Related JP3880684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10988997A JP3880684B2 (en) 1997-04-25 1997-04-25 Optical monitoring apparatus and specimen monitoring method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10988997A JP3880684B2 (en) 1997-04-25 1997-04-25 Optical monitoring apparatus and specimen monitoring method using the same

Publications (2)

Publication Number Publication Date
JPH10300688A JPH10300688A (en) 1998-11-13
JP3880684B2 true JP3880684B2 (en) 2007-02-14

Family

ID=14521736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10988997A Expired - Fee Related JP3880684B2 (en) 1997-04-25 1997-04-25 Optical monitoring apparatus and specimen monitoring method using the same

Country Status (1)

Country Link
JP (1) JP3880684B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6975391B1 (en) 1999-03-31 2005-12-13 Hitachi, Ltd. Method and apparatus for non-destructive testing
EP1096249B1 (en) 1999-10-26 2013-05-01 Hitachi-GE Nuclear Energy, Ltd. Nondestructive flaw inspection method and apparatus
US20100295939A1 (en) * 2008-01-28 2010-11-25 Innovative Imaging, Inc Table gauge
JP2015094642A (en) * 2013-11-11 2015-05-18 マークテック株式会社 Flaw detector

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58203824A (en) * 1982-05-13 1983-11-28 小杉 忠夫 Testing device for sealing section of bag body
JPH01263540A (en) * 1988-04-15 1989-10-20 Hitachi Ltd Pattern detecting apparatus
JPH0810139B2 (en) * 1989-09-29 1996-01-31 アンリツ株式会社 Thickness measuring device
JPH0816652B2 (en) * 1989-11-17 1996-02-21 日本ゼオン株式会社 Foreign object detection method and foreign object detection device
JPH06317532A (en) * 1993-04-30 1994-11-15 Kazumi Haga Inspection device
JPH072964U (en) * 1993-06-11 1995-01-17 日立化成工業株式会社 Optical circuit defect inspection system
JPH07270325A (en) * 1994-03-30 1995-10-20 Ricoh Co Ltd Defect inspector
JPH07311160A (en) * 1994-05-19 1995-11-28 Nitto Denko Corp Method and device for preforming visual inspection
JPH10115592A (en) * 1996-10-14 1998-05-06 Konica Corp Method and apparatus for inspection of flaw as well as production control system

Also Published As

Publication number Publication date
JPH10300688A (en) 1998-11-13

Similar Documents

Publication Publication Date Title
KR101376648B1 (en) Apparatus and method for inspecting film defect
US7408633B2 (en) Apparatus and method for inspecting film defect
KR101366633B1 (en) Apparatus and method for detecting defect of light transmitting material
JP3036733B2 (en) Defect detection device for transparent objects
JP3880684B2 (en) Optical monitoring apparatus and specimen monitoring method using the same
EP0467763A2 (en) Sensor for water film on a plate in printing machine
TW201800744A (en) Imaging device for inspecting defect, defect inspecting system, apparatus for manufacturing film, imaging method for inspecting defect, defect inspecting method, and method for manufacturing film
CA2126387C (en) High s/n ratio optical detection apparatus and method
JPH10221170A (en) Method and equipment for film surface detection of coating glass
JPH07270325A (en) Defect inspector
JPH0830796B2 (en) LCD display inspection device
JP7105925B2 (en) Contaminant inspection system for display units
JPH03107707A (en) Image pickup device
JPH0471849A (en) Optical detector for inspection of printed matter
JPS63113503A (en) Wollaston prism
JP3121593B1 (en) Dry laver inspection equipment
JP3783469B2 (en) Surface inspection device
JP3671904B2 (en) Scanning method
JPH0588239A (en) Illuminating image-pickup device
JPH0755720A (en) Defect inspecting apparatus for transparent and opaque films
JPS59220636A (en) Detector for defect of sheet-shaped product
JPH0434342A (en) Infrared moisture meter
JPH07151694A (en) Appearance inspector
JPH0743324B2 (en) Clinch condition detection method for component lead wires
JPS6112343A (en) Apparatus for inspecting printed matter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061108

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees