JP3879960B2 - 車両の駆動装置 - Google Patents

車両の駆動装置 Download PDF

Info

Publication number
JP3879960B2
JP3879960B2 JP22567099A JP22567099A JP3879960B2 JP 3879960 B2 JP3879960 B2 JP 3879960B2 JP 22567099 A JP22567099 A JP 22567099A JP 22567099 A JP22567099 A JP 22567099A JP 3879960 B2 JP3879960 B2 JP 3879960B2
Authority
JP
Japan
Prior art keywords
engine
motor
control
torque
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22567099A
Other languages
English (en)
Other versions
JP2001054208A (ja
Inventor
宣英 瀬尾
寛之 楠木
昌弘 土屋
道夫 吉野
誠二 定平
明 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP22567099A priority Critical patent/JP3879960B2/ja
Publication of JP2001054208A publication Critical patent/JP2001054208A/ja
Application granted granted Critical
Publication of JP3879960B2 publication Critical patent/JP3879960B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Of Transmissions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車両の駆動装置に関し、例えばエンジンや電気モータ等の駆動源を併用するハイブリッド車両、或いは停車中は自動的にエンジンが停止するアイドリングストップ車両等の駆動装置に関する。
【0002】
【従来の技術】
従来より、代表的な車両である自動車の分野においては、駆動源としてエンジンと電気モータとを併用するハイブリッド車両や、所謂アイドリングストップ車両、即ちアクセルペダル(以下、アクセルと称する)が踏み込まれていないとき(以下、本願では、この状態をアクセルの全閉時と称する)にはエンジンを自動的に停止させると共に、その後、アクセルが踏み込まれたときには始動用の電気モータによってエンジンを自動的に始動させ、その後、自動変速機のクラッチをエンジンの出力軸と車輪とが接続されるように制御する車両の制御方法が提案されている。
【0003】
【発明が解決しようとする課題】
このような車両の制御方法として、例えば特開平6−233411号には、車両(車輪)の駆動軸の目標トルクと、エンジンの燃焼運転によって実際に発生させている回転トルクとの偏差に応じて、エンジンの制御量と走行用のモータの制御量とが補正されるようにフィードバック制御を行うと共に、そのフィードバック制御を実行するときには、エンジンの出力変動を抑制すべく、エンジンの制御量を算出する際のフィードバックゲインを小さくする制御方法が提案されている。
【0004】
しかしながら、上記従来例においては、走行中の振動を抑制すべく、エンジンの制御量に対するフィードバック制御を行っているが、一般に、フィードバック制御の制御周期と比較してエンジンの応答性はかなり遅いため、フィードバックゲインの設定値と偏差との状況によっては制御が良好に行えない可能性が有る。
【0005】
また、特開平10−023607号には、エンジンの出力軸と車輪の駆動軸とを締結させるときに発生する振動を抑制すべく、エンジンの始動と発電を行うジェネレータ・モータに所定の条件に応じた特性で反力トルクを発生させる制御方法が提案されている。
【0006】
一般に、上述したハイブリッド車両やアイドリングストップ車両においては、エンジンの出力軸と車輪の駆動軸との締結・開放動作が従来のエンジン駆動の自動車と比較して頻繁に行われることになるため、上記従来例においては、バッテリの消耗が予想されると共に、蓄電量が十分でないときには制御が成立しないことが予想される。
【0007】
そこで本発明は、制御応答性に優れ、且つ走行状態に応じた最適な制御を行う車両の駆動装置の提供を目的とする。
【0008】
【課題を解決するための手段】
上記の目的を達成するため、本発明に係る車両の駆動装置は、以下の構成を特徴とする。
【0009】
即ち、燃料の燃焼によって車輪の駆動軸を回転させる第1回転トルクを発生するエンジンと、その第1回転トルクを用いて発電するジェネレータ機能及び該エンジンの燃焼運転を始動させる第2回転トルクを発生するモータ機能を備えるジェネレータ・モータとを備える車両の駆動装置であって、設定された目標トルクを前記駆動軸に出力すべく、その目標トルクに関する値と検出した実トルクに関する値との偏差に基づいて前記第1回転トルク及び/または第2回転トルクのフィードバック制御を行うと共に、そのフィードバック制御における制御ゲインを、走行状態に応じて変更する制御手段を備えることを特徴とする。
【0010】
また、例えば、前記エンジンの出力軸は、前記駆動軸に対して締結・開放可能であって、前記制御手段は、前記エンジンを始動させた後、前記実トルクに関する値である前記エンジンの出力軸の回転数が前記目標トルクに関する値である目標回転数となるようにフィードバック制御を行うと共に、それら回転数が略一致したときに、前記エンジンの出力軸と前記駆動軸とを締結させると良い。
【0011】
また、例えば、前記制御手段は、前記制御ゲインを変更するに際して、前記エンジンを始動させてから所定時間(例えば、前記エンジンが始動してから、前記実トルクに関する値が前記目標トルクに関する値に対して所定の割合を越えるまでの時間)経過後の制御ゲイン(例えば、積分値)を、その所定時間が経過する前と比較して大きな値に変更すると良い。
【0012】
また、例えば、前記制御手段は、前記エンジンの水温が所定の水温より低いときには該所定の水温より高いときと比較して大きい値に、或いは前記車両に搭載された変速機の油温が所定の油温より低いときには該所定の油温より高いときと比較して大きい値に、前記制御ゲインを変更すると良い。
【0013】
【発明の効果】
このように、本発明によれば、制御応答性に優れ、且つ走行状態に応じた最適な制御を行う車両の駆動装置の提供が実現する。
【0014】
即ち、請求項1の発明によれば、例えばエンジン始動時(請求項7)等の走行状態に応じて、車両を的確に制御することができる。
【0015】
また、請求項2の発明によれば、エンジン出力軸と車輪駆動軸とを締結させる際に発生するトルクショックを抑制することができる。
【0016】
また、請求項3の発明によれば、例えば積分項の値を大きな値に変更することにより(請求項4)、エンジン出力軸の回転数を応答性良くスムーズに制御することができる。
【0017】
また、請求項5の発明によれば、エンジン出力軸の回転数がオーバーシュートを起こすことを防止することができる。
【0018】
また、請求項6の発明によれば、エンジンの回転抵抗に応じた必要最小限の電力及び燃料により、最適な制御を実現することができる。
【0019】
また、請求項8の発明によれば、車両走行用の走行モータを備えるハイブリッド車両において、制御応答性に優れ、且つ走行状態に応じた最適な制御を行うことができる。
【0020】
【発明の実施の形態】
以下、本発明に係る車両の駆動装置を、ハイブリッド車両に適用した実施形態として、図面を参照して詳細に説明する。
【0021】
【第1の実施形態】
はじめに、本実施形態に係るハイブリッド車両の駆動装置を実施可能な、ハイブリッド車両の全体構成例について概説する。
【0022】
尚、以下に説明する第1の実施形態は、本発明に係る車両の駆動装置の前提であり、本発明に係る車両の駆動装置の特徴的な部分については、第2の実施形態において説明する。
【0023】
図1は、第1の実施形態に適用可能なハイブリッド車両の機械的構成を例示すブロック図である。
【0024】
図1に示すように、本実施形態に係るハイブリッド車両は、駆動力を発生するためのパワーユニットとして、車両前方のエンジンルーム内に、鉛蓄電池やNi−H2(ニッケル水素)電池、或いはパワーコンデンサが使用されるバッテリ3から供給される電力により駆動される走行モータ(トラクションモータ)2と、ガソリン等の液体燃料の爆発力により駆動されるエンジン1とを併用して走行し、後述する車両の走行状態に応じて、走行モータ2のみによる走行、エンジンのみによる走行、或いは走行モータ2及び/またはジェネレータ・モータ(G・M)4とエンジン1の双方による走行とが実現される。
【0025】
エンジン1は、トルクコンバータ5を介してクラッチ6の締結により自動変速機(AT)7に駆動力を伝達する。自動変速機7は、エンジン1から入力された駆動力を走行状態に応じて(或いは運転者の操作により)所定のトルク及び回転数に変換して、ギヤトレイン11及び差動機構8を介して駆動輪9、10に伝達する。また、エンジン1は、バッテリ3を充電するためにジェネレータ・モータ4を駆動する。尚、本実施形態では、エンジン1の燃焼を制御する際の空燃比を、所謂理論空燃比λ=1とする。
【0026】
走行モータ2は、バッテリ3から供給される電力により駆動され、ギアトレイン11を介して駆動輪9、10に駆動力を伝達する。
【0027】
ジェネレータ・モータ4は、通常時はエンジン1により駆動されてバッテリを充電するが、エンジン始動時にはバッテリ3からの供給電力によってエンジン1をクランキングさせたり、急加速時にエンジン1を介して車輪9、10に駆動力を伝達させることができる。
【0028】
エンジン1には、例えば、エンジンの燃焼室内に直接燃料を噴射する、所謂直噴式や、或いは、エンジン始動時のポンピングロスを低減可能な、所謂可変バルブタイミング式の低燃費ガソリンエンジンが搭載され、エンジン1の始動性を向上させている。
【0029】
走行モータ2、並びにジェネレータ・モータ4には、例えば三相同期電動機が使用される。
【0030】
電子制御ユニット(以下、ECU)100は、CPU、ROM、RAM、インターフェース回路及びインバータ回路等からなり、走行モータ2やエンジン1の出力トルクや回転数等の制御、後述する本実施形態における特徴的な動作制御等を行うと共に、それらの制御が実現するようにエンジン1を制御すべく、点火時期や燃料噴射量等の制御を行う。
【0031】
また、ECU100は、エンジン1の作動時にジェネレータ・モータ4にて発電された電力を、走行モータ2に供給したり、バッテリ3に充電させるように、ジェネレータ・モータ4に通電する電流の位相制御を行う。
【0032】
次に、下記図10を参照して主要な状態下におけるエンジン1、ジェネレータ・モータ4、走行モータ2及びバッテリ3の制御について説明する。尚、図10において「力行」とは駆動トルクを出力している状態を意味する。
【0033】
図10は、ハイブリッド車両の走行状態に応じたECUによるエンジン、ジェネレータ・モータ、走行モータ、並びにバッテリに対する制御を説明する図である。
【0034】
[停車時]
図10に示すように、停車時においては、エンジン1、ジェネレータ・モータ4、走行モータ2は停止される。但し、エンジン1は、冷間時とバッテリ蓄電量低下時に運転され、ジェネレータ・モータ4は、エンジン運転中にはそのエンジンの回転トルクを利用する発電機として機能し、そのときジェネレータ・モータ4によって発電された電力はバッテリ3に充電される。
【0035】
[緩発進時]
アクセルが緩く踏み込まれた緩発進時においては、図10に示すように、エンジン1、ジェネレータ・モータ4は停止され、走行モータ2が駆動トルクを出力する。
【0036】
[急発進時]
急発進時においては、図10に示すように、ジェネレータ・モータ4と走行モータ2とが駆動トルクを出力し、エンジン1は始動後高出力で運転される。このとき、バッテリ3は、ジェネレータ・モータ4と走行モータ2とに放電する。
【0037】
[エンジン始動時]
エンジン始動時においては、図10に示すように、ジェネレータ・モータ4がエンジン1をクランキングするために駆動トルクを出力してエンジン1が起動される。このとき、バッテリ3は、ジェネレータ・モータ4に放電する。
【0038】
[定常低負荷走行時]
アクセルの開度量(踏み込み量)が比較的小さい定常低負荷走行時においては、図10に示すように、エンジン1、ジェネレータ・モータ4は停止され、走行モータ2が駆動トルクを出力する。このとき、バッテリ3は、走行モータ2に放電する。但し、エンジン1は、冷間時とバッテリ蓄電量低下時とに運転され、ジェネレータ・モータ4は、エンジン運転中にはそのエンジンの回転トルクを利用する発電機として機能し、そのときジェネレータ・モータ4によって発電された電力はバッテリ3に充電される。
【0039】
[定常中負荷走行時]
アクセルの開度量が上記の「定常低負荷走行時」と比較してやや大きい定常中負荷走行時においては、図10に示すように、走行モータ2は無出力とされ、エンジン1は高効率領域で運転される。このとき、バッテリ3は、走行モータ2には放電せず、ジェネレータ・モータ4は、高効率領域で運転中のエンジン1の回転トルクを利用する発電機として機能し、そのときジェネレータ・モータ4によって発電された電力はバッテリ3に充電される。
【0040】
[定常高負荷走行時]
アクセルの開度量が上記の「定常中負荷走行時」と比較して大きい定常高負荷走行時においては、図10に示すように、エンジン1は高出力運転され、ジェネレータ・モータ4と走行モータ2とが車輪駆動軸に対して回転トルクを出力する。このとき、バッテリ3は、ジェネレータ・モータ4と走行モータ2とに放電する。但し、ジェネレータ・モータ4は、バッテリ蓄電量低下時はバッテリ3を充電する。
【0041】
[急加速時]
車両走行中においてアクセルが急激に踏み込まれた急加速時においては、図10に示すように、エンジン1は高出力運転され、ジェネレータ・モータ4と走行モータ2とが走行のために回転トルクを出力する。このとき、バッテリ3は、ジェネレータ・モータ4と走行モータ2とに放電する。
【0042】
[減速時(回生制動時)]
車両走行中においてアクセルの開度量が全閉状態となった減速時においては、図10に示すように、エンジン1及びジェネレータ・モータ4は停止され、走行モータ2は、車両が惰性走行することにより車輪駆動軸を回転させるトルクによって発電する発電機として機能し、これにより発生した回生電力は、バッテリ3を充電する。
【0043】
次に、図2乃至図7に示す動作説明図を参照して、本実施形態にて適用可能なハイブリッド車両の走行状態に応じた駆動力の伝達形態について説明する。
【0044】
[発進&低速走行時]
図2に示すように、発進及び低速走行時には、ECU100は走行モータ2のみを駆動させ、この走行モータ2による駆動力をギアトレイン11を介して駆動輪9、10に伝達する。また、発進後の低速走行時においても走行モータ2による走行となる。
【0045】
[加速時]
図3に示すように、加速時において、ECU100は、上記の走行モータ2による低速走行状態からエンジン1を始動させた後でクラッチ6を締結させ、エンジン1の出力軸の回転トルクを、ギアトレイン11を介して駆動輪9、10に駆動力を伝達させる、或いは、急加速が要求されているときには、クラッチ6を締結させた後も引き続き走行モータ2を駆動することにより、エンジン1と走行モータ2とによる駆動力を併せて駆動輪9、10に伝達する。
【0046】
[定常走行時]
図4に示すように、定常走行時には、ECU100は、エンジン1のみを駆動させ、エンジン1からギアトレイン11を介して駆動輪9、10に駆動力を伝達する。定常走行とは、エンジン回転数が2000〜3000rpm程度の最も高効率となる領域を使用する走行形態である。
【0047】
[減速時]
図5に示すように、減速時には、クラッチ6を解放して、駆動輪9、10の駆動力がギアトレイン11を介して走行モータ2に伝達され、これにより走行モータ2が回生した電力がバッテリ3が充電される。
【0048】
[定常走行時&充電時]
図6に示すように、定常走行&充電時には、クラッチ6を締結して、エンジン1からギアトレイン11を介して駆動輪9、10に駆動力が伝達されると共に、エンジン1はジェネレータ・モータ4を駆動してバッテリ3を充電する。
【0049】
[充電時]
図7に示すように、充電時には、クラッチ6を解放してエンジン1から自動変速機7に駆動力が伝達されないようにし、エンジン1はジェネレータ・モータ4を駆動してバッテリ3を充電する。
【0050】
[通常時]
図8に示すように、通常時、即ちバッテリ3がジェネレータ・モータ4を駆動するのに十分な蓄電量を有するときには、ECU100はバッテリ3からジェネレータ・モータ4へ電力を供給し、ジェネレータ・モータ4はエンジン1をクランキングさせる。
【0051】
尚、上述した本実施形態に係るハイブリッド車両においては、クラッチ6を用いて制御したが、この方式に限られるものではなく、自動変速機7のN(ニュートラル)レンジと、D(ドライブ)レンジとの遷移を制御することによって同様のクラッチ機能を実現しても良い。
【0052】
[ハイブリッド車両の電気的構成]
図9は、第1の実施形態に適用可能なハイブリッド車両の電気的構成を示すブロック図である。
【0053】
図9に示すように、ECU100には、車速Vを検出する車速センサ101からの信号、エンジン1の出力軸回転数Neを検出するエンジン回転数センサ102からの信号、エンジン1に供給される電圧を検出する電圧センサ103からの信号、ドライバによるアクセルペダルの開度(踏み込み量)を検出するアクセル開度センサ104からの信号、ガソリン残量センサ105からの信号、バッテリ3の蓄電残量を検出する蓄電残量センサ106からの信号、セレクトレバーによるシフトレンジを検出するシフトレンジセンサ107からの信号、エンジン1を冷却水の温度を検出する水温センサ108からの信号、エンジンのクランク角度を検出するクランク角度センサ109からの信号が入力され、更にその他センサとして自動変速機4の作動油温度を検出する油温センサからの信号等が入力される。
【0054】
そして、入力された上記の複数種類の検出信号に基づいて、ECU100は、車両の運転状態に関するデータ、車速、エンジン回転数、電圧、ガソリン残量、バッテリの蓄電残量、シフトレンジ、電力供給系統等をLCD等の表示部13に表示させる。
【0055】
また、ECU100は、上記の各種センサ信号に基づいて、エンジン1のスロットルバルブ110、インジェクタ111、ディストリビュータ112及びEGRバルブ113に対して制御信号を出力することにより、図10、並びに図2乃至図7を参照して上述した各走行動作に応じて、エンジン1の点火時期や燃料噴射量の制御等を行うと共に、走行モータ2への供給電力量やジェネレータ・モータ4への供給電力量や発電量の制御等を行う。
【0056】
以上、本実施形態に適用可能なハイブリッド車両の全体構成について説明したが、本実施形態に係るハイブリッド車両の駆動装置は、走行モータ2による走行中にエンジン1の燃焼運転を開始させ、そのエンジンの回転トルクを用いて走行を開始するまでの制御処理、即ち上記の[定常低負荷走行時]から[定常中負荷走行時]、或いは[発進&低速走行時](図2)から[加速時](図3)に制御が遷移する際の制御方法に特徴を有する。このため、上述した各走行動作(運転モード)を実現するためにECU100の不図示のCPUが実行する制御処理については、一般的な制御ロジックを採用するものとし、本実施形態における詳細な説明は省略し、以下の説明においては、本実施形態に係る特徴的な動作制御処理について説明する。
【0057】
図11は、第1の実施形態におけるハイブリッド車両の駆動装置の制御系の構成を示すブロック図であり、ECU100の不図示のCPUが実行する制御の構成を示す。
【0058】
同図に示す制御系は、P(比例項)、I(積分項)、そしてD(微分項)を制御ゲインとするPID1を含むフィードバックループと、PID2を含むフィードバックループとからなる2重フィードバックループを構成している。
【0059】
PID1には、アクセルが踏み込まれることによって走行モータ2による車両の走行が開始された後の車速Vに基づいて算出されたエンジン1の出力軸の目標回転数Nebと、エンジン回転数センサ102により検出されたエンジン1の出力軸の実際の回転数Neとの偏差が入力される。目標回転数Nebは、所定の演算式を用いて、車速Vとその時点におけるギヤ比に応じて算出すれば良い。そして、PID1は、当該偏差に応じて算出した制御量として、ジェネレータ・モータ4のトルク指令値Gtを、ジェネレータ・モータ4の動作を制御するインバータ20と、PID2とに対して出力する。
【0060】
インバータ20は、バッテリ3からの供給電力を用いて、PID1によって設定されるトルク指令値Gtに応じた3相交流電圧を、ジェネレータ・モータ4に印加する。これにより、ジェネレータ・モータ4は駆動され、エンジン1をクランキングさせることができる。また、インバータ20は、ECU100の制御により、ジェネレータ・モータ4に3相交流電圧を印加するに際して、その交流電圧の位相をジェネレータ・モータに発生する逆起電力の位相に対して連続的に変更することができ、その交流電圧の位相を当該逆起電力の位相に対して進めたときに、ジェネレータ・モータ4は、エンジン1を回転させる電動機として動作し、遅らせたときにはバッテリ3に蓄電する発電機として動作する。
【0061】
一方、PID2は、PID1によって設定されるトルク指令値Gtと、バッテリ3の充電状態(State Of Charge :SOC)及び/またはエンジン1の水温に応じたジェネレータ・モータ4のトルク指令値Gtの目標値Gtbとの偏差が入力される。そして、PID1は、スロットルバルブ104(好ましくは電気式のスロットルバルブ)の開度の調整を行うべく、当該偏差に応じて算出した制御量としてスロットル開度指令値TVtを出力する。
【0062】
ここで、ジェネレータ・モータ4の目標トルクGtbを設定するに際して、エンジン1の水温を考慮するのは、エンジン1の水温が低いときには、ジェネレータ・モータ4を発電側に設定することにより、燃焼運転を開始したエンジン1に負荷を与え、これにより、なるべく早く水温(及びエンジン自体)を最適な温度にするためである。また、SOCを考慮するのは、バッテリ3の蓄電量が少ないときには、ジェネレータ・モータ4を発電側に設定すると共に、エンジン1の回転トルクを大きくすることにより、バッテリ3の蓄電量を迅速に復旧させるためである。後述する制御処理では、水温と目標トルクGtbとの関係、SOCと目標トルクGtbとの関係をそれぞれLUT(テーブル)を参照することにより求める。
【0063】
次に、上述した図11の制御系を実現するECU100の具体的な制御処理について、図12乃至図16を参照して説明する。
【0064】
図12は、第1の実施形態に係るハイブリッド車両の駆動装置によるエンジン始動時の動作を説明する図である。
【0065】
本実施形態では、時速20km程度の走行モータ2のみによる低速走行中に加速が要求されることにより、図2に示すようにエンジン回転数の目標値Nebの傾きが正に設定されているときに、停止しているエンジン1を始動させてから出力軸の回転数Neを当該目標値Nebに一致させると共にクラッチ6を締結させるまでの期間(図12に示すt0からt3)において、ECU100によってエンジン1の回転数を直接制御するのではなく、エンジンと比較してロバスト性に優れ、且つ制御が容易なジェネレータ・モータ4の回転数制御により、当該目標値Nebにエンジン1の出力軸回転数Neを一致させる。
【0066】
また、ジェネレータ・モータ4の回転数制御により、エンジン1の出力軸回転数Neを上昇させるに際しては、その出力軸回転数Neが目標値Nebに迅速に整定するように、ジェネレータ・モータ4のトルク指令値Gtの算出方法を、エンジン1が燃焼を開始するまでの期間と、開始後の期間とで変更する。より具体的には、図11に示したPID1及びPID2において、ジェネレータ・モータ4を始動させてからエンジン1が燃焼を略開始するまでの期間(図12に示すt0からt1)は、車輪駆動軸の回転数(車速V)に応じた目標値Nebに応じたフィードフォワード制御を行い、エンジン1が燃焼運転を開始後の期間(図12に示すt1からt3)は、出力軸回転数Neと目標値Nebとの偏差に基づくフィードバック制御を行う。
【0067】
また、フィードフォワード制御を行っている期間においては、ジェネレータ・モータ4による発電を行わずに当該モータをエンジン1を始動させることにだけに使用する。即ち、この期間におけるジェネレータ・モータ4による発電量は0である。これにより、バッテリ3の蓄電量が少ない場合等においてもエンジン1を確実に点火(始動)させる。また、フィードバック制御を行っている期間においては、バッテリ3の蓄電量が少ない場合にはスロットル開度指令値TVtを大きめに出力することによってエンジン1の回転トルクを高め、ジェネレータ・モータ4の負担を軽減することにより、バッテリ3の消耗を抑制する。
【0068】
ここで、車輪駆動軸の実回転速度を表わす目標値Nebに対してエンジン出力軸の回転数Neを同期させるに際して、ジェネレータ・モータ4によるエンジン1のクランキング開始後t1(例えば0.2msec位)のタイミングでフィードバック制御を開始する理由を説明する。
【0069】
一般に、エンジンの動作制御には、エンジンの機械的な構造に起因する制御出力に対する応答の遅れが大きく含まれるため、制御動作の切り替えタイミングを適当なタイミングで早めに設定しないと、その制御応答の遅れによる偏差に対して所謂PID制御における積分(I)動作が大きく影響することにより、エンジン出力軸の回転数にオーバーシュートを招くという理由と、クランキングが開始されてもエンジンが完爆していないタイミング、即ちエンジンの回転トルクを検出できていないタイミングでフィードバック制御を開始したときには、ジェネレータ・モータ及び走行モータに対して大きな負担(負荷)がかかってしまい、バッテリも早く消耗してしまうという理由からである。
【0070】
以下、上記の制御処理を実現するところの、ECU100のCPU(不図示)が実行するソフトウエアについて、図13乃至図16を参照して説明する。
【0071】
図13及び図14は、第1の実施形態としてのハイブリッド車両の駆動装置における制御処理を示すフローチャートである。
【0072】
同図において、ステップS1:図9を参照して説明した各種センサの検出信号を入手する。
【0073】
ステップS2〜ステップS4:ドライバによる所望のアクセル操作等に応じて、当該ハイブリッド車両を走行させる要求トルクTrを設定し(ステップS2)、その設定された要求トルクTrに応じて上述した何れかの運転モード(走行動作)を設定する(ステップS3)と共に、その設定された運転モードに応じたエンジン目標(要求)トルクEb、走行モータ目標(要求)トルクMb、並びにジェネレータ・モータ目標(要求)トルクGbを設定する(ステップS4)。
【0074】
ここで、エンジン目標トルクEbは、エンジン1の出力軸が出力すべき回転トルクである。走行モータ目標(要求)トルクMbは、走行モータ2の出力軸が出力すべき回転トルクである。そして、ジェネレータ・モータ目標(要求)トルクGbは、ジェネレータ・モータ4の出力軸が出力すべき回転トルクである。
【0075】
尚、要求トルクTr、並びにエンジン目標トルクEb、走行モータ目標トルクMb、並びにジェネレータ・モータ目標トルクGbの設定処理については、一般的な方法を採用するものとし、本実施形態における詳細な説明は省略する。
【0076】
ステップS5:ステップS4にて設定されたエンジン目標トルクEbが0より大きいか否かを判断し、NO(Eb≦0)のときにはステップS6に進み、YES(Eb>0)のときにはステップS7に進む。
【0077】
ステップS6:ステップS5にて現時点ではエンジン1による車輪駆動軸の駆動は必要無いと判断したので、エンジン1を停止させる。
【0078】
ステップS7:ステップS5にてエンジン1による車輪駆動軸の駆動が要求されていると判断したので、現時点においてクラッチ6が締結されているか否かを判断し、YES(クラッチ締結中)のときにはステップS8に進み、NO(クラッチ開放中)のときにはステップS11に進む。
【0079】
ステップS8:ステップS7にてクラッチ締結中と判断されたため、現時点においてエンジン1は燃焼運転中であり、且つエンジン1が出力する回転トルクによって当該ハイブリッド車両は走行中(停車を含む)である。このため、ドライバの所望のアクセル操作に応じて、一般的な手法により、スロットル開度指令値TVt、燃料量Pt、並びに点火時期θを設定すると共に、それら設定された制御パラメータに応じてエンジン1の燃焼運転を実行(継続)する。
【0080】
ステップS9:現在の走行モータ目標トルクMbを、走行モータ2のトルク指令値Mtに代入すると共に、現在のジェネレータ・モータ目標トルクGbを、ジェネレータ・モータ4のトルク指令値Gtに代入する。
【0081】
ステップS10:エンジン1が燃焼を開始した(完爆した)ことを表わすエンジン始動判断フラグF1と、クラッチ6を締結させて良いか否かを表わすクラッチ接続可否判断フラグF2とを0にリセットし、ステップS18に進む。
【0082】
ステップS11:ステップS5にてエンジン1による車輪駆動軸の駆動が要求されており、且つステップS7にてクラッチ開放中と判断されたため、エンジン1を始動させると共にエンジン回転数Neを上昇させ、クラッチ6を締結させる必要が有る。そこで、本ステップでは、エンジン始動判断フラグF1が0であるかを判断し、YES(F1=0)のときには、エンジン1を始動させると共にエンジン回転数Neを上昇させるフィードフォワード制御を行うべくステップS12以降の処理に進み、NO(F1=1)のときには、エンジン1が着火した状態であるため、クラッチ6をスムーズに締結させるフィードバック制御を行うべくステップS21以降の処理に進む。
【0083】
ステップS12,ステップS13:エンジン1を始動させるべく、例えば図15に示すテーブル(マップ)を参照することにより、ジェネレータ・モータ4のトルク指令値Gtとスロットル開度指令値TVtとを設定する(ステップS12)と共に、燃料量Pt及び点火時期θを設定する。
【0084】
ステップS14,ステップS15:現在のエンジン回転数Neが予め記憶されている所定の回転数(例えば、着火回転数)Ne1より大きくなったか否かを判断し(ステップS14)、YES(Ne>Ne1)のときにはエンジン1が燃焼を開始したと判断できるためエンジン始動判断フラグF1を1にセットしてからステップS16に進み、NOのときにはまだエンジン1が燃焼を開始していないためF1=0のままステップS16に進む。
【0085】
尚、本ステップにおいては、燃焼圧力センサやイオンプラグセンサにより検出可能なエンジン1の点火状態、或いはエンジン1の回転数等を検出し、その検出結果に基づいてエンジントルクの変動を判断することにより、エンジン1が着火しているか否かを実際に検出しても良い。
【0086】
ステップS16:ステップS12で設定されたジェネレータ・モータ4のトルク指令値Gt及びスロットル開度指令値TVtを、PID制御で使用する積分(I)項ΣNe及び積分(I)項ΣGtに代入する。
【0087】
ステップS21:ステップS11にてF1=1と判断されたため、車速Vと現在の自動変速機7のギヤ比とに応じたエンジン回転数の目標値Nebを設定する。ここで、エンジン出力軸の目標回転数Nebは、例えば、目標回転数Neb=現在の車速V×現在のギヤ比R÷(タイヤ有効半径r×0.12π)なる関係式より算出すれば良い。
【0088】
ステップS22:エンジン1のフィードバック制御を行うべく、PID制御で使用する比例(P)項及び微分(D)項とを算出する。即ち、エンジン回転数の目標値Nebとエンジン回転数Neとの差分ΔNeを算出すると共に、その差分ΔNeから前回の制御周期におけるエンジン回転数Neoを差し引くことにより、微分(D)項dNeを算出する。また、今回の制御周期で算出した当該ΔNeを、新たなエンジン回転数Neoとして代入する。
【0089】
ステップS23:ステップS1で入手した蓄電残量センサ106の検出信号に基づいて、一般的な手法により、現時点におけるバッテリ3の充電状態SOCを求める。
【0090】
ステップS24:例えば図16(a)または図16(b)に示すテーブル(マップ)を参照することにより、ジェネレータ・モータ4のトルク指令値Gtの目標値Gtbを設定する。ここで、図16(a)及び図16(b)に例示するテーブルにおいて、当該目標値Gtbが正(+)の値の場合はジェネレータ・モータ4がエンジン1の出力軸を駆動することを表し、負(−)の値の場合はジェネレータ・モータ4がエンジン1の回転トルクによって発電を行うことを表す。このジェネレータ・モータ4の動作制御は、ECU100より当該目標値Gtbを表わす制御信号をインバータ20に設定し、インバータ20は、その設定された制御信号に応じてジェネレータ・モータ4に通電する電流の位相制御により実現すれば良い。尚、インバータを利用した三相電動機の位相制御は現在では一般的であるため、本実施形態における詳細な説明は省略する。
【0091】
ステップS25:ジェネレータ・モータ4のフィードバック制御を行うべく、PID制御で使用する比例(P)項及び微分(D)項とを算出する。即ち、ステップS24で設定されたジェネレータ・モータ4の目標値Gtbとトルク指令値Gtとの差分ΔGtを算出すると共に、その差分ΔGtから前回の制御周期におけるトルク指令値Gtoを差し引くことにより、微分(D)項dGtを算出する。また、今回の制御周期で算出した当該ΔGtを、新たなトルク指令値Gtoとして代入する。
【0092】
ステップS26:エンジン1の所定の積分項ゲインIe1と、ステップS22にて算出した差分ΔNeとの積を算出すると共に、その算出した積に、現在設定されている積分(I)項ΣNeを加算することにより、新たな積分(I)項ΣNeを算出する。
【0093】
ステップS27:ジェネレータ・モータ4の積分項ゲインIg1と、ステップS25にて算出した差分ΔGtとの積を算出すると共に、その算出した積に、現在設定されている積分(I)項ΣGtを加算することにより、新たな積分(I)項ΣGtを算出する。
【0094】
ステップS28:エンジン1の所定の比例項ゲインPe1とステップS22にて算出した差分ΔNeとの積を算出し、エンジン1の所定の微分項ゲインDe1とステップS22にて算出した微分(D)項dNeとの積を算出し、これら算出した積の和にステップS26にて算出した積分(I)項ΣNeを加算することにより、エンジン1を制御すべく今回の制御周期においてスロットルバルブ104に出力すべきスロットル開度指令値TVtを算出する。
【0095】
ステップS29:ジェネレータ・モータ4のの所定の比例項ゲインPg1とステップS25にて算出した差分ΔGtとの積を算出し、ジェネレータ・モータ4の所定の微分項ゲインDg1とステップS25にて算出した微分(D)項dGtとの積を算出し、これら算出した積の和にステップS27にて算出した積分(I)項ΣGtを加算することにより、ジェネレータ・モータ4の回転を制御すべく今回の制御周期においてインバータ20に出力すべきトルク指令値Gtを算出する。
【0096】
ステップS30:ステップS28で算出されたスロットル開度指令値TVtに基づいて、燃料量Pt及び点火時期θを設定する。
【0097】
ステップS31:クラッチ接続可否判断フラグF2が1であるかを判断し、YES(F2=1)のときにはステップS32に進み、NO(F2=0)のときにはステップS36に進む。
【0098】
ステップS32:現在のエンジン回転数Neがエンジン回転数の目標値Nebに一致したか否かを判断し、NO(Ne<Neb)のときにはまだエンジン1の出力軸の回転数が少ないためステップS17に進み、YES(Ne=Neb)のときにはステップS33に進む。
【0099】
ステップS33,ステップS34:ステップS32にてエンジン回転数Neがエンジン回転数の目標値Nebに一致したと判断したので、クラッチ接続可否判断フラグF2=1にセットする(ステップS33)と共に、タイマTを0にリセットする(ステップS34)。ここで、タイマTは、クラッチ6の締結タイミングを、エンジン回転数Neが目標値Nebに整定するまでの所定時間T1(図12参照)だけ遅延させる遅延タイマであり、締結タイミングを遅延させるのは、フィードバック制御によるエンジン回転数Neのオーバーシュートを考慮するためであり、エンジン回転数Neがエンジン回転数の目標値Nebに最初に一致した時点でクラッチ6を締結すると、トルクショックが発生することが予想されるからである。
【0100】
ステップS35:タイマTをインクリメントし、ステップS17に進む。
【0101】
ステップS36,ステップS37:タイマTのカウント値が所定時間T1より大きくなったかを判断し(ステップS36)、NO(カウント値≦T1)のときにはエンジン回転数Neが目標値Nebにまだ整定していないと予想されるためステップS35に進み、YES(カウント値>T1)のときにはクラッチ6を締結させ(ステップS37)、ステップS17に進む。
【0102】
ステップS17:本ステップまでの処理で設定された最新のスロットル開度指令値TVt、燃料量Pt、並びに点火時期θに応じて、エンジン1の燃焼運転を実行する。
【0103】
ステップS18:本ステップまでの処理で設定された最新のトルク指令値Mt及びトルク指令値Gtに応じて、走行モータ2及びジェネレータ・モータ4の駆動を実行し、リターンする。
【0104】
このように、本実施形態に係るハイブリッド車両の駆動装置によれば、走行モータ2による走行中にエンジン1を始動させるときに、制御応答性には優れるものの回転トルクが弱いジェネレータ・モータ4と、制御応答性には劣るものの大きな回転トルクを発生可能なエンジン1とを効率良く併用することができると共に、バッテリ3の蓄電量が少ないとき等には、エンジン1のスロットル開度指令値TVtを大きく設定することができるため、ジェネレータ・モータ4による発電を効率良く行うことができる。即ち、制御応答性に優れ、且つジェネレータ・モータによる発電を効率良く行うハイブリッド車両の駆動装置を実現することができる。
【0105】
尚、上述した本実施形態においては、スロットルバルブ104の開度量の制御に応じて調整される吸入空気量に基づいて、理論空燃比λ=1となるように燃料供給量を制御する制御ループを構成したが、これに限られるものではなく、本実施形態に係るエンジン制御は、リーンバーン制御のように、スロットルバルブの開度を略一定とし、燃料噴射弁から噴出される燃料噴射量を適宜制御することによって空燃比を調整することによってトルクを制御する制御系においても実現することができる。
【0106】
【第2の実施形態】
次に、本発明に係る車両の駆動装置として、上述した第1の実施形態に係るハイブリッド車両の駆動装置を基本とする第2の実施形態を説明する。以下の説明においては、第1の実施形態と同様な構成については重複する説明を省略し、本実施形態における特徴的な部分を中心に説明する。
【0107】
本実施形態では、図11に示す制御系において、更に制御応答性に優れ、且つ走行状態に応じた最適な制御を行うべく、ジェネレータ・モータ4の比例項ゲインPg、積分項ゲインIg、並びに微分項ゲインDg、エンジン1の比例項ゲインPe、積分項ゲインIe、並びに微分項ゲインDeの各制御ゲインを適宜変更する。
【0108】
以下、本実施形態における制御動作を実現するECU100の具体的な制御処理について、図23乃至図28を参照して説明する。
【0109】
図23及び図24は、第2の実施形態としてのハイブリッド車両の駆動装置における制御処理を示すフローチャートである。
【0110】
同図において、エンジン目標トルクEbがゼロより小さく走行モータ2による走行を継続させる場合と、クラッチ6が締結状態であってエンジン目標トルクEbがゼロより大きい場合にエンジン1による走行を継続させる場合とを示すステップS151からステップS161までの処理は、第1の実施形態における図13に示すステップS1からステップS10及びステップS18までの処理と略同様であり、重複する個々のステップの説明は省略するが、後述する処理の都合により、ステップS160では、ジェネレータ・モータ4を駆動してエンジン1の始動を開始したことを表わすエンジン始動開始フラグF3だけを0にリセットする点が異なる。
【0111】
ステップS162:ステップS157にてクラッチ6が締結されていないと判断されたため、エンジン始動開始フラグF3が1にセットされているか否かを判断し、YES(F3=1)のときにはステップS164に進み、NO(F3=0)のときにはステップS163に進む。
【0112】
ステップS163:ステップS162にてエンジン1の始動がまだ開始されていないと判断されたため、直ちにエンジン1のクランキングを開始する準備として、エンジン始動判断フラグF1を0、クラッチ接続可否判断フラグF2を0、エンジン始動開始フラグF3を1、並びにクラッチ接続遅延タイミングを計時するタイマTを0にセットする。更に、ジェネレータ・モータ4のトルク指令値Gtを演算するPIDフィードバック系の積分(I)項ΣGtには所定の初期値Gt0を代入し、エンジン1のスロットル開度指令値TVtを演算するPIDフィードバック系の積分(I)項ΣNeには所定の初期値TVt0を代入する。
【0113】
ステップS164,ステップS165:エンジン1を始動させるべく、第1の実施形態における図13に示すステップS12及びステップS13の処理と同様に、例えば図15に示すテーブル(マップ)を参照することにより、ジェネレータ・モータ4のトルク指令値Gtとスロットル開度指令値TVtとを設定する(ステップS12)と共に、燃料量Pt及び点火時期θを設定する。
【0114】
ステップS165〜ステップS170:第1の実施形態における図14に示すステップS21からステップS25の処理と同様な処理を行うことにより、バッテリ3の蓄電量に応じたジェネレータ・モータ4のトルク指令値Gtの目標値Gtb、微分(D)項dNe及びdGt等を算出する。
【0115】
ステップS171:エンジン1が燃焼運転を行っているか否かを表わすエンジン始動判断フラグF1が1(運転中)であるかを判断し、YES(F1=1)のときにはステップS172に進み、NO(F1=0)のときにはステップS176に進む。
【0116】
ステップS172,ステップS173:現在のエンジン回転数Neが予め記憶されている所定の回転数(例えば、着火回転数)Ne1より大きくなったか否かを判断し(ステップS172)、NO(Ne≦Ne1)のときにはまだエンジン1が燃焼を開始していないと判断できるためステップS174に進み、YES(Ne>Ne1)のときにはエンジン1が燃焼を開始したと判断できるためステップS173にてエンジン始動判断フラグF1を1にセットしてからステップS174に進む。
【0117】
ステップS174:図25に例示するテーブルを参照することにより、ステップS151で水温センサ108より入手した現在のエンジン温度に応じて、ジェネレータ・モータ4の比例項ゲインPg、積分項ゲインIg、並びに微分項ゲインDgを設定する。
【0118】
ステップS175:図26に例示するテーブルを参照することにより、ステップS151で水温センサ108より入手した現在のエンジン温度に応じて、エンジン1の比例項ゲインPe、積分項ゲインIe、並びに微分項ゲインDeの各制御ゲインを設定する。
【0119】
ここで、ステップS174及びステップS175にて設定する各制御ゲインの値について説明すれば、現時点ではエンジン1が燃焼運転を開始していない、或いは開始した直後であり、エンジン回転数Neを迅速にエンジン回転数の目標値Nebに近づける、或いは燃焼を開始した直後のエンジン1の燃焼停止(エンスト)を防止する必要があるため、エンジン温度に関らずエンジン1とジェネレータ・モータ4の積分項及び微分項は何れも0に設定される。これにより、エンジン1の回転抵抗が大きくなるエンジン温度が低い場合であっても、ジェネレータ・モータ4の比例項ゲインPgの作用によってジェネレータ・モータ4の回転トルクが大きくなるため、エンジン1の燃焼運転を迅速に開始させることができる。また、積分項が0に設定されているのは、オーバーシュートを防止するためである。
【0120】
また、図25及び図26に示す比例項がエンジン温度が高くなるのに応じて小さい値が記憶されているのは、エンジン温度が高いほどエンジンの回転抵抗は小さくなるため、検出したエンジン温度に応じて必要最小限の電力及び燃料によってジェネレータ・モータ4及びエンジン1を駆動させるためである。
【0121】
ステップS176:図27に例示するテーブルを参照することにより、ステップS151で水温センサ108より入手した現在のエンジン温度に応じて、ジェネレータ・モータ4の比例項ゲインPg、積分項ゲインIg、並びに微分項ゲインDgを設定する。
【0122】
ステップS177:図28に例示するテーブルを参照することにより、ステップS151で水温センサ108より入手した現在のエンジン温度に応じて、エンジン1の比例項ゲインPe、積分項ゲインIe、並びに微分項ゲインDeの各制御ゲインを設定する。
【0123】
ここで、ステップS176及びステップS177にて設定する各制御ゲインの値について説明すれば、現時点ではエンジン1が燃焼運転を開始しており、このタイミングにおいてはエンジン回転数Neをスムーズにエンジン回転数の目標値Nebに整定させることが要求される。そこで、エンジン回転数Neを目標値Nebにスムーズに整定させるべく、比例項、積分項、並びに微分項の各制御ゲインを設定している。
【0124】
また、図27及び図28に示す比例項がエンジン温度が高くなるのに応じて小さい値に設定されているのは、図25及び図26の場合と同様に、エンジン温度が高いほどエンジンの回転抵抗は小さくなるため、検出したエンジン温度に応じて必要最小限の電力及び燃料によってジェネレータ・モータ4及びエンジン1を駆動させるためである。
【0125】
ステップS178〜ステップS181:第1の実施形態における図14に示すステップS26からステップS29の処理と同様に、スロットル開度指令値TVtとトルク指令値Gtとを算出する。
【0126】
ステップS182〜ステップS189:第1の実施形態における図14に示すステップS31からステップS37及びそのステップS37に続くステップS17(図13)の処理と同様に、エンジン回転数Neが目標値Nebに一致してから所定時間T1だけ経過した時点でクラッチ6を締結させると共に、最新のスロットル開度指令値TVt、燃料量Pt、並びに点火時期θに応じて、エンジン1の燃焼運転を実行し、その後ステップS161に進む。
【0127】
このように、本実施形態によれば、エンジン1の始動時等の走行状態に応じて、制御応答性に優れた最適な制御を行うことができる。
【0128】
尚、上記の走行状態としては、上記の第2の実施形態として説明したジェネレータ・モータ4によってエンジン1を始動させるとき(第1のケース)に限られるものではなく、エンジン1の燃焼運転による加速時にジェネレータ・モータ4によって加速状態をアシストするとき(第2のケース)、或いはエンジン1の燃焼運転中にジェネレータ・モータ4による発電を行うとき(第3のケース)が想定される。また、これらの場合におけるフィードバック制御系の制御ゲインをそれぞれGfb1,Gfb2,Gfb3とすると、それら制御ゲインの大小関係を、Gfb1>Gfb2>Gfb3と設定することにより、当該フィードバック制御系の応答性を確保すること、並びにバッテリ3の効率的な動作を確保することができる。
【0129】
また、上述した第2の実施形態では、エンジン1が燃焼を開始するまでは、ジェネレータ・モータ4及びエンジン1のPIDフィードバック系の制御ゲインのうち、微分項と積分項とを0に設定したが、これに限られるものではなく、フィードフォワード制御を行うことによって所定の回転トルクを出力しても良い。
【0130】
尚、蓄電量が少ない状態のバッテリ3の電力を最大限に使用して走行モータ2による走行を行っているときには、バッテリ3が完全に放電して走行モータ2による走行が継続できなくなる前に、エンジン1の燃焼運転を早期に開始させ、エンジン1に走行トルクを発生させる必要がある。また、走行モータ2による走行中にアクセル開度が所定値を越えて大きな開度に操作されたときには、そのアクセル開度に応じて更に車両を加速すべく、エンジン1の燃焼運転を早期に開始させ、エンジン1に走行トルクを発生させる必要がある。これらの状態においては、バッテリ3にジェネレータ・モータ4を駆動する余裕(ジェネレータ・モータ4に供給する電力)が無いので、ECU100は、バッテリ3から走行モータ2への電力供給を徐々に抑制し、その抑制された分の電力によってジェネレータ・モータを駆動することにより、エンジンを確実に駆動すると良い。
【0131】
また、ハイブリッド車両においては、停車中または走行モータによる走行中にエンジンが自動的に停止したり、逆に、走行モータによる走行中においてもエンジンが自動的に始動する。
【0132】
一般に、エンジンを始動させるとき、即ちエンジンをクランキングさせてから燃焼運転を開始するまでの期間は、エンジンの燃焼サイクルに起因する回転トルクの変動がエンジンマウントを介して車室内に伝達されることにより、乗員にとって不快な車体振動となる。また、エンジンの始動時には、エンジンの出力軸と車輪の駆動軸とはクラッチによって離間した状態に保持されるが、その状態においても、トランスミッション内のオイル粘性により、エンジンの始動時の出力軸の回転トルクが車輪の駆動軸側に若干伝達されてしまい、この駆動軸に伝達されたトルクによっても、乗員にとって不快な車体振動が発生してしまう。特に、このオイル粘性による伝達トルクは、走行モータによって走行中のハイブリッド車両にとっては走行性を大きく阻害する要因となる。
【0133】
そこで、エンジン始動時のトルク変動が大きく変化する期間においては、エンジンのトルク変動をジェネレータ・モータの補償トルクによって相殺する、即ち、ジェネレータ・モータがエンジンを始動させるために出力する本来の回転トルクに、エンジンが始動時に発生させるトルク変動の位相とは逆位相の補償トルクを更に加えて出力することにより、車体振動の発生を防止すると良い。より具体的には、オイル粘性によって発生する伝達トルクとエンジンのクランク角との関係を予めマップ(テーブル)として記憶しておき、エンジンの始動に際しては、そのマップを参照することによってジェネレータ・モータが出力すべき回転トルク(補償トルクを含む)を決定すれば良い。この場合、オイル粘性によって発生する伝達トルクは、そのオイルの温度によって大きく変化するため、上記のマップには、オイルの温度変化に対応させたテーブルを記憶すると良い。
【0134】
更に、エンジン始動時のトルク変動が大きく変化する期間において、エンジンのトルク変動を、上述したジェネレータ・モータによる制御と同様な処理により、走行モータの補償トルクによって相殺しても良い。
【0135】
【参考例】
次に、上述した第1の実施形態に係るハイブリッド車両の駆動装置を基本とする参考例を説明する。以下の説明においては、第1の実施形態と同様な構成については重複する説明を省略し、本参考例における特徴的な部分を中心に説明する。
【0136】
図17は、本参考例に係るハイブリッド車両の駆動装置によるエンジン始動時の動作を説明する図である。
【0137】
バッテリの一般的な放電特性として、蓄電量が少ないバッテリであっても、放電開始当初の短期間においては通常の蓄電量のバッテリと略同様な放電を行うことができる。そこで、本参考例では、バッテリ3の蓄電量が少ないことによってエンジン1が始動できなくなる状態を回避すべく、バッテリ3の蓄電量が少ないときには、その放電開始直後の電力を利用してジェネレータ・モータ4を駆動することによってエンジン1を確実に始動させると共に、上述した第1の実施形態(図12参照)とは異なり、エンジン1の燃焼開始後には当該エンジンの比例項制御ゲインを大きく設定することにより、エンジン1を始動させてからエンジン回転数Neが目標値Nebに達するまでの所要時間を、バッテリ3からの供給電力が所定値より小さくなるまでの時間より短くし、且つ図17に示すようにエンジン回転数Neをあえて目標値Nebを越えてオーバーシュートさせる。
【0138】
そして、エンジン回転数Neのオーバーシュートを発生させた後は、エンジン回転数の慣性力によって回転数が低下していくのを利用して、タイミングt3までにエンジン回転数Neを目標値Nebに整定させ、その時点でクラッチ6を締結させる。
【0139】
また、バッテリ3の蓄電量が僅かしかないとき(後述する充電状態SOC<SOC2の場合に相当)には、走行モータ2による電力回生を行い、その回生動作によって発生した電力をバッテリ3に充電する。
【0140】
次に、上述した本参考例における制御動作を実現するECU100の具体的な制御処理について、図18乃至図22を参照して説明する。
【0141】
図18乃至図20は、本参考例としてのハイブリッド車両の駆動装置における制御処理を示すフローチャートである。
【0142】
同図において、ステップS51からステップS68までの処理は、第1の実施形態における図13に示すステップS1からステップS18までの処理と同様である。
【0143】
ステップS71〜ステップS75:第1の実施形態における図14に示すステップS21からステップS25までの処理と同様な処理を行う。
【0144】
ステップS76:現在のバッテリの充電状態SOCが所定値SOC1より大きいか否かを判断し、YES(SOC>SOC1)のときにはステップS77に進み、NO(SOC≦SOC1)のときにはステップS87に進む。
【0145】
ステップS77〜ステップS81:ステップS76にてSOC>SOC1であり、バッテリ3の現在の蓄電量は十分である。そこで、第1の実施形態における図14に示すステップS26からステップS30までの処理と同様な処理を行うことにより、スロットルバルブ104に出力すべきスロットル開度指令値TVtと、インバータ20に出力すべきトルク指令値Gtとを算出する。但し、これらの指令値の算出に使用する所定の制御ゲインは、ジェネレータ・モータ4については比例項ゲインPg1、積分項ゲインIg1、並びに微分項ゲインDg1であり、エンジン1については比例項ゲインPe1、積分項ゲインIe1、並びに微分項ゲインDe1である。特に、比例項ゲインPg1及び比例項ゲインPe1の値については、検出した水温に応じて、図21及び図22に例示するテーブル(マップ)を参照することにより、最適な比例項ゲインPg1及び比例項ゲインPe1を設定する。
【0146】
ステップS82〜ステップS86,ステップS99,ステップS100:第1の実施形態における図14に示すステップS31からステップS37までの処理と同様な処理を行うことにより、エンジン回転数Neがエンジン回転数の目標値Nebに最初に一致したタイミングから所定の遅延時間T1経過後にクラッチ6を締結させ、ステップS67に進む。
【0147】
ステップS87:現在のバッテリの充電状態SOCが所定値SOC2(但しSOC1>>SOC2)より小さいか否かを判断し、NO(SOC≧SOC2)のときにはステップS90に進み、YES(SOC<SOC2)のときにはステップS88に進む。
【0148】
ステップS90〜ステップS94:ステップS87にてSOC≧SOC2であり、バッテリ3の現在の蓄電量は不十分である。そこで、第1の実施形態における図14に示すステップS26からステップS30までの処理と同様な処理を行うことにより、スロットルバルブ104に出力すべきスロットル開度指令値TVtと、インバータ20に出力すべきトルク指令値Gtとを算出する。但し、これらの指令値の算出に使用する所定の制御ゲインは、ジェネレータ・モータ4については比例項ゲインPg2、積分項ゲインIg2、並びに微分項ゲインDg2であり、エンジン1については比例項ゲインPe2、積分項ゲインIe2、並びに微分項ゲインDe2である。特に、比例項ゲインPg2及び比例項ゲインPe2の値については、検出した水温に応じて、図21及び図22に例示するテーブル(マップ)を参照することにより、最適な比例項ゲインPg2及び比例項ゲインPe2を設定する。
【0149】
ステップS95〜ステップS98,ステップS86,ステップS99,ステップS100:上述した第1の実施形態における図14に示すステップS31からステップS37までの処理、並びにバッテリの充電状態SOCが所定値SOC1より大きい場合におけるステップS82からステップS86,ステップS99,ステップS100の処理と同様な処理を行うことにより、エンジン回転数Neがエンジン回転数の目標値Nebに最初に一致したタイミングから所定の遅延時間T2(但しT1<T2)経過後にクラッチ6を締結させ、ステップS67に進む。
【0150】
ステップS88,ステップS89:ステップS87にてSOC<SOC2であり、バッテリ3の現在の蓄電量が僅かしかない非常な状態である。そこで、現在の車速Vが所定の速度VSP1より速いか否かを判断し(ステップS88)、NO(V≦VSP1)のときにはステップS90に進み、YES(V>VSP1)のときには走行モータ2に電力回生を行わせ、その回生動作によって発生した電力をバッテリ3に供給し(ステップS89)、ステップS90に進む。
【0151】
このように、本参考例によれば、現在のバッテリの充電状態SOCが所定値SOC1より大きなときには上述した第1の実施形態と同様に、制御応答性に優れ、且つジェネレータ・モータ4による発電を効率良く行うハイブリッド車両の駆動装置を実現することができる。
【0152】
また、現在のバッテリの充電状態SOCが所定値SOC1よりは小さいが所定値SOC2より大きいときには、その現在の充電状態SOCに応じて設定される最適な比例(P)項制御ゲインに応じて、充電状態SOCが小さいときほどエンジン回転数Neを大きくオーバシュートさせることができ、確実にエンジン1を始動させると共にクラッチ6を最適なタイミングで締結させることができる。
【0153】
更に、バッテリ3の現在の状態がSOC<SOC2であるときに、車速Vが所定の速度VSP1より速い状態で走行しているときには、走行モータ2の回生電力によってバッテリ3を充電させる、或いは回生電力によるジェネレータ・モータ4の駆動を行うことができる。
【0154】
尚、上述した本参考例では、第1の実施形態で説明した図11に示す制御系と同様に、エンジン1が発生させるトルクと、ジェネレータ・モータ4が発生させるトルクとに対して2つのPIDコントローラを利用してフィードフォワード制御及びフィードバック制御を行う例を説明したが、これに限られるものではなく、例えばエンジン1が発生させるトルクの制御はフィードフォワード制御だけで行い、ジェネレータ・モータ4が発生させるトルクの制御はフィードバック制御だけで行う、或いはその逆の制御構成にしても良い。
【0155】
また、上述した本参考例では、走行モータ2による走行中に、バッテリ3の蓄電量が所定値SOC2より少なくなったときには、走行モータ2の回生制御により発生される回生エネルギ(回生電力)をバッテリ3に供給したが、例えば本願出願人による先行する特開平10−140011号(尚、本願出願時において未公開である)に開示されているように、発生した回生電力をジェネレータ・モータ4に直接供給し、その供給された回生電力によってジェネレータ・モータ4を駆動することにより、エンジン1を始動させても良い。
【0156】
或いは、走行モータ2による走行中に、バッテリ4からの供給電力の状態が異常であることが検出されたときには、当該モータの回生制御により発生される回生エネルギ(回生電力)をバッテリ4に供給するのではなく、ジェネレータ・モータ4に直接供給し、その供給された回生電力によってジェネレータ・モータ4を駆動することにより、エンジン1を始動させても良い。
【0157】
係るエンジンの緊急始動制御において、検出すべきバッテリの異常状態としては、例えば、バッテリの筐体温度が定格を越えて高温であること、個々に内部抵抗を有する複数のバッテリを並列接続と直列接続との間で切り替えることによって生じる内部抵抗全体としての変化により、当該各バッテリの供給電圧にばらつきが生じ、それらバッテリ全体としての供給電圧が不安定となること、或いはそれら複数のバッテリ同士の接続を切り替えるスイッチが故障したことや、個々のバッテリに設けられているフューズが切れたこと等を検出すれば良い。
【0158】
尚、上述した各実施形態及び参考例においては、ハイブリッド車両として停止状態からの加速時に、まず走行モータ2により車両を駆動し、その後、エンジン1を始動させてからエンジン出力軸と車輪駆動軸とをクラッチ6によって締結させる構成としたが、この構成に限られるものではない。即ち、所謂アイドリングストップ車両、即ちアクセルの全閉時にはエンジンを自動的に停止させると共に、その後、アクセルが踏み込まれたときには始動用の電気モータによってエンジンを自動的に始動させ、その後、自動変速機のクラッチをエンジンの出力軸と車輪とが接続されるように制御する車両にも適用可能であり、この場合、エンジンの目標回転数は、アクセル開度に応じて、予め設定された回転数を設定すれば良い。
【0159】
また、上述した各実施形態及び参考例においては、図11に示すフィードバック制御系の入力値として目標回転数Neb、出力値としてエンジン実回転数Neを採用したが、この構成に限られるものではなく、例えば、入力値にはエンジンを始動させるのに要する所定の目標トルク、出力値には一般的なトルクセンサやジェネレータ・モータの出力電流から検出可能なエンジン出力軸のトルクを採用した制御系としても良い。
【図面の簡単な説明】
【図1】第1の実施形態に適用可能なハイブリッド車両の機械的構成を例示すブロック図である。
【図2】第1の実施形態に適用可能なハイブリッド車両の発進&低速走行時の駆動力の伝達形態を説明する図である。
【図3】第1の実施形態に適用可能なハイブリッド車両の加速時の駆動力の伝達形態を説明する図である。
【図4】第1の実施形態に適用可能なハイブリッド車両の定常走行時の駆動力の伝達形態を説明する図である。
【図5】第1の実施形態に適用可能なハイブリッド車両の減速時の駆動力の伝達形態を説明する図である。
【図6】第1の実施形態に適用可能なハイブリッド車両の定常走行&充電時の駆動力の伝達形態を説明する図である。
【図7】第1の実施形態に適用可能なハイブリッド車両の充電時の駆動力の伝達形態を説明する図である。
【図8】第1の実施形態に適用可能なハイブリッド車両のエンジン始動時の駆動力の伝達形態を説明する図である。
【図9】第1の実施形態に適用可能なハイブリッド車両の電気的構成を示すブロック図である。
【図10】ハイブリッド車両の走行状態に応じたECUによるエンジン、ジェネレータ・モータ、走行モータ、並びにバッテリに対する制御を説明する図である。
【図11】第1の実施形態におけるハイブリッド車両の駆動装置の制御系の構成を示すブロック図である。
【図12】第1の実施形態に係るハイブリッド車両の駆動装置によるエンジン始動時の動作を説明する図である。
【図13】第1の実施形態としてのハイブリッド車両の駆動装置における制御処理を示すフローチャートである。
【図14】第1の実施形態としてのハイブリッド車両の駆動装置における制御処理を示すフローチャートである。
【図15】ジェネレータ・モータのトルク指令値Gt及びスロットル開度指令値TVtの設定に使用するテーブルを例示する図である。
【図16】ジェネレータ・モータのトルク指令値Gtの目標値Gtbの設定に際して使用するテーブルを例示する図である。
【図17】参考例に係るハイブリッド車両の駆動装置によるエンジン始動時の動作を説明する図である。
【図18】参考例としてのハイブリッド車両の駆動装置における制御処理を示すフローチャートである。
【図19】参考例としてのハイブリッド車両の駆動装置における制御処理を示すフローチャートである。
【図20】参考例としてのハイブリッド車両の駆動装置における制御処理を示すフローチャートである。
【図21】ジェネレータ・モータのトルク指令値Gtの設定に際して使用するテーブルを例示する図である。
【図22】エンジンの比例項ゲインPe1,Pe2の設定に際して使用するテーブルを例示する図である。
【図23】第2の実施形態としてのハイブリッド車両の駆動装置における制御処理を示すフローチャートである。
【図24】第2の実施形態としてのハイブリッド車両の駆動装置における制御処理を示すフローチャートである。
【図25】エンジンの燃焼運転開始前において、ジェネレータ・モータの制御ゲインの設定に際して使用するテーブルを例示する図である。
【図26】エンジンの燃焼運転開始後において、エンジンの制御ゲインの設定に際して使用するテーブルを例示する図である。
【図27】ジェネレータ・モータの制御ゲインの設定に使用するテーブルを例示する図である。
【図28】エンジンの制御ゲインの設定に使用するテーブルを例示する図である。
【符号の説明】
1:エンジン,
2:走行モータ,
3:バッテリ,
4:ジェネレータ・モータ,
5:トルクコンバータ,
6:クラッチ,
7:自動変速機,
8:差動機構,
9,10:車輪,
11:ギヤトレイン,
20:インバータ,
100:ECU,

Claims (8)

  1. 燃料の燃焼によって車輪の駆動軸を回転させる第1回転トルクを発生するエンジンと、その第1回転トルクを用いて発電するジェネレータ機能及び該エンジンの燃焼運転を始動させる第2回転トルクを発生するモータ機能を備えるジェネレータ・モータとを備える車両の駆動装置であって、
    設定された目標トルクを前記駆動軸に出力すべく、その目標トルクに関する値と検出した実トルクに関する値との偏差に基づいて前記第1回転トルク及び/または第2回転トルクのフィードバック制御を行うと共に、そのフィードバック制御における制御ゲインを、走行状態に応じて変更する制御手段を備えることを特徴とする車両の駆動装置。
  2. 前記エンジンの出力軸は、前記駆動軸に対して締結・開放可能であって、
    前記制御手段は、前記エンジンを始動させた後、前記実トルクに関する値である前記エンジンの出力軸の回転数が前記目標トルクに関する値である目標回転数となるようにフィードバック制御を行うと共に、それら回転数が略一致したときに、前記エンジンの出力軸と前記駆動軸とを締結させることを特徴とする請求項1記載の車両の駆動装置。
  3. 前記制御手段は、前記制御ゲインを変更するに際して、前記エンジンを始動させてから所定時間経過後の制御ゲインを、その所定時間が経過する前と比較して大きな値に変更することを特徴とする請求項1または請求項2記載の車両の駆動装置。
  4. 前記制御手段は、前記所定時間経過後に、前記制御ゲインに含まれる積分値を大きな値に変更することを特徴とする請求項3記載の車両の駆動装置。
  5. 前記所定時間として、前記エンジンが始動してから、前記実トルクに関する値が前記目標トルクに関する値に対して所定の割合を越えるまでの時間とすることを特徴とする請求項3記載の車両の駆動装置。
  6. 前記制御手段は、前記エンジンの水温が所定の水温より低いときには該所定の水温より高いときと比較して大きい値に、或いは前記車両に搭載された変速機の油温が所定の油温より低いときには該所定の油温より高いときと比較して大きい値に、前記制御ゲインを変更することを特徴とする請求項1または請求項2記載の車両の駆動装置。
  7. 前記制御手段は、前記走行状態としての前記エンジンの始動時の運転状態に基づいて、前記制御ゲインを変更することを特徴とする請求項1記載の車両の駆動装置。
  8. 更に、バッテリからの供給電力によって前記駆動軸を回転させる第3回転トルクを発生する走行モータを備え、
    前記制御手段は、前記目標回転数を、前記第3回転トルクを用いた走行中における前記駆動軸の回転数に基づいて設定することを特徴とする請求項2記載の車両の駆動装置。
JP22567099A 1999-08-09 1999-08-09 車両の駆動装置 Expired - Fee Related JP3879960B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22567099A JP3879960B2 (ja) 1999-08-09 1999-08-09 車両の駆動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22567099A JP3879960B2 (ja) 1999-08-09 1999-08-09 車両の駆動装置

