JPH01263540A - Pattern detecting apparatus - Google Patents

Pattern detecting apparatus

Info

Publication number
JPH01263540A
JPH01263540A JP9130988A JP9130988A JPH01263540A JP H01263540 A JPH01263540 A JP H01263540A JP 9130988 A JP9130988 A JP 9130988A JP 9130988 A JP9130988 A JP 9130988A JP H01263540 A JPH01263540 A JP H01263540A
Authority
JP
Japan
Prior art keywords
light
pattern
polarizing plate
polarized
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9130988A
Other languages
Japanese (ja)
Inventor
Mineo Nomoto
峰生 野本
Takanori Ninomiya
隆典 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9130988A priority Critical patent/JPH01263540A/en
Priority to DE3838032A priority patent/DE3838032A1/en
Publication of JPH01263540A publication Critical patent/JPH01263540A/en
Priority to US07/904,892 priority patent/US5301248A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the detection of a metal pattern in high contrast, by a method wherein the wavelength of an irradiation light is limited to a range of 350 to 750nm, the irradiation light is polarized linearly, and only a polarized component in the direction perpendicular to the direction of polarization of the irradiation light is sensed by a detector. CONSTITUTION:A substance 10 to be detected, which is prepared by forming a metal pattern 2 on a ceramic substrate 1, is irradiated obliquely from above by a light source 3 through an optical filter 4 transmitting light of 350 to 750nm and a polarizing plate 5. A polarizing plate 6, a lens 7 and an image pickup means 8 are provided above said substance 10, and the polarizing plates 5 and 6 are so provided that the directions of polarization thereof are perpendicular to each other. The irradiation light from the light source 3 is made to be of the wavelength 350 to 750nm by the filter 4 and polarized by the polarizing plate 5, and the substance 10 is irradiated by a linearly polarized light. Since the substrate 1 is constituted of minute particles, the irradiation light is reflected diffusedly and the direction of polarization of a reflected light is diffused. Since the direction of polarization of the polarizing plate 6 intersects the polarizing plate 5 perpendicularly, besides, a reflected light from the pattern 2 is intercepted and the pattern 2 is detected as black, while the substrate 1 is detected as white since a reflected light from the substrate 1 is passed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はパターン検出装置に係シ、特K、セラミック基
板等の様な微細粒子で形成された基材上に形成された金
属パターン(微細な粒子状金属によるものを含む)を高
コントラストで高速に検出するのに好適なパターン検出
装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a pattern detection device, which detects metal patterns (fine particles) formed on a substrate made of fine particles, such as a ceramic substrate, etc. The present invention relates to a pattern detection device suitable for high-contrast, high-speed detection of particles (including those made of particulate metal).

〔従来の技術〕[Conventional technology]

セラミック基板上に形成されたパターンを高コントラス
トで検出する従来の技術の1つとして、特開昭59−2
31402号公報記載のものがある。
As one of the conventional techniques for detecting patterns formed on ceramic substrates with high contrast, Japanese Patent Laid-Open No. 59-2
There is one described in Publication No. 31402.

この従来技術では、パターンと基材に偏光した明視野照
明光を照射し、その反射光のうち明視野照明光の偏光方
向と同一方向の偏光成分を遮光し明視野照明光の偏光方
向と直角方向の偏光成分だけを抽出してパターンを検出
している。
In this conventional technology, a pattern and a substrate are irradiated with polarized bright-field illumination light, and among the reflected light, the polarized component in the same direction as the polarization direction of the bright-field illumination light is blocked, and the polarization direction is perpendicular to the polarization direction of the bright-field illumination light. Patterns are detected by extracting only directional polarization components.

また、特開昭61−274208号公報には、オフセッ
ト印刷機の刷版に供給されるインク量を調整するために
刷版表面の画像の面積率を測定する刷版面@面積率測定
方法が開示されている。この従来技術では、刷版上の画
像と画像以外の梨地面との明暗を対照的に測定するため
、刷版表面の斜め上方に光源を設け、この光源からの散
乱光線を第1偏光板で偏光させ平行光線に揃えてから刷
版へ照射し、刷版の表面にて乱反射した乱反射光線の透
過をwc2偏光板で阻止し、第2偏光板を透過した光線
のみを受光するよう罠なっている。
Furthermore, Japanese Patent Application Laid-Open No. 61-274208 discloses a printing plate surface @ area ratio measurement method for measuring the area ratio of an image on the printing plate surface in order to adjust the amount of ink supplied to the printing plate of an offset printing machine. has been done. In this conventional technology, a light source is provided diagonally above the surface of the printing plate in order to measure contrast between the image on the printing plate and the pristine surface other than the image. After polarizing the light and aligning it with parallel light, it is irradiated onto the printing plate, and the WC2 polarizing plate blocks the transmission of the diffusely reflected light rays that are diffusely reflected on the surface of the printing plate, and a trap is created in which only the light that has passed through the second polarizing plate is received. There is.

〔発明が解決しようとする!l1題〕 上記従来技術は、偏光板の偏光性(消光比性能)Kつい
て配慮がなされておらず、使用光源が発する赤外線や紫
外線により偏光性が大幅に低下してしまうという問題が
ある。偏光板は一般に、ポリビニルアルコールの透明フ
ィルムを90℃程度ニ加熱して一方向に引き伸ばし、沃
素−沃化カルシウム水溶液に浸し、乾燥して製造するた
め、熱に弱く、50℃〜60℃程度以上になると、偏光
性能が劣化してしまう、また、セラミック等基板上に描
かれた金属パターンは、現在では高密度に実装されてい
るので、そのパターンの良否を検査したり位置合わせを
行なう場合には、高輝度照明によシ高遠にパターンを検
出して、作業性を向上させる必要がある。しかし、上述
した従来技術では、高輝度照明を行なうとそれに伴い発
生する赤外線による熱が高くなシ、偏光板の偏光特性が
更に劣化し、パターン検出を高速で行なうことができな
くなってしまう。
[Invention tries to solve it! Problem 11] The above conventional technology does not take into account the polarization property (extinction ratio performance) K of the polarizing plate, and there is a problem in that the polarization property is significantly reduced by infrared rays and ultraviolet rays emitted by the light source used. Polarizing plates are generally manufactured by heating a polyvinyl alcohol transparent film to about 90°C, stretching it in one direction, soaking it in an iodine-calcium iodide aqueous solution, and drying it, so it is sensitive to heat and cannot be heated to temperatures above about 50°C to 60°C. If this happens, the polarization performance will deteriorate.Moreover, metal patterns drawn on ceramic and other substrates are now mounted with high density, so it is difficult to inspect the quality of the patterns or perform alignment. It is necessary to detect patterns at a high distance using high-intensity illumination to improve workability. However, in the above-mentioned conventional technology, when high-intensity illumination is performed, the heat generated by infrared rays is high, and the polarization characteristics of the polarizing plate are further deteriorated, making it impossible to perform pattern detection at high speed.

本発明の目的は、微細粒子で形成された基材上に描かれ
たパターンを高コントラスト(明暗を対照的に)で高速
に検出することができるパターン検出装置を提供するこ
とにある。
An object of the present invention is to provide a pattern detection device that can detect a pattern drawn on a substrate made of fine particles with high contrast (contrasting brightness and darkness) at high speed.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、パターンと基材に光を照射し、その反射光
を検出器で受光して前記パターンを検出するパターン検
出装置において、パターンと基材に斜め方向から光を照
射する光照射手段と、照射光の波長を350 nm〜7
50nmの範囲に制限する波長制限手段と、照射光を直
線偏光させる第1偏光手段と、パターン及び基材からの
反射光のうち照射光の偏光方向と同一方向の偏光成分を
遮光し且つ前記照射光の偏光方向と直角方向の偏光成分
のみ検出器に受光させる第2偏光手段とを設けることで
、達成される。
The above object is to provide a pattern detection device that irradiates a pattern and a base material with light and detects the pattern by receiving the reflected light with a detector, and a light irradiation means that irradiates the pattern and the base material with light from an oblique direction. , the wavelength of the irradiation light is 350 nm ~ 7
a wavelength limiting means for limiting the wavelength to a range of 50 nm; a first polarizing means for linearly polarizing the irradiated light; and a first polarizing means for linearly polarizing the irradiated light, and blocking a polarized component in the same direction as the polarization direction of the irradiated light among the reflected light from the pattern and the base material. This is achieved by providing a second polarizing means that allows the detector to receive only polarized components in a direction perpendicular to the polarization direction of the light.

本発明の好適な態様として、光照射手段を相対向させて
設け、更に、第1偏光手段に冷却手段を設け、更にまた
、照射光の波長域をパターンが吸収する波長の範囲に制
限する手段を設ける。
In a preferred embodiment of the present invention, the light irradiation means are provided opposite to each other, the first polarization means is further provided with a cooling means, and furthermore, the wavelength range of the irradiation light is limited to a wavelength range that is absorbed by the pattern. will be established.

〔作用〕[Effect]

本発明では、照射光の波長の範囲を350nm〜750
nmK制限するので、該照射光が通過する偏光板には紫
外線や赤外線は照射されず、偏光板の偏光特性を劣化さ
せることはない、また、熱の原因となる赤外線もカット
されるので、偏光板の熱劣化も回避される。
In the present invention, the wavelength range of the irradiation light is 350 nm to 750 nm.
nmK, so the polarizing plate through which the irradiated light passes will not be irradiated with ultraviolet rays or infrared rays, and the polarizing properties of the polarizing plate will not deteriorate.In addition, infrared rays, which cause heat, are also cut, so the polarizing plate Thermal deterioration of the board is also avoided.

更に、本発明の実施慇様では、冷却手段で偏光板を冷却
するので、カットしきれなかった赤外線による偏光板の
温度上昇も防ぐことができる。更に、2方向から斜方照
明するので、照明系の偏光方向が同一方向で且つ極めて
明るい直線偏光照明を実現でき、基材上に段差を有する
パターンでも段差部で生じる照明の影が相対向する偏光
照明系によシ相殺されるので、高精度にパターンの幅等
の検出が可能となる。更にまた、金属パターンが吸収す
る波長域の照射光で基材及びパターンを照明するので、
例えば照明光源と偏光板との間に35 Orun〜45
0 nmを透過する光学フィルタを設けると、セラミッ
ク基板等の上に形成された金パターンはこの波長域の光
を50チ以上吸収する。このため、金パターンの消光比
を更に向上させることが可能となシ、高コントラストで
金パターンを検出することができる。
Furthermore, in the preferred embodiment of the present invention, since the polarizing plate is cooled by the cooling means, it is possible to prevent the temperature of the polarizing plate from increasing due to infrared rays that have not been completely cut. Furthermore, since oblique illumination is performed from two directions, it is possible to achieve extremely bright linearly polarized illumination in which the polarization direction of the illumination system is in the same direction, and even in patterns with steps on the base material, the shadows of the illumination caused by the steps are opposite to each other. Since the light is canceled out by the polarized illumination system, it is possible to detect the pattern width etc. with high accuracy. Furthermore, since the base material and pattern are illuminated with light in the wavelength range that is absorbed by the metal pattern,
For example, between the illumination light source and the polarizing plate, 35 Orun to 45
If an optical filter that transmits 0 nm is provided, a gold pattern formed on a ceramic substrate or the like will absorb 50 nm or more of light in this wavelength range. Therefore, the extinction ratio of the gold pattern can be further improved, and the gold pattern can be detected with high contrast.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面を参照して説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は、本発明の一実施例に係るパターン検出装置の
基本構成図である。セラミック基板1上に金属パターン
2が形成されている被検出物10を、斜め上方から光源
3によF) 350nrn〜750nmの光透過光学フ
ィルタ4と偏光板5を介して照明する。被検出物10の
上方には偏光板6、レンズ7、撮像手段8が配され、上
記基板1上の金属パターン2を検出するように構成され
ている。偏光板5と偏光板6は偏光方向が直交するよう
に配置されている。偏光板5の表面5aにはノズル9か
ら流体が噴射(供給源は図示せず)される、上記構成に
おいて、光源3からの照明光は、光学フィルタ4によシ
350〜750nmの波長となり、偏光板5に照射され
て照明光は偏光され、被検出物体10は直線偏光で照明
される。上記セラミック基板1は微細な粒子で構成され
ているため、照明光が乱反射し、偏光板5で直線偏光さ
れたにもかかわらず反射光の偏光方向が乱れる。一方、
金属パターン表面での反射は正反射のため一反射光の偏
光方向は偏光板5による偏光方向と同一になる。
FIG. 1 is a basic configuration diagram of a pattern detection device according to an embodiment of the present invention. An object to be detected 10 having a metal pattern 2 formed on a ceramic substrate 1 is illuminated obliquely from above by a light source 3 via a light transmission optical filter 4 of 350 nm to 750 nm and a polarizing plate 5. A polarizing plate 6, a lens 7, and an imaging means 8 are arranged above the object to be detected 10, and are configured to detect the metal pattern 2 on the substrate 1. The polarizing plate 5 and the polarizing plate 6 are arranged so that their polarization directions are perpendicular to each other. In the above configuration, in which a fluid is injected from a nozzle 9 onto the surface 5a of the polarizing plate 5 (the supply source is not shown), the illumination light from the light source 3 has a wavelength of 350 to 750 nm through the optical filter 4, The illumination light irradiated onto the polarizing plate 5 is polarized, and the object to be detected 10 is illuminated with linearly polarized light. Since the ceramic substrate 1 is composed of fine particles, the illumination light is diffusely reflected, and the polarization direction of the reflected light is disturbed even though it is linearly polarized by the polarizing plate 5. on the other hand,
Since the reflection on the surface of the metal pattern is regular reflection, the polarization direction of one reflected light is the same as the polarization direction by the polarizing plate 5.

偏光板6の偏光方向は照明系の偏光板5と直交している
ため、金属パターン2により生じる反射光はほとんど遮
断されて金属パターン2は黒ぼく検出され、セラミック
基板1の反射光はほとんど通過するので基板1は白ぼく
検出される。第2図は光学フィルタ4と偏光板5の分光
透過率を示すグラフである。セラミック基板おるいはグ
リーンシート上のパターンを検出する場合、これらの基
材は微細な粒子が不均一状態で組成されているため、こ
れらの粒子の凹凸によシ互いに干渉が生じ合わないよう
に(スペックルが発生しないように)所定の波長幅を有
する照明光を用いるのが有効である。しかも偏光板を用
いて照明する場合、第2図で示したように350nmよ
シ短い波長域では透過率が著しく低下する。また750
nm以上の波長域は熱源となり、偏光板の偏光性能を低
下させるため、本実施例では350nm〜750 nm
の波長域を用いる。しかしながら、上記光学フィルタ4
では、750nm以上の熱源となる波長の光を@2図で
示すように完全にはカットしきれない、このため、偏光
板50表面にノズル9から流体を噴射させて偏光板5の
温度上昇を防いでいる。
Since the polarization direction of the polarizing plate 6 is perpendicular to the polarizing plate 5 of the illumination system, most of the reflected light generated by the metal pattern 2 is blocked and the metal pattern 2 is detected as a black spot, and most of the reflected light from the ceramic substrate 1 passes through. Therefore, the substrate 1 is detected as white. FIG. 2 is a graph showing the spectral transmittance of the optical filter 4 and the polarizing plate 5. When detecting patterns on ceramic substrates or green sheets, these substrates are composed of non-uniform fine particles, so it is necessary to prevent interference between the unevenness of these particles. It is effective to use illumination light having a predetermined wavelength width (to prevent speckles from occurring). Furthermore, when illuminating with a polarizing plate, the transmittance decreases significantly in a wavelength range shorter than 350 nm, as shown in FIG. 750 again
In this example, the wavelength range of 350 nm to 750 nm becomes a heat source and deteriorates the polarization performance of the polarizing plate.
The wavelength range is used. However, the optical filter 4
In this case, the light having a wavelength of 750 nm or more that becomes a heat source cannot be completely cut off as shown in Figure @2. Therefore, fluid is injected from the nozzle 9 onto the surface of the polarizing plate 50 to reduce the temperature rise of the polarizing plate 5. Preventing.

第3図は本発明の他の実施例を示したもので、第1図と
同様な機能を有するものは同一符号を付しである。第1
図と異なる点は、光源3a、光学フィルタ41、偏光板
51の第1の偏光照明系の他K、光源3b、光学フィル
タ42、偏光板52で成る第2の偏光照明系を相対向す
るように設け、被検出物10を斜め上方2方向から照明
できるように配したことである。第3図の実施例では、
第4図に示すような、基板11上に形成された段差のあ
るパターン22を高精度に検出できる。すなわち、第4
図に示すように、1方向からの斜め照明では、パターン
22の段差によりパターン22の側面に影100が生じ
る。このため、検出時に実際のパターン幅りよりパター
ン幅を太((=L+z)検出し、2値化信号幅も太くな
9、検出画像が実際のパターン22より太った画像とな
る。第3図で示す実施例では、相対向する2方向から照
明するため、第4図で示す影100が相殺されパターン
@を忠実に検出できる。また光源数が2倍となる丸め、
第1図と比較して2倍明るい照明が可能となる。同、特
開昭59−231402号公報に開示されている明視野
照明方式と比較すると、第3図の本方式は構成要素に同
一なものを用いた場合約8倍の明るさが得られる。
FIG. 3 shows another embodiment of the present invention, in which parts having the same functions as those in FIG. 1 are given the same reference numerals. 1st
The difference from the figure is that in addition to the first polarized illumination system consisting of a light source 3a, an optical filter 41, and a polarizing plate 51, a second polarized illuminating system consisting of a light source 3b, an optical filter 42, and a polarizing plate 52 are arranged opposite to each other. It is arranged so that the object to be detected 10 can be illuminated diagonally from two directions above. In the embodiment of FIG.
A pattern 22 with steps formed on the substrate 11 as shown in FIG. 4 can be detected with high precision. That is, the fourth
As shown in the figure, with oblique illumination from one direction, a shadow 100 is created on the side surface of the pattern 22 due to the step difference in the pattern 22. Therefore, at the time of detection, the pattern width is detected to be thicker ((=L+z)) than the actual pattern width, and the binarized signal width is also thicker9, resulting in a detected image that is thicker than the actual pattern 22. In the example shown, since the illumination is from two opposing directions, the shadow 100 shown in FIG. 4 is canceled out and the pattern @ can be detected faithfully.
Compared to FIG. 1, twice as bright illumination is possible. Compared to the bright-field illumination method disclosed in Japanese Patent Application Laid-Open No. 59-231402, the present method shown in FIG. 3 can provide about eight times the brightness when the same components are used.

第5図は第3図の具体的な実施例の構成を示した図で、
基本的機能は第3図と同様であり、第3図と同様な機能
を有するものには同一符号を付しである。水銀灯501
a、501bの放射光は夫々コレクタレンズ502a、
502bと反射fi503a、503bによシ、光学フ
ィルタ41.42を介し、反射ミラー504a、504
bで反射され、偏光板51.52で偏光され、シリンド
リカルレンズ505a、505bでスリット状に圧縮さ
れ、被検出物1o上に斜め上方から偏光スリット光とし
て照明される。上記実施例では、撮像装置にリニアセン
サ506を用いているため、集光レンズとしてシリンド
リカルレンズを用いているが、撮像手段によっては、−
殻内な集光レンズを用いてよい。上記照明系は第3図と
同様、第1.第2の2つの偏光照明系が相対向するよう
に配しである。第1.第2の偏光照明系からの入射角度
θ、と02の各々の角度誤差は±5°以内にすると好ま
しい、被検出物10上方には偏光板51.52と偏光方
向が直交するように配した偏光板6、レンズ7が配され
、リニアセンサ506で被検出物10上のパターンを検
出するよう配置されている。また偏光板51.52の表
面には、夫々ノズル507a、507bから清浄な流体
(エア、N2ガス)が冷却用に吹き出される。
FIG. 5 is a diagram showing the configuration of the specific embodiment of FIG.
The basic functions are the same as those in FIG. 3, and parts having the same functions as those in FIG. 3 are given the same reference numerals. Mercury lamp 501
The emitted light beams a and 501b pass through collector lenses 502a and 501b, respectively.
502b and reflection fi 503a, 503b, through optical filter 41.42, reflection mirror 504a, 504
b, polarized by the polarizing plates 51 and 52, compressed into a slit shape by the cylindrical lenses 505a and 505b, and illuminated as polarized slit light onto the object 1o obliquely from above. In the above embodiment, since the linear sensor 506 is used in the imaging device, a cylindrical lens is used as the condensing lens, but depending on the imaging means, -
An in-shell focusing lens may be used. The above illumination system is similar to that shown in FIG. The second two polarized illumination systems are arranged to face each other. 1st. It is preferable that the angular error of each of the incident angles θ and 02 from the second polarized illumination system be within ±5°. Above the object to be detected 10, a polarizing plate 51 and 52 are arranged so that the polarization direction is orthogonal. A polarizing plate 6 and a lens 7 are arranged, and a linear sensor 506 is arranged to detect a pattern on the object 10 to be detected. Further, clean fluid (air, N2 gas) is blown out from nozzles 507a and 507b, respectively, onto the surfaces of the polarizing plates 51 and 52 for cooling.

上記構成において、偏光板51.52の設定場所は照明
光が光学フィルタ41.42を通過した位置であれば図
示の通りでなくてもよく、照明光が集光する場所より、
光束が広がっている例えば平行光束となる位置に設置す
るほうが望ましい、上記構成においては、スリット状に
圧縮された極めて明るい偏光光が被検出物10に集光さ
れるため、高速検出が可能となる。−例として、被検出
物にセラミック基板を用い水銀灯に250Wのものを使
用し、光学フィルタの波長域を350〜750nm と
し、透過率40チ程度の偏光板を用いた照明系では、検
出器に使用したCCDリニアセンサを30MHzの高速
で駆動することができる。また偏光板表面の温度は8時
間連続して点灯させた場合約40℃以下となυ、エアに
よシ冷却すると室温(約20℃)以下に保つことができ
た0本実施例では、高輝度光源を使用したにもかかわら
ず、偏光板表面温度を極めて低温に保つことができ、安
定且つ高輝度な偏光照明が実現できる。
In the above configuration, the polarizing plates 51 and 52 may be set at positions other than those shown in the figure as long as the illumination light passes through the optical filters 41 and 42.
It is preferable to install it at a position where the light beam is spread out, for example, into a parallel light beam.In the above configuration, extremely bright polarized light compressed into a slit shape is focused on the object to be detected 10, so high-speed detection is possible. . - For example, in an illumination system that uses a ceramic substrate as the object to be detected, a 250 W mercury lamp, an optical filter with a wavelength range of 350 to 750 nm, and a polarizing plate with a transmittance of about 40 cm, the detector The CCD linear sensor used can be driven at a high speed of 30 MHz. In addition, the temperature of the polarizing plate surface is about 40℃ or less when the light is turned on continuously for 8 hours, and it can be kept below room temperature (about 20℃) by cooling with air. Even though a brightness light source is used, the surface temperature of the polarizing plate can be kept at an extremely low temperature, and stable and high-intensity polarized illumination can be achieved.

第6図は本発明のさらに簡易的な実施例を示したもので
ある。第3図と異なる点は光源に光フアイバ照明601
.602を用いたことである。光ファイバに供給する光
源は、水銀灯、Xe灯、ハロゲンランプ、タングステン
ランプ等いずれでもよい。
FIG. 6 shows a simpler embodiment of the present invention. The difference from Fig. 3 is that the light source is an optical fiber illumination 601.
.. 602 was used. The light source supplied to the optical fiber may be any of a mercury lamp, a Xe lamp, a halogen lamp, a tungsten lamp, etc.

本実施例の利点は光ファイバからの放射光波長を350
〜750nmの範囲以内に設定し、且つ光ファイバーを
用いるため、熱源がほとんど偏光板に作用しないことで
ある。光ファイバの先端に上記フィルタと偏光板を取り
付けるだけでコンパクトな冷光偏光照明が可能となる。
The advantage of this embodiment is that the wavelength of the emitted light from the optical fiber can be reduced to 350
Since the wavelength is set within the range of ~750 nm and an optical fiber is used, the heat source hardly acts on the polarizing plate. Compact cold polarized illumination can be achieved by simply attaching the filter and polarizing plate to the tip of the optical fiber.

第7図は、第1図に示す実施例において、光学フィルタ
の光透過波長域を金属パターンが吸収する波長域に設定
した実施例である。第1図に示す実施例との相異点は、
熱線吸収フィルタ701と、短波長域光学フィルタ70
2とを介して偏光板5に照明光3の光を照射するように
した点である。−般に、金属には特定の波長域を吸収す
る特性がある。第8図は物質の違いによる分光反射率を
示したグラフである0例えば金の場合450 nmより
短い波長域で反射率が40%程度に低下する。そこで、
上記短波長域光学フィルタ702の透過波長域ヲ350
〜450 nmにすると、セラミック基板等の反射率は
200nm〜11000nの波長域では約90チ以上の
反射率があるためセラミック基板上の金パターンとセラ
ミック基板との間には2対1のコントラスト差が生じる
。しかも偏光照明を行なうため、さらにコントラスト比
が大きくなり、セラミック基板が白、金パターン部が黒
の高対照のパターン検出が可能となる0本実施例は、表
面に凹凸のある物質に金属(金や銅)を薄くメツキした
パターン等の検出に好適でおる。同、この実施例では金
パターンについて説明したが、本発明はこれに限定され
ず、350 nm〜750nmの範囲で光を吸収する物
質であれば有効である。
FIG. 7 shows an example in which the light transmission wavelength range of the optical filter is set to the wavelength range that the metal pattern absorbs in the embodiment shown in FIG. 1. The difference from the embodiment shown in FIG.
Heat ray absorption filter 701 and short wavelength band optical filter 70
The point is that the polarizing plate 5 is irradiated with the illumination light 3 through the polarizing plate 5 and the polarizing plate 5. - Generally, metals have the property of absorbing specific wavelength ranges. FIG. 8 is a graph showing the spectral reflectance of different materials. For example, in the case of gold, the reflectance decreases to about 40% in a wavelength range shorter than 450 nm. Therefore,
The transmission wavelength range of the short wavelength range optical filter 702 is 350
~450 nm, the reflectance of ceramic substrates, etc. is approximately 90 cm or more in the wavelength range of 200 nm to 11,000 nm, so there is a 2:1 contrast difference between the gold pattern on the ceramic substrate and the ceramic substrate. occurs. Moreover, since polarized illumination is used, the contrast ratio is further increased, making it possible to detect patterns with high contrast between the white ceramic substrate and the black gold pattern. It is suitable for detecting thinly plated patterns, etc. Similarly, although a gold pattern has been described in this embodiment, the present invention is not limited thereto, and any material that absorbs light in the range of 350 nm to 750 nm is effective.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、偏光手段の偏光特性を劣化させること
なくしかも熱線による劣化を回避し、微細粒子で形成さ
れた基材上に描かれたパターンを高コントラスト(明暗
を対照的に)で高速に検出することができる。また、2
方向からの偏光照明を行なう場合には、集光レンズとの
組合せにより、更に極めて明るい照明を実現でき、より
一層高速でコントラストの良いパターンを検出できると
共に段差を有するパターン等の検出においてパターン幅
をより精確に検出可能となる。更に、冷却手段を用いた
場合には、熱線による劣化が更に一層防止される。更に
また、偏光照明光の波長を被検出パターンが吸収する波
長に設定した場合には、極めてコントラストの良いパタ
ーン検出ができる。
According to the present invention, a pattern drawn on a substrate made of fine particles can be printed at high contrast (contrasting light and dark) at high speed without deteriorating the polarization characteristics of the polarizing means and avoiding deterioration caused by heat rays. can be detected. Also, 2
When performing polarized illumination from any direction, in combination with a condensing lens, extremely bright illumination can be achieved, and patterns with good contrast can be detected even faster, and the pattern width can be reduced when detecting patterns with steps. More accurate detection becomes possible. Furthermore, when a cooling means is used, deterioration due to heat rays is further prevented. Furthermore, if the wavelength of the polarized illumination light is set to a wavelength that is absorbed by the pattern to be detected, pattern detection with extremely good contrast can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係るパターン検出装置の基
本構成図、第2図は偏光板と光学フィルタの透過率を示
すグラフ、第3図は2方向照明系を備えた本発明の他の
実施例に係るパターン検出装置の基本構成図、第4図は
段差を有するパターン検出の説明図、第5図は第3図に
示す実施例の具体的構成図、第6図は元ファイバを用い
た本発明の別の実施例の構成図、第7図はパターンが吸
収する波長の照明光を用いた本発明の更に別の実施例の
構成図、第8図は物質の分光反射率特性グラフである。 1・・・セラミック基板 2・・・金属パターン 5.5a、3b・・・光源 4.41.42・・・光学フィルタ 5.6,51.52・・・偏光板 7・・・レンズ 8・・・撮像手段 9・・・ノズル 第 1図 第 2図 5s−長 (7’1m) 第 3 口 1・・・セラミ、・ノア基湘辷  3式・・・光シ録、
      42.・・死学力ルタ2・・・金属/\・
クーン   乙・・・イ烏ノ己A及−5!・・・L都込
L4艮3ユ・−光、3や、         41−゛
 光 情にフィルタ    5z・・ イ4 ヲこh十
汐;笥4図 蔦 5図 41.42’・・光電ブイILり  502・・・コレ
77にン): sob・・・す;ア扛ン・す′第 61
¥] bot、baz−L7フイハ”     6.、、イ扁
光A々−41、+2・・光学フィルタ    7・・・
じヌJ51.5?・・佛九Kg−ji、4舅駐手f文第
7図 第 3 図 物Vα外九反幻牟
FIG. 1 is a basic configuration diagram of a pattern detection device according to an embodiment of the present invention, FIG. 2 is a graph showing the transmittance of a polarizing plate and an optical filter, and FIG. A basic configuration diagram of a pattern detection device according to another embodiment, FIG. 4 is an explanatory diagram of detecting a pattern with steps, FIG. 5 is a specific configuration diagram of the embodiment shown in FIG. 3, and FIG. 6 is a diagram of the original fiber. Fig. 7 is a block diagram of yet another embodiment of the present invention using illumination light of a wavelength that is absorbed by the pattern, and Fig. 8 shows the spectral reflectance of a substance. This is a characteristic graph. 1... Ceramic substrate 2... Metal patterns 5.5a, 3b... Light source 4.41.42... Optical filter 5.6, 51.52... Polarizing plate 7... Lens 8. ...Imaging means 9...Nozzle Fig. 1 Fig. 2 5s-length (7'1m) 3rd mouth 1...Ceramic, Noah base 3 types...Optical recording,
42.・・Death Science Ruta 2...Metal/\・
Kuhn Oto...I Karasunoki A and -5! ... L Tsutomu L4 艮 3 Yu - Hikari, 3 and 41-゛ Light emotion ni filter 5z... I 4 Wokoh 10; 502...this 77th): sob...s;
¥] bot, baz-L7 `` 6.,, A-41, +2... Optical filter 7...
Jinu J51.5? ...Buddha Nine Kg-ji, 4-in-law parking f sentence Figure 7 Figure 3 Figure Vα outside nine anti-illusions

Claims (4)

【特許請求の範囲】[Claims] 1.パターンと基材に光を照射し、その反射光を検出器
で受光して前記パターンを検出するパターン検出装置に
おいて、パターンと基材に斜め方向から光を照射する光
照射手段と、照射光の波長を350nm〜750nmの
範囲に制限する波長制限手段と、照射光を直線偏光させ
る第1偏光手段と、パターン及び基材からの反射光のう
ち照射光の偏光方向と同一方向の偏光成分を遮光し且つ
前記照射光の偏光方向と直角方向の偏光成分のみ検出器
に受光させる第2偏光手段とを設けたことを特徴とする
パターン検出装置。
1. A pattern detection device that irradiates a pattern and a base material with light and detects the pattern by receiving the reflected light with a detector includes a light irradiation means that irradiates the pattern and the base material with light from an oblique direction; A wavelength limiting means for limiting the wavelength to a range of 350 nm to 750 nm, a first polarizing means for linearly polarizing the irradiated light, and blocking a polarized light component in the same direction as the polarization direction of the irradiated light among the light reflected from the pattern and the base material. and a second polarizing means for causing a detector to receive only polarized light components in a direction perpendicular to the polarization direction of the irradiated light.
2.請求項1記載のパターン検出装置において、前記光
照射手段を2つ相対向させて設け、2方向から光を斜め
にパターン及び基材に照射することを特徴とするパター
ン検出装置。
2. 2. The pattern detection device according to claim 1, wherein two of said light irradiation means are provided to face each other, and light is irradiated obliquely onto the pattern and the base material from two directions.
3.請求項1または請求項2記載のパターン検出装置に
おいて、前記第1偏光手段は冷却手段を備えることを特
徴とするパターン検出装置。
3. 3. The pattern detecting device according to claim 1, wherein the first polarizing means includes a cooling means.
4.請求項1乃至請求項3のいずれかに記載のパターン
検出装置において、前記波長範囲の照射光の波長域を、
更にパターンが吸収する範囲に設定する手段を備えるこ
とを特徴とするパターン検出装置。
4. In the pattern detection device according to any one of claims 1 to 3, the wavelength range of the irradiation light in the wavelength range is
A pattern detection device further comprising means for setting a range in which the pattern absorbs light.
JP9130988A 1987-11-09 1988-04-15 Pattern detecting apparatus Pending JPH01263540A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9130988A JPH01263540A (en) 1988-04-15 1988-04-15 Pattern detecting apparatus
DE3838032A DE3838032A1 (en) 1987-11-09 1988-11-09 Method and apparatus for structure testing
US07/904,892 US5301248A (en) 1987-11-09 1992-06-25 Method for pattern inspection and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9130988A JPH01263540A (en) 1988-04-15 1988-04-15 Pattern detecting apparatus

Publications (1)

Publication Number Publication Date
JPH01263540A true JPH01263540A (en) 1989-10-20

Family

ID=14022869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9130988A Pending JPH01263540A (en) 1987-11-09 1988-04-15 Pattern detecting apparatus

Country Status (1)

Country Link
JP (1) JPH01263540A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10300688A (en) * 1997-04-25 1998-11-13 Fujimori Kogyo Kk Optical monitoring device
JP2000046748A (en) * 1998-07-27 2000-02-18 Hitachi Ltd Method and apparatus for inspecting conductor pattern and production of multilayered substrate
WO2004040281A1 (en) * 2002-10-30 2004-05-13 Toppan Printing Co., Ltd. Wiring pattern inspection device, inspection method, detection device, and detection method
JP2005274383A (en) * 2004-03-25 2005-10-06 Sumitomo Chemical Co Ltd Inspection method for hole defect of oriented film
JP2008175565A (en) * 2007-01-16 2008-07-31 Fujifilm Corp Flaw detector of light transmissive member, and flaw detection method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57211531A (en) * 1981-06-24 1982-12-25 Hitachi Ltd Blow hole detector
JPS59231402A (en) * 1983-06-15 1984-12-26 Hitachi Ltd Detecting method of pattern
JPS6050935A (en) * 1983-08-31 1985-03-22 Agency Of Ind Science & Technol Inspecting device for semiconductor wafer
JPS60142236A (en) * 1983-12-28 1985-07-27 Fujitsu Ltd Deffect inspecting device
JPS6269153A (en) * 1985-09-24 1987-03-30 Hitachi Electronics Eng Co Ltd Inspecting device for foreign matter
JPS62282442A (en) * 1986-05-30 1987-12-08 Mitsubishi Electric Corp Soldering inspection device
JPS6336135A (en) * 1986-07-29 1988-02-16 Hitachi Electronics Eng Co Ltd Surface inspection device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57211531A (en) * 1981-06-24 1982-12-25 Hitachi Ltd Blow hole detector
JPS59231402A (en) * 1983-06-15 1984-12-26 Hitachi Ltd Detecting method of pattern
JPS6050935A (en) * 1983-08-31 1985-03-22 Agency Of Ind Science & Technol Inspecting device for semiconductor wafer
JPS60142236A (en) * 1983-12-28 1985-07-27 Fujitsu Ltd Deffect inspecting device
JPS6269153A (en) * 1985-09-24 1987-03-30 Hitachi Electronics Eng Co Ltd Inspecting device for foreign matter
JPS62282442A (en) * 1986-05-30 1987-12-08 Mitsubishi Electric Corp Soldering inspection device
JPS6336135A (en) * 1986-07-29 1988-02-16 Hitachi Electronics Eng Co Ltd Surface inspection device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10300688A (en) * 1997-04-25 1998-11-13 Fujimori Kogyo Kk Optical monitoring device
JP2000046748A (en) * 1998-07-27 2000-02-18 Hitachi Ltd Method and apparatus for inspecting conductor pattern and production of multilayered substrate
WO2004040281A1 (en) * 2002-10-30 2004-05-13 Toppan Printing Co., Ltd. Wiring pattern inspection device, inspection method, detection device, and detection method
US7440103B2 (en) 2002-10-30 2008-10-21 Toppan Printing Co., Ltd. Inspection apparatus of wiring pattern, inspection method, detection apparatus, detection method
JP2005274383A (en) * 2004-03-25 2005-10-06 Sumitomo Chemical Co Ltd Inspection method for hole defect of oriented film
JP2008175565A (en) * 2007-01-16 2008-07-31 Fujifilm Corp Flaw detector of light transmissive member, and flaw detection method
TWI480539B (en) * 2007-01-16 2015-04-11 Fujifilm Corp Defect inspection apparatus and method for light transmittance material

Similar Documents

Publication Publication Date Title
US5999245A (en) Proximity exposure device with distance adjustment device
US7602482B2 (en) Optical inspection method and optical inspection apparatus
US5416594A (en) Surface scanner with thin film gauge
US4377340A (en) Method and apparatus for detecting particles on a material
US7397553B1 (en) Surface scanning
TW200411895A (en) Chip scale marker and method of calibrating marking position
JP3494762B2 (en) Surface defect inspection equipment
JPH08219714A (en) Method of measuring position of web or sheet and device thatperforms said method
JPH01263540A (en) Pattern detecting apparatus
JP2008157788A (en) Surface inspection method and device
JP2008122202A (en) Beam observation device
JP3223483B2 (en) Defect inspection method and device
JP2001041719A (en) Inspection device and method of transparent material and storage medium
JP2010271186A (en) Defect inspection apparatus
JP3794745B2 (en) Optical constant measuring device and microscope
JP2705764B2 (en) Defect detection device for transparent glass substrate
JP2006258662A (en) Surface inspection method
JP3040131B2 (en) Spherical surface scratch inspection device
JP2962752B2 (en) Pattern inspection equipment
JP2000131241A (en) Inspection device and inspecting method for optical element
JP2002005853A (en) Lens inspecting apparatus
JP2001050720A (en) Surface inspection method and device thereof
JPH11183151A (en) Transparent sheet inspecting equipment
JP2004156932A (en) Surface inspection apparatus
JPH1019791A (en) Method and device for inspecting semiconductor material