Publications (2)

Publication Number Publication Date
JP2001054208A JP2001054208A (ja) 2001-02-23
JP3879960B2 true JP3879960B2 (ja) 2007-02-14

Family

ID=16832952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22567099A Expired - Fee Related JP3879960B2 (ja) 1999-08-09 1999-08-09 車両の駆動装置

Country Status (1)

Country Link
JP (1) JP3879960B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3566151B2 (ja) * 1999-10-04 2004-09-15 本田技研工業株式会社 ハイブリッド自動車のモータ制御装置
JP3294230B2 (ja) * 2000-02-22 2002-06-24 株式会社日立製作所 自動車用制御装置,自動車の制御方法,変速機
JP5488147B2 (ja) * 2010-04-09 2014-05-14 トヨタ自動車株式会社 ハイブリッド自動車およびその制御方法
KR101305613B1 (ko) * 2011-12-22 2013-09-09 기아자동차주식회사 다양한 모드를 갖는 하이브리드 차량의 ev 제어를 통한 연비향상방법
JP6229922B2 (ja) * 2013-03-12 2017-11-15 スズキ株式会社 ハイブリッド車両
JP6747364B2 (ja) * 2017-04-10 2020-08-26 トヨタ自動車株式会社 駆動装置
JP2019130933A (ja) * 2018-01-29 2019-08-08 トヨタ自動車株式会社 ハイブリッド車両

Also Published As

Publication number Publication date
JP2001054208A (ja) 2001-02-23

Similar Documents

Publication Publication Date Title
EP1802478B1 (en) Hybrid vehicle
JP3454133B2 (ja) ハイブリッド車の駆動制御装置
JP4519085B2 (ja) 内燃機関の制御装置
EP3272606B1 (en) Damping control device for hybrid vehicle
US20050266957A1 (en) Power output apparatus and control method of the same
JP2000152411A (ja) 車両制御装置
JP2008162315A (ja) ハイブリッド車両の制御方法
US20050051371A1 (en) Method for controlling a wheel drive system of a hybrid vehicle
US20190283730A1 (en) Control system for hybrid vehicle
JP2014180961A (ja) ハイブリッド車
JP2013256173A (ja) ハイブリッド自動車
JP4123501B2 (ja) ハイブリッド車両の駆動装置
JP2001057706A (ja) 車両の駆動装置
JP3879960B2 (ja) 車両の駆動装置
US11584359B2 (en) Control device of hybrid vehicle and control method
JP3562429B2 (ja) ハイブリッド車両の制御装置
JP2010241386A (ja) ハイブリッド車両およびその制御方法
US6717378B2 (en) Motor output control system and method for hybrid vehicle
JP3978703B2 (ja) ハイブリッド車両
JP2013047059A (ja) ハイブリッド自動車
JP2000278814A (ja) 車両の駆動装置
JP2001349226A (ja) 車両のエンジン自動停止再始動装置
JP2004270512A (ja) ハイブリッド車両の制御装置
JP7211254B2 (ja) 車両制御装置
US10507821B2 (en) Hybrid vehicle and method of controlling the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060309

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20060309

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees