JP3879278B2 - Charge amount calculation method and charge amount calculation device for hybrid vehicle - Google Patents

Charge amount calculation method and charge amount calculation device for hybrid vehicle Download PDF

Info

Publication number
JP3879278B2
JP3879278B2 JP31891298A JP31891298A JP3879278B2 JP 3879278 B2 JP3879278 B2 JP 3879278B2 JP 31891298 A JP31891298 A JP 31891298A JP 31891298 A JP31891298 A JP 31891298A JP 3879278 B2 JP3879278 B2 JP 3879278B2
Authority
JP
Japan
Prior art keywords
charge amount
value
current
voltage
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31891298A
Other languages
Japanese (ja)
Other versions
JP2000150003A (en
Inventor
匡 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP31891298A priority Critical patent/JP3879278B2/en
Publication of JP2000150003A publication Critical patent/JP2000150003A/en
Application granted granted Critical
Publication of JP3879278B2 publication Critical patent/JP3879278B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Hybrid Electric Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ハイブリッド車等に用いられる駆動用二次電池の充電量演算方法および充電量演算装置に関する。
【0002】
【発明が解決しようとする課題】
走行駆動源として内燃エンジンおよび電動モータを備え、それらの両方またはいずれか一方の駆動力により走行するハイブリッド方式の電気自動車(以下では、ハイブリッド車と呼ぶ)が知られている。このようなハイブリッド車では、モータ駆動用二次電池の充電量SOC(State of charge)の算出方法の一つとして、充放電時の電流を積算して得られるAh積算値(=Σ(I×t):Iは電流値、tは時間)と電池容量とから算出する方法がある。
【0003】
しかしながら、上述した算出方法では、電流値Iに検出誤差ΔIがあった場合に誤差が累積されることになる。このAh積算値に含まれる累積誤差Σ(ΔI×t)によって、充電量SOCの算出を行うたびに誤差が大きくなって実際の充電量SOCと大きくずれてしまうという問題があった。
【0004】
本発明の目的は、二次電池の充電量SOCを精度良く算出することができるハイブリッド車の充電量演算方法および充電量演算装置を提供することにある。
【0005】
【課題を解決するための手段】
発明の実施の形態を示す図1および図8に対応付けて説明する。
図8に対応付けて説明すると、請求項の発明によるハイブリッド車の充電量演算方法は、二次電池の充放電電流値Iに基づいて電流積算値Ahを算出し、その電流積算値Ahに基づいて二次電池の第1の充電量を算出するハイブリッド車の充電量演算方法に適用され、(a)二次電池の無負荷状態時の端子電圧値E1に基づいて第2の充電量を算出し、第2の充電量と第1の充電量との差が所定値以上となったときに第1の充電量を第2の充電量で置き換える第1の補正方法、(b)二次電池の充放電時の端子電圧値Vと電流値Iとをサンプリングし、それらを一次回帰演算して得られる端子電圧値と電流値との特性直線に基づいて第1の開放電圧E2を算出し、第1の開放電圧E2に基づいて算出される第3の充電量と第1の充電量との差が所定値以上となったときに第1の充電量を第3の充電量で置き換える第2の補正方法、(c)二次電池の充放電時の端子電圧値V,電流値Iおよび内部抵抗値に基づいて第2の開放電圧E3を算出し、第2の開放電圧E3に基づいて算出される第4の充電量と第1の充電量との差が所定値以上となったときに第1の充電量を第4の充電量で置き換える第3の補正方法、の内の少なくともつの補正方法用いて第1の充電量を補正することにより上述の目的を達成する。
)請求項の発明は、請求項に記載の充電量演算方法において、第1の補正方法および第2の補正方法を用いて第1の充電量を補正する。
)請求項の発明は、請求項に記載の充電量演算方法において、第1の補正方法および第3の補正方法を用いて第1の充電量を補正する。
(4)請求項4の発明は、請求項1に記載の充電量演算方法において、第1の補正方法、第2の補正方法および第3の補正方法の内の少なくとも1つの補正方法を、車両の走行状態に基づいて選択して用いるようにした。
(5)請求項5の発明は、請求項4に記載の充電量演算方法において、車両起動時には第1の補正方法を用いて第1の充電量を補正し、車両走行時であって特性直線が得られる走行状態である場合には、第2の補正方法を用いて第1の充電量を補正し、車両走行時であって特性直線が得られない走行状態である場合には、第3の補正方法を用いて第1の充電量を補正する。
)図1および図8に対応付けて説明すると、請求項の発明は、二次電池6の充放電電流値Iを検出する電流検出手段9と、電流検出手段9の電流検出値Iに基づいて電流積算値Ahを算出する電流積算手段22とを備え、電流積算値Ahに基づいて二次電池6の第1の充電量を算出するハイブリッド車の充電量演算装置に適用され、二次電池6の端子電圧Vを検出する電圧検出手段8と、電流検出手段9の検出値Iおよび電圧検出手段8の検出値Vに基づいて二次電池6の開放電圧E2,E3を算出する開放電圧演算手段21,25と、開放電圧演算手段21,25による開放電圧算出値E2,E3に応じた第2の充電量を算出する充電量演算手段24と、第1の充電量と第2の充電量との差が所定値以上となったときに、第2の充電量に基づいて第1の充電量を補正する補正手段23,24と、を設けたことにより上述の目的を達成する。
【0006】
なお、本発明の構成を説明する上記課題を解決するための手段の項では、本発明を分かり易くするために発明の実施の形態の図を用いたが、これにより本発明が発明の実施の形態に限定されるものではない。
【0007】
【発明の効果】
以上説明したように、請求項1〜請求項5の発明によれば、異なる4つの算出方法の内の少なくとも2つの算出方法を用いて二次電池の充電量を算出することにより、種々の走行パターンにおいて充電量を精度良く算出できる。
請求項6〜請求項8の発明によれば、第1の充電量を電流検出値誤差等による累積誤差の影響の無い第2,第3または第4の充電量で置き換える3種類の補正方法の少なくとも2つを用いることにより、充電量に対する電流検出値誤差等による累積誤差の影響を低減することができるとともに、種々の走行パターンにおいて充電量を精度良く算出できる。
請求項9の発明によれば、開放電圧算出値に応じて得られる第2の充電量は電流検出値誤差等による累積誤差の影響が無いので、電流積算値に基づく第1の充電量を第2の充電量で補正することにより、充電量に対する電流検出値誤差等による累積誤差の影響を低減することができるとともに、種々の走行パターンにおいて充電量を精度良く算出できる。
【0008】
【発明の実施の形態】
以下、図1〜図10を参照して本発明の実施の形態を説明する。図1はパラレル・ハイブリッド車の構成を示すブロック図である。エンジン2の主軸には電動モータ3の回転子が直結されており、エンジン2および/またはモータ3の駆動力は駆動系4を介して車軸7に伝達される。パラレル・ハイブリッド車におけるモータ3の運転モードには、車軸7を駆動する駆動モードと二次電池6を充電する発電モードとがある。車両自体の駆動モード時、すなわち加速時,平坦路走行時や登坂時等に、モータ3へ電力を供給する二次電池6が充分な充電状態にある場合には、モータ3を駆動モードで運転してエンジン2とモータ3の両方の両駆動力により走行する。
【0009】
ただし、二次電池6の充電状態が低い場合にはモータ3を発電モードで運転して、エンジン2の駆動力により走行を行うとともにエンジン2の駆動力によりモータ3の回転子を回転し、モータ3による発電を行って二次電池6を充電する。インバータ5は二次電池6からの直流電力を交流電力に変換してモータ3に供給するとともに、発電モード時にはモータ3からの交流電力を直流電力に変換して二次電池6へ供給する。
【0010】
一方、車両の制動モード時、すなわち減速時や降坂時などには、駆動系4を介した車輪の回転力によってエンジン2およびモータ3が駆動される。このとき、モータ3を発電モードで運転し回生エネルギーを吸収して二次電池6を充電する。コントローラ1はマイクロコンピュータとその周辺部品から構成され、二次電池6の端子電圧値Vを検出する電圧センサ8,充放電時の電流値Iを検出する電流センサ9,二次電池6の温度Tを検出する温度センサ10が接続される。コントローラ1の演算部1aでは上述した各センサの検出値に基づいて二次電池6のSOCを演算し、制御部1bは各検出値およびSOC等に基づいてエンジン2,インバータ5,モータ3を制御する。
【0011】
次いで、コントローラ1の演算部1aで行われる充電量演算方法について説明する。図2は演算により得られる充電量SOC(以下では充電量RSOCと記す)と真の充電量SOCとを比較して示した概念図であり、(a)は充放電時の電流値Iを積算して得られる電流積算値(以下ではAh積算値と記す)に基づく充電量RSOCを示し、(b)は本発明の充電量演算方法による充電量RSOCを示す。ここで、(a)の場合も(b)の場合も、基本的には次式(1)を用いて充電量RSOCを算出する。
【数1】
RSOC(%)=[1−Ah/Ah(Pmin)]×100 …(1)
基本式(1)においてAhはAh積算値であり、Ah(Pmin)は二次電池の電池容量である。電池容量Ah(Pmin)の算出方法については後述する。なお、Ah(Pmin)は単に定格容量(3時間率容量など)としても良い。
【0012】
図2(a)に示す充電量RSOCでは、Ahとして充放電時の電流値Iを積算したAh積算値のみが用いられる。この場合、例えば前述したように電流値Iに誤差ΔIがあると、Ah積算値には電流値Iの誤差ΔIが累積されてしまい、図2(a)のようにSOC演算開始時の充電量RSOCが真の充電量SOCと等しかったとしても、演算を行うにつれて真の充電量SOCに対する誤差が増大する。
【0013】
ところで、二次電池としてはリチウムイオン電池などが用いられるが、リチウムイオン電池では電池の劣化度や温度にかかわらず開放電圧と充電量SOCとの間に一定の相関がある。また、その再現性がとても良い。図3はそのような相関の一例を示す図であり、開放電圧が分かればこの相関から充電量SOCが一意的に決まる。図3では充電量SOC=100%に対応する開放電圧はOCV(100)であるが、例えば、開放電圧の実測値としてOCV(100)が得られれば、そのときの二次電池の充電量SOCが100%であることを相関図から求めることができる。
【0014】
そこで、本発明による充電量演算方法では、開放電圧を実測または推定し、得られた開放電圧と図3に示す相関とから充電量SOCを算出する。この充電量SOC(以下では、これを充電量CAPSOCと記す)とAh積算値に基づいて基本式(1)で算出される充電量RSOCとの差(誤差に相当する)が所定値以上となったならば、Ah積算値をその時点の充電量CAPSOCに相当するAh積算値(以下、電流積算値CAPAHと記す)に置き換えてリセットする。電流積算値CAPAHは次式(2)で算出される。
【数2】
CAPAH=Ah(Pmin)×(1−CAPSOC/100) …(2)
【0015】
充電量CAPSOCはAh積算値を用いて算出される充電量RSOCのように誤差が累積されないので、図2(b)の一点鎖線で示すように真の充電量SOCに近い値が得られる。図2(b)に示す例では、演算開始から次第に誤差が大きくなった充電量RSOCを時刻t1において充電量CAPSOCの値でリセットしている。そして、時刻t1でRSOC=CAPSOCと置き換えられた充電量RSOCは、基本式(1)のAh積算値の誤差が累積されるにつれて真の充電量SOCとの誤差が大きくなり、その誤差が所定値以上となった時点で再びリセットが行われる。このように、本発明によるS充電量算方法では、真の充電量SOCとの誤差が所定値以上となったならば上述したリセットを行うため、演算値RSOCと真の充電量SOCとの誤差を所定値以下に抑えることが可能となる。
【0016】
図3の相関を用いて充電量CAPSOCを算出する際の開放電圧としては次の三種類が考えられる。
▲1▼無負荷時に実測して得られる開放電圧E1
▲2▼充放電時にサンプリングされた電流値および電圧値から得られるIV特性により、すなわちパワー演算(放電IV外挿)により推定される開放電圧E2
▲3▼充放電時の電流値および総電圧値に基づいて、次式(3)により推定される開放電圧E3
【数3】
E3=(総電圧)+(電流)×(温度・劣化補正された内部抵抗) …(3)
【0017】
[▲1▼の開放電圧E1による充電量SOC演算]
図4は上述した▲1▼の実測開放電圧E1に基づいて充電量RSOCのリセットを行う方法を説明する図であり、(a)は開放電圧E1と充電量SOCの相関図、(b)は充電量ROSCの時間変化を示す図である。図4(b)に示す例では、演算開始後の時刻t2およびt3においてリセットを行っている。時刻t2における開放電圧E1をE1(2)とすると、図4(a)の相関から充電量CAPSOC2が得られる。そして、時刻t2における充電量RSOCを充電量CAPSOC2にリセットする。すなわち、時刻t2におけるAh積算値を、式(2)に充電量CAPSOC2を代入して得られる電流積算値CAPAHにリセットする。時刻t3の場合も同様であり、開放電圧E1(3)から充電量CAPSOC3を求め、時刻t3における充電量RSOCを充電量CAPSOC3にリセットする。図4(b)の二点鎖線RSOC’は、時刻t2,t3でリセットを行わなかった場合のSOC演算値を示している。なお、開放電圧E1の計測は無負荷時にしか行えないので、例えば、車両起動時の無負荷時(強電オン前)やキーオフ時に開放電圧E1を計測する。
【0018】
[▲2▼の開放電圧E2による充電量SOC演算]
まず、上述した▲2▼のパワー演算による推定開放電圧E2の算出方法について図5を参照して説明する。最初に、二次電池の電流変化を捉えて電流値Iおよび電圧値Vをサンプリングする。図5の×印はサンプリングデータをIV座標上に示したものであり、これらのサンプリングデータに基づいてIV特性を一次回帰演算して特性直線Lを求める。この直線Lと縦軸(電圧)との交点の値が推定開放電圧E2である。直線Lと放電下限電圧(車両システムとしての使用下限電圧)Vminとの交点から、そのときの二次電池の最大出力Pmax=Vmin×Imaxがパワー演算値Pとして算出される。また、直線Lの傾きから二次電池の内部抵抗Rを算出することができる。ただし、Imaxは直線Lにおいて電圧が放電下限電圧Vminとなるときの値であり、放電下限電圧Vminは以下の(a),(b)の要因から決定される。
(a)電池の寿命を考慮した使用電圧範囲の下限電圧(放電終止電圧)
(b)車両搭載ユニットの性能,機能を保証可能な使用電圧範囲の下限電圧
【0019】
図6は充電量RSOCのリセットを説明する図であり、図4の場合と同様に(a)は相関図、(b)は充電量RSOCの時間変化を示す図である。上述したパワー演算により推定開放電圧E2が得られたならば、図6(a)の相関図から充電量CAPSOC4を求めてその時の充電量RSOCを充電量CAPSOC4にリセットする。なお、パワー演算による開放電圧の推定は間欠的にしか行うことができないため、充電量CAPSOCの変化は図6(b)に示すように折れ線グラフとなる。算出された充電量CAPSOCは真の充電量SOCの上下にばらついているが、このばらつきは放電IVサンプリング誤差に起因するものである。
【0020】
[▲3▼の開放電圧E3による充電量SOC演算]
図7は▲3▼の開放電圧E3による充電量SOC演算を説明する図であり、図4の場合と同様に(a)は相関図、(b)は充電量RSOCの時間変化を示す図である。充放電時の二次電池の電流値をI、電圧値をV、補正された内部抵抗をRで表すと、上述した式(3)は次式(4)のように表される。
【数4】
E3=V+I×R …(4)
ただし、Rは、内部抵抗初期値R0,温度補正係数α,内部抵抗劣化補正係数γを用いて式(5)のように表される。なお、温度補正係数α,内部抵抗劣化補正係数γについては後述する。
【数5】
R=R0/(α×γ) …(5)
【0021】
式(4)から推定される開放電圧E3と図7(a)の相関図とから充電量CAPSOC5を求め、図7(b)に示すように充電量RSOCを充電量CAPSOC5にリセットする。式(4)で算出される開放電圧E3は測定されたI,Vから逐次得ることができるが、電流値Iが大きいと補正係数γによる誤差が大きくなったり、電池容量が小さい場合には拡散抵抗増加,SOCの低下を伴うので、開放電圧E3の算出は電流値Iが小さい場合に使用すると有効である。例えば、電流値IがI≦5CAのときに用いる。なお、Cは定格容量であり、定格容量=3Ahの場合ならば5Cは15Aになる。以下では、算出時の電流値Iの上限値を5CA(=15A)として説明する。
【0022】
このように、開放電圧(E1〜E3)から得られる充電量CAPSOCを用いて充電量RSOCをリセットする場合には、上述した▲1▼〜▲3▼のいずれか一つの方法で得られた充電量CAPSOCでリセットしても良いし、これらを組み合わせて用いるようにしても良い。ただし、▲1▼の場合には無負荷時開放電圧は起動,停止時にしか得られないので、▲1▼で得られる充電量CAPSOCのみでリセットを行うよりも、他の▲2▼,▲3▼と組み合わせて行うのが好ましい。
【0023】
以下では、▲1▼〜▲3▼の三つを組み合わせてリセットする場合について説明する。
(a)起動時には、▲1▼の開放電圧E1に基づく充電量CAPSOCとAh積算値に基づく充電量RSOCとの偏差が所定値Δ1(例えば、Δ1=1%)以上となった時にリセットを行い、(b)走行時には、▲2▼の開放電圧E2に基づく充電量CAPSOCとAh積算値に基づく充電量RSOCとの偏差が所定値Δ1以上となった時にリセットを行う。
【0024】
ところで、定速走行時など負荷変動が小さな場合には図5の回帰直線Lが得られないため、開放電圧E2を推定することができない。開放電圧E2が得られないと、上述の偏差が得られなくなってリセットを行うか否かが評価できなくなり、Ah積算値に基づく充電量RSOCの偏差が実際に所定値Δ1以上となっていたとしてもリセットが行われないという不都合が生じる。そこで、このような不都合を防止するために、定速走行時などのパワー演算不可と判定された時には、▲3▼の開放電圧E3に基づく充電量CAPSOCとAh積算値に基づくRSOCとの偏差が所定値Δ2以上となったならば、充電量RSOCを算出された充電量CAPSOCでリセットする。ここで、所定値Δ2としてはΔ2≧Δ1となる値(例えば5%)に設定する。
【0025】
なお、走行中に開放電圧E2や開放電圧E3に基づく充電量CAPSOCでリセットを行う場合、Ah演算値を式(2)で算出される電流積算値CAPAHで置き換えたときに充電量RSOCが急変する場合がある。そこで、このような走行中の充電量SOCの急変によりシステムの制御が不安定になるのを防止するために、例えば、数十秒間(次式(6)の場合には10秒間)かけて徐々に充電量RSOCを充電量CAPSOCの値に変化させる。すなわち、次式(6)で算出される電流積算値CAPAHを用いて充電量RSOCを演算する。
【数6】
CAPAH=[{Ah(Pmin)×(1−CAPSOC/100)}×T/10+{CAPAH×(1−T/10)} …(6)
【0026】
図8は図1に示したコントローラ1の演算部1aの機能ブロック図である。22は電流センサ9からの電流値Iを積算してAh積算値を算出するAh演算部であり、23はAh積算値と電池容量演算部20で算出された電池容量Ah(Pmin)とから充電量RSOCを算出するRSOC演算部である。また、21は電圧センサ8からの電圧値Vおよび電流センサ9からの電流値Iをサンプリングして二次電池6(図1参照)の開放電圧E2,内部抵抗Rおよびパワー演算値Pを演算する瞬時パワー演算部であり、25は電圧値Vおよび電流値Iに基づいて式(4)により開放電圧E3を算出する開放電圧E3演算部である。なお、パワー演算部21では、サンプリングした電圧値Vおよび電流値Iに基づきパワー演算可能か否かの判定も行われる。
【0027】
算出された開放電圧E2,E3および無負荷時に検出される開放電圧E1は、CAPAH演算部24に入力される。CAPAH演算部24は(a)各開放電圧E1〜E3に応じた充電量CAPSOCの算出、(b)算出された充電量CAPSOCとRSOC演算部23で算出された充電量RSOCとの偏差の算出、(c)充電量CAPSOCに対応する電流積算値CAPAHの算出をそれぞれ行い、上記の偏差の大きさに応じて(c)の電流積算値CAPAHをRSOC演算部23に出力する。
【0028】
すなわち、CAPAH演算部24は、開放電圧E1,E2に基づく充電量CAPSOCに対する偏差が所定値Δ1以上となった時には、起動時であれば開放電圧E1に基づく充電量CAPSOCから算出される電流積算値CAPAHを出力し、走行時であれば開放電圧E2に基づく充電量CAPSOCから算出される電流積算値CAPAHを出力する。一方、走行時に、開放電圧E3に基づく充電量CAPSOCに対する偏差が所定値Δ2以上となった時には、開放電圧E3に基づく充電量CAPSOCから算出される電流積算値CAPAHを出力する。
【0029】
なお、CAPAH演算部24では、例えば、図3に示すようなSOC対開放電圧のテーブルを予めコントローラ1のメモリ(不図示)に記憶しておき、そのテーブルを用いて充電量CAPSOCを求めるようにする。RSOC演算部23は、CAPAH演算部24からの電流積算値CAPAHを受信したならば、充電量RSOCの算出に用いるAh演算値を受信した電流積算値CAPAHで置き換える。
【0030】
[電池容量演算部20の説明]
次に、電池容量演算部20における電池容量Ah(Pmin)の算出方法の概略を説明する。図9は二次電池6の初期特性の温度補正および劣化補正を説明する図であり、それぞれパワー特性対放電電気量の関係Ah(P)を示している。図9(a)の曲線L1は電池の初期特性(劣化が無く、電池温度が基準温度である場合)を示しており、リチウムイオン電池などの場合には、Ah(P)はパワーPのn次式で近似することができる。初期特性L1は次式(7)で近似することができる。
【数7】
Ah(P)=aP3+bP2+cP+d …(7)
ここで、係数a,b,c,dは初期電池の特性から決定される。
【0031】
この初期特性L1に対して温度補正係数αで温度補正を行うと、図9(b)に示す温度補正特性L2が得られる。この温度補正特性L2は次式(8)で表される。
【数8】

Figure 0003879278
図9(b)からも分かるようにαはパワーに対する比例分であって、温度補正特性L2のP切片PrefはPref=P0×αとなる。この温度補正係数αは二次電池の内部抵抗変化を表すパラメータであり、温度センサ10からの電池温度Tに基づいて電池容量演算部20のα演算部201で算出され、温度Tに応じたテーブル参照値である。また、P0は特性L1のP切片である。
【0032】
さらに、温度補正された式(8)に対して次式(9)で表されるような劣化補正を行うことによって、温度補正および劣化補正が施された関係式Ah(P)がパワー容量演算部203で算出される。
【数9】
Figure 0003879278
ここで、γは電池の内部抵抗変化を、βは電気容量変化を表すパラメータであり、それぞれ内部抵抗劣化補正係数、容量劣化補正係数と呼ばれる。上述した電池容量Ah(Pmin)は、式(9)で得られるAh(P)に車両のシステムに必要な最低保証出力Pminを代入して得られる。
【0033】
上述した内部抵抗劣化補正係数γは、α演算部201で算出された温度補正係数αおよび瞬時パワー演算部21で算出された内部抵抗Rに基づき、電池容量演算部20のγ演算部202おいて次式(10)により算出される。
【数10】
γ=(R0/α)/R …(10)
ここで、R0は電池の初期内部抵抗である。一方、容量劣化補正係数βは、Ah演算部22で算出されるAh積算値およびパワー容量演算部203で算出されるAh(P/αγ)に基づき、電池容量演算部20のβ演算部204において次式(11)により算出される。
【数11】
β=(Ah積算値)/Ah(P/αγ) …(11)
式(9)で表されるAh(P)は図9(c)の曲線L3のようになる。図9(c)において曲線L2’は特性曲線L2を内部抵抗劣化補正係数γで補正した曲線であり、特性曲線L2はこの曲線L2’を容量劣化補正係数βで補正したものである。
【0034】
なお、上述した方法はパワー特性対放電電気量の関係に上記のようなパラメータで表現可能な相関があれば適用可能であり、鉛酸電池,ニッケル水素電池などの電池種を問わず使用できる。ただし、温度補正,劣化補正をどの係数(α、β、γ)に当てはめるかについては各電池毎に検討をする必要がある。なお、必ずしもAh(P)はPのn次式で近似する必要はなく、例えば、PとAhの関係をテーブルとして持てば、補間計算を用いることによって上述した計算手順と同様に解を求めることができる。
【0035】
図10は充電量演算の手順を示すフローチャートであり、IGキー・オンによりフローがスタートする。なお、以下では開放電圧E1,E2に基づく充電量CAPSOCを充電量ECAPSOCと記し、開放電圧E3に基づく充電量CAPSOCを充電量VCAPSOCと記すことにする。ステップS1は無負荷状態か否かを判定するステップであり、無負荷状態の場合にはステップS2へ進み、負荷状態(充放電時)の場合にはステップS7へ進む。ステップS1からステップS2へ進んだ場合には、ステップS2で開放電圧E1を算出するとともにその開放電圧E1に基づく充電量ECAPSOCを図3に示す相関から求め、その後ステップS3へ進む。
【0036】
一方、ステップS1からステップS7へ進んだ場合には、ステップS7においてパワー演算が可能か否かの判定(例えば、瞬時パワー演算部21において電流値I,電圧値Vの変化をとらえたサンプリングデータが所定数以上収集できたか否かで判定する)を行い、パワー演算可能な場合にはステップS8へ、パワー演算不可能な場合にはステップS10へ進む。ステップS8では、開放電圧E2を算出するとともにその開放電圧E2に基づく充電量ECAPSOCを図3に示す相関から求め、その後ステップS3へ進む。なお、ステップS8で充電量ECAPSOCを算出する際には、開放電圧E2の移動平均、すなわち演算により得られる過去3回の値の平均値を用いる。次いで、ステップS3ではステップS2またはステップS8で算出された充電量ECAPSOCに対する充電量RSOC(Ah積算値から得られる)の偏差ESOCOFSを次式(12)により算出する。
【数12】
ESOCOFS=RSOC−ECAPSOC …(12)
【0037】
ステップS4は偏差ESOCOFSの絶対値が1%以上か否かを判定するステップであり、1%以上の場合にはステップS5に進み、1%より小さい場合にはステップS9へ進みAh積算値に基づく充電量RSOCを式(1)により算出した後にステップS16へ進む。ステップS5では、式(2)(または式(6))の充電量CAPSOCにステップS2またはステップS8で算出した充電量ECAPSOCを代入して電流積算値CAPAHを算出し、その電流積算値CAPAHでAh積算値をリセットする。ステップS6では、ステップS5で算出された電流積算値CAPAHに基づく充電量RSOCを式(1)により算出し、その後ステップS16へ進む。
【0038】
ところで、ステップS7においてパワー演算不可能と判定されてステップS10へ進んだ場合には、ステップS10において電流値Iが15A以下であるか否かを判定し、15A以下の場合にはステップS11へ進み、15Aを越える場合にはステップS9へ進む。ステップS11では、負荷時の開放電圧E3を式(4)により算出し、その開放電圧E3に基づく充電量VCAPSOCを図3に示す関係から求める。ステップS12では、ステップS11で算出された充電量VCAPSOCに対する充電量RSOC(Ah積算値から得られる)の偏差VSOCOFSを次式(13)により算出する。
【数13】
VSOCOFS=RSOC−VCAPSOC …(13)
【0039】
ステップS13は偏差VSOCOFSの絶対値が5%以上か否かを判定するステップであり、5%以上の場合にはステップS14に進んで式(2)または式(6)の充電量CAPSOCにステップS11の充電量VCAPSOCを代入して得られる電流積算値CAPAHでAh積算値をリセットし、5%より小さい場合にはステップS9へ進む。次いで、ステップS15において、ステップS14で算出された電流積算値CAPAHに基づく充電量RSOCを式(1)により算出したならば、ステップS16へ進む。
【0040】
ステップS16〜ステップS20は内部抵抗劣化補正係数γおよび容量劣化補正係数βの学習に関するステップであり、これらのステップを実行することにより最新のγ,βに更新される。まず、ステップS16はパワー演算条件が成立したか否か、すなわち、電流値I,電圧値Vの変化をとらえたサンプリングデータが所定数以上収集できたか否かを判定するステップであり、条件が成立したならばステップS17へ進む。ステップS17は充電量RSOCが所定値KCMSOC(例えば、40%)以上か否かを判定するステップであり、充電量RSOCが所定値KCMSOCより小さい場合にはステップS19へ進み、所定値KCMSOC以上の場合にはステップS18へ進んでγを次式(14)で算出されるγで更新した後にステップS19へ進む。
【数14】
γ=(R0/α)/R …(14)
ただし、R0は内部抵抗初期値、Rはパワー演算により算出される内部抵抗である。
【0041】
ステップS19は充電量RSOCが所定値KCLSOC(例えば、50%)以下か否かを判定するステップであり、充電量RSOCが所定値KCLSOCより大きい場合にはステップS7へ戻り、所定値KCLSOCより大きい場合にはステップS20へ進んでβを次式(15)で算出されるβで更新した後にステップS7へ戻る。
【数15】
β=CAPAH/Ah(P/αγ) …(15)
ただし、電流積算値CAPAHには最新の値を用いる。
【0042】
以上説明したように、本実施の形態では、Ah積算値に基づく充電量RSOCの誤差が所定値Δ1やΔ2以上となったならば、充電量RSOCを算出する際のAh積算値を開放電圧E1〜E3から算出される電流積算値CAPAHで置き換えることにより、充電量RSOCに対するAh積算値の累積誤差の影響を低減することができる。また、走行状態、例えば定速走行や電流値Iが15Aを越えるような大きな場合、に応じて開放電圧E1〜E3を使い分けることにより、種々の走行パターンにおいて精度良く充電量を算出することができる。
【0043】
以上説明した実施の形態と特許請求の範囲の要素との対応において、開放電圧E 2 およびE 3 は開放電圧算出値を構成するとともに、開放電圧E 2 は第1の開放電圧を、開放電圧E 3 は第2の開放電圧を構成する。
【0044】
また、電流センサ9は電流検出手段を、電圧センサ8は電圧検出手段を、Ah演算部22は電流積算手段を、瞬時パワー演算部21および開放電圧E3演算部25は開放電圧演算手段を、CAPAH 演算部24は充電量演算手段をそれぞれ構成し、RSOC演算部23およびCAPAH演算部24により補正手段が構成される。
【図面の簡単な説明】
【図1】パラレル・ハイブリッド車の構成を示すブロック図。
【図2】充電量SOCの変化の概念図でり、(a)はAh積算値に基づく充電量RSOCと真の充電量SOCとを示す図、(b)は本発明による充電量演算方法による充電量RSOCを示す図。
【図3】開放電圧と充電量SOCとの相関を示す図。
【図4】無負荷時の開放電圧に基づく充電量RSOCのリセットを説明する図であり、(a)は開放電圧と充電量SOCとの相関図、(b)は充電量RSOCの変化を示す図。
【図5】パワー演算を説明する図。
【図6】開放電圧E2に基づく充電量RSOCのリセットを説明する図であり、(a)は開放電圧と充電量SOCとの相関図、(b)は充電量RSOCの変化を示す図。
【図7】開放電圧E3に基づく充電量RSOCのリセットを説明する図であり、(a)は開放電圧と充電量SOCとの相関図、(b)は充電量RSOCの変化を示す図。
【図8】演算部1aの機能ブロック図。
【図9】二次電池の初期特性の温度補正および劣化補正を説明する図であり、(a)は初期特性L1を示す図、(b)は温度補正特性L2を示す図、(c)は温度補正および劣化補正された特性L3を示す図。
【図10】充電量SOCの演算手順を示すフローチャート。
【符号の説明】
1 コントローラ
1a 演算部
1b 制御部
2 エンジン
3 モータ
6 二次電池
8 電圧センサ
9 電流センサ
10 温度センサ
20 電池容量演算部
21 瞬時パワー演算部
22 Ah演算部
23 RSOC演算部
24 CAPAH演算部
25 開放電圧E3演算部
201 α演算部
202 γ演算部
203 パワー容量演算部
204 β演算部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a charge amount calculation method and a charge amount calculation device for a secondary battery for driving used in a hybrid vehicle or the like.
[0002]
[Problems to be solved by the invention]
2. Description of the Related Art A hybrid electric vehicle (hereinafter referred to as a hybrid vehicle) that includes an internal combustion engine and an electric motor as a travel drive source and travels by both or any one of the drive forces is known. In such a hybrid vehicle, as one method for calculating the state of charge (SOC) of the secondary battery for driving the motor, an Ah integrated value (= Σ (I × t): where I is the current value, t is the time) and the battery capacity.
[0003]
However, in the calculation method described above, when the detection error ΔI is present in the current value I, the error is accumulated. Due to the accumulated error Σ (ΔI × t) included in the Ah integrated value, there is a problem that the error becomes large every time the charge amount SOC is calculated and deviates greatly from the actual charge amount SOC.
[0004]
An object of the present invention is to provide a charge amount calculation method and a charge amount calculation device for a hybrid vehicle that can accurately calculate the charge amount SOC of a secondary battery.
[0005]
[Means for Solving the Problems]
  The embodiment of the invention will be described with reference to FIGS.
  (1)In association with FIG.Claim1In the hybrid vehicle charge amount calculation method according to the invention, the current integrated value Ah is calculated based on the charge / discharge current value I of the secondary battery, and the first charge amount of the secondary battery is calculated based on the current integrated value Ah. The method is applied to a hybrid vehicle charge amount calculation method to be calculated, and (a) a second charge amount is calculated based on a terminal voltage value E1 when the secondary battery is in a no-load state, and the second charge amount and the first charge amount are calculated. A first correction method for replacing the first charge amount with the second charge amount when the difference from the charge amount is equal to or greater than a predetermined value; (b) a terminal voltage value V and a current when the secondary battery is charged and discharged; With value IBased on the characteristic line between the terminal voltage value and the current value obtained by sampling themThe first open-circuit voltage E2 is calculated, and the first charge amount is calculated when the difference between the third charge amount calculated based on the first open-circuit voltage E2 and the first charge amount is equal to or greater than a predetermined value. A second correction method for substituting the third charge amount, (c) calculating the second open-circuit voltage E3 based on the terminal voltage value V, the current value I and the internal resistance value when the secondary battery is charged and discharged, A third charge amount is replaced with a fourth charge amount when the difference between the fourth charge amount calculated based on the second open circuit voltage E3 and the first charge amount is equal to or greater than a predetermined value. Correction method, at least of1The above-described object is achieved by correcting the first charge amount using two correction methods.
  (2Claim2The invention of claim1In the charge amount calculation method described in 1), the first charge amount is corrected using the first correction method and the second correction method.
  (3Claim3The invention of claim1In the charge amount calculation method described in 1), the first charge amount is corrected using the first correction method and the third correction method.
  (4) The invention of claim 4 is the charge amount calculation method according to claim 1, wherein at least one of the first correction method, the second correction method, and the third correction method is used for a vehicle. It was selected and used based on the running state.
  (5) A fifth aspect of the present invention is the charge amount calculation method according to the fourth aspect, wherein the first charge amount is corrected using the first correction method when the vehicle is started, and the characteristic line is obtained when the vehicle is running. When the vehicle is traveling, the first charge amount is corrected using the second correction method. When the vehicle is traveling and the characteristic straight line cannot be obtained, the third charging amount is corrected. The first charge amount is corrected using the correction method.
  (61) and FIG.6The present invention includes a current detection unit 9 that detects a charge / discharge current value I of the secondary battery 6 and a current integration unit 22 that calculates a current integration value Ah based on the current detection value I of the current detection unit 9.And withThe first charge amount of the secondary battery 6 is calculated based on the current integrated value Ah.Hybrid vehicle to calculateBased on the detection value I of the current detection means 9 and the detection value V of the voltage detection means 8. The voltage detection means 8 detects the terminal voltage V of the secondary battery 6. Open-circuit voltage calculating means 21 and 25 for calculating the open-circuit voltages E2 and E3, and a second charge amount corresponding to the open-circuit voltage calculated values E2 and E3 by the open-circuit voltage calculating means 21 and 25.Charge amount calculation means24, and correction means 23, 24 for correcting the first charge amount based on the second charge amount when the difference between the first charge amount and the second charge amount is equal to or greater than a predetermined value; By achieving the above, the above-mentioned object is achieved.
[0006]
In the section of the means for solving the above-described problems for explaining the configuration of the present invention, the drawings of the embodiments of the invention are used for easy understanding of the present invention. The form is not limited.
[0007]
【The invention's effect】
As described above, according to the inventions of claims 1 to 5, various travels can be performed by calculating the charge amount of the secondary battery using at least two of the four different calculation methods. The charge amount can be calculated with high accuracy in the pattern.
According to the sixth to eighth aspects of the invention, there are three types of correction methods for replacing the first charge amount with the second, third, or fourth charge amount that is not affected by the accumulated error due to the current detection value error or the like. By using at least two, it is possible to reduce the influence of the accumulated error due to the current detection value error or the like with respect to the charge amount, and it is possible to accurately calculate the charge amount in various travel patterns.
According to the ninth aspect of the present invention, since the second charge amount obtained according to the open circuit voltage calculation value is not affected by the accumulated error due to the current detection value error or the like, the first charge amount based on the current accumulated value is changed to the first charge amount. By correcting with the charge amount of 2, it is possible to reduce the influence of an accumulated error due to a current detection value error or the like on the charge amount, and it is possible to accurately calculate the charge amount in various travel patterns.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS. FIG. 1 is a block diagram showing the configuration of a parallel hybrid vehicle. The main shaft of the engine 2 is directly connected to the rotor of the electric motor 3, and the driving force of the engine 2 and / or the motor 3 is transmitted to the axle 7 via the drive system 4. The operation mode of the motor 3 in the parallel hybrid vehicle includes a drive mode for driving the axle 7 and a power generation mode for charging the secondary battery 6. When the secondary battery 6 that supplies power to the motor 3 is sufficiently charged during the driving mode of the vehicle itself, that is, when accelerating, traveling on a flat road, or climbing a hill, the motor 3 is operated in the driving mode. Thus, the vehicle travels by both driving forces of both the engine 2 and the motor 3.
[0009]
However, when the charged state of the secondary battery 6 is low, the motor 3 is operated in the power generation mode to run with the driving force of the engine 2 and rotate the rotor of the motor 3 with the driving force of the engine 2. The secondary battery 6 is charged by generating power according to 3. The inverter 5 converts DC power from the secondary battery 6 into AC power and supplies it to the motor 3, and converts AC power from the motor 3 into DC power and supplies it to the secondary battery 6 in the power generation mode.
[0010]
On the other hand, the engine 2 and the motor 3 are driven by the rotational force of the wheels via the drive system 4 when the vehicle is in the braking mode, that is, when the vehicle is decelerated or downhill. At this time, the motor 3 is operated in the power generation mode to absorb the regenerative energy and charge the secondary battery 6. The controller 1 includes a microcomputer and its peripheral components, and includes a voltage sensor 8 that detects a terminal voltage value V of the secondary battery 6, a current sensor 9 that detects a current value I during charging and discharging, and a temperature T of the secondary battery 6. Is connected to the temperature sensor 10. The calculation unit 1a of the controller 1 calculates the SOC of the secondary battery 6 based on the detection value of each sensor described above, and the control unit 1b controls the engine 2, the inverter 5, and the motor 3 based on the detection value, the SOC, and the like. To do.
[0011]
Next, a charge amount calculation method performed by the calculation unit 1a of the controller 1 will be described. FIG. 2 is a conceptual diagram showing a comparison between a charge amount SOC obtained by calculation (hereinafter referred to as a charge amount RSOC) and a true charge amount SOC. FIG. 2 (a) shows an integration of a current value I during charge / discharge. The charge amount RSOC based on the current integrated value (hereinafter referred to as the Ah integrated value) obtained as described above is shown, and (b) shows the charge amount RSOC by the charge amount calculation method of the present invention. Here, in both cases (a) and (b), the charge amount RSOC is basically calculated using the following equation (1).
[Expression 1]
RSOC (%) = [1-Ah / Ah (Pmin)] × 100 (1)
In the basic formula (1), Ah is an Ah integrated value, and Ah (Pmin) is a battery capacity of the secondary battery. A method for calculating the battery capacity Ah (Pmin) will be described later. Ah (Pmin) may be simply a rated capacity (3-hour rate capacity, etc.).
[0012]
In the charge amount RSOC shown in FIG. 2A, only the Ah integrated value obtained by integrating the current value I during charging / discharging is used as Ah. In this case, for example, if there is an error ΔI in the current value I as described above, the error ΔI of the current value I is accumulated in the Ah integrated value, and the charge amount at the start of the SOC calculation as shown in FIG. Even if RSOC is equal to the true charge amount SOC, the error with respect to the true charge amount SOC increases as the calculation is performed.
[0013]
By the way, a lithium ion battery or the like is used as the secondary battery. In the lithium ion battery, there is a certain correlation between the open circuit voltage and the charge amount SOC regardless of the deterioration degree or temperature of the battery. Also, its reproducibility is very good. FIG. 3 is a diagram showing an example of such a correlation. If the open circuit voltage is known, the charge amount SOC is uniquely determined from this correlation. In FIG. 3, the open-circuit voltage corresponding to the charge amount SOC = 100% is OCV (100). For example, if OCV (100) is obtained as an actual value of the open-circuit voltage, the charge amount SOC of the secondary battery at that time is obtained. Can be determined from the correlation diagram.
[0014]
Therefore, in the charge amount calculation method according to the present invention, the open circuit voltage is measured or estimated, and the charge amount SOC is calculated from the obtained open circuit voltage and the correlation shown in FIG. The difference (corresponding to an error) between the charge amount SOC (hereinafter referred to as the charge amount CAPSOC) and the charge amount RSOC calculated by the basic equation (1) based on the Ah integrated value is equal to or greater than a predetermined value. If so, the Ah integrated value is replaced with an Ah integrated value (hereinafter referred to as a current integrated value CAPAH) corresponding to the charge amount CAPSOC at that time and reset. The current integrated value CAPAH is calculated by the following equation (2).
[Expression 2]
CAPAH = Ah (Pmin) × (1-CAPSOC / 100) (2)
[0015]
Since the amount of charge CAPSOC does not accumulate errors unlike the amount of charge RSOC calculated using the Ah integrated value, a value close to the true amount of charge SOC is obtained as shown by the one-dot chain line in FIG. In the example shown in FIG. 2B, the charge amount RSOC in which the error gradually increases from the start of calculation is reset with the value of the charge amount CAPSOC at time t1. Then, the charge amount RSOC replaced with RSOC = CAPSOC at time t1 has a larger error from the true charge amount SOC as the error of the Ah integrated value of the basic equation (1) is accumulated, and the error is a predetermined value. The reset is performed again when the above is reached. As described above, in the S charge amount calculation method according to the present invention, if the error from the true charge amount SOC exceeds a predetermined value, the above-described reset is performed. Therefore, the error between the calculated value RSOC and the true charge amount SOC. Can be kept below a predetermined value.
[0016]
The following three types of open-circuit voltages when calculating the charge amount CAPSOC using the correlation of FIG. 3 are conceivable.
(1) Open-circuit voltage E1 obtained by actual measurement at no load
(2) Open-circuit voltage E2 estimated by the IV characteristics obtained from the current value and voltage value sampled at the time of charge / discharge, that is, estimated by power calculation (discharge IV extrapolation)
(3) Based on the current value and the total voltage value during charging / discharging, the open circuit voltage E3 estimated by the following equation (3)
[Equation 3]
E3 = (total voltage) + (current) x (temperature / deterioration corrected internal resistance) (3)
[0017]
[Charge SOC calculation with open circuit voltage E1 of (1)]
FIG. 4 is a diagram for explaining a method of resetting the charge amount RSOC based on the measured open circuit voltage E1 in the above (1). FIG. 4A is a correlation diagram between the open circuit voltage E1 and the charge amount SOC, and FIG. It is a figure which shows the time change of charge amount ROSC. In the example shown in FIG. 4B, reset is performed at times t2 and t3 after the start of calculation. If the open circuit voltage E1 at time t2 is E1 (2), the charge amount CAPSOC2 is obtained from the correlation of FIG. Then, the charge amount RSOC at time t2 is reset to the charge amount CAPSOC2. That is, the Ah integrated value at the time t2 is reset to the current integrated value CAPAH obtained by substituting the charge amount CAPSOC2 into the equation (2). The same applies to the time t3. The charge amount CAPSOC3 is obtained from the open circuit voltage E1 (3), and the charge amount RSOC at the time t3 is reset to the charge amount CAPSOC3. An alternate long and two short dashes line RSOC 'in FIG. 4B indicates an SOC calculation value when reset is not performed at times t2 and t3. Note that the open-circuit voltage E1 can be measured only when there is no load. For example, the open-circuit voltage E1 is measured when there is no load when the vehicle is started (before strong power is turned on) or when the key is off.
[0018]
[Characteristic SOC calculation with open circuit voltage E2 in [2]]
First, a method of calculating the estimated open circuit voltage E2 by the above-described power calculation (2) will be described with reference to FIG. First, the current value I and the voltage value V are sampled by capturing the current change of the secondary battery. The x mark in FIG. 5 indicates the sampling data on the IV coordinate, and the characteristic line L is obtained by performing a linear regression calculation of the IV characteristic based on the sampling data. The value of the intersection of this straight line L and the vertical axis (voltage) is the estimated open circuit voltage E2. From the intersection of the straight line L and the discharge lower limit voltage (use lower limit voltage as a vehicle system) Vmin, the maximum output Pmax = Vmin × Imax of the secondary battery at that time is calculated as the power calculation value P. Further, the internal resistance R of the secondary battery can be calculated from the slope of the straight line L. However, Imax is a value when the voltage becomes the discharge lower limit voltage Vmin on the straight line L, and the discharge lower limit voltage Vmin is determined from the following factors (a) and (b).
(A) Lower limit voltage of the operating voltage range considering the battery life (end-of-discharge voltage)
(B) Lower limit voltage of the operating voltage range that can guarantee the performance and function of the vehicle-mounted unit
[0019]
6A and 6B are diagrams for explaining the reset of the charge amount RSOC. As in the case of FIG. 4, FIG. 6A is a correlation diagram, and FIG. If the estimated open circuit voltage E2 is obtained by the power calculation described above, the charge amount CAPSOC4 is obtained from the correlation diagram of FIG. 6A, and the charge amount RSOC at that time is reset to the charge amount CAPSOC4. In addition, since the estimation of the open circuit voltage by power calculation can be performed only intermittently, the change in the charge amount CAPSOC is a line graph as shown in FIG. The calculated charge amount CAPSOC varies above and below the true charge amount SOC, but this variation is caused by a discharge IV sampling error.
[0020]
[Charge SOC calculation with open circuit voltage E3 of (3)]
7A and 7B are diagrams for explaining the charge amount SOC calculation by the open circuit voltage E3 of (3). Like FIG. 4, FIG. 7A is a correlation diagram, and FIG. 7B is a diagram showing the time change of the charge amount RSOC. is there. When the current value of the secondary battery at the time of charging / discharging is represented by I, the voltage value is represented by V, and the corrected internal resistance is represented by R, the above-described equation (3) is expressed as the following equation (4).
[Expression 4]
E3 = V + I × R (4)
However, R is expressed as in Equation (5) using the internal resistance initial value R0, the temperature correction coefficient α, and the internal resistance deterioration correction coefficient γ. The temperature correction coefficient α and the internal resistance deterioration correction coefficient γ will be described later.
[Equation 5]
R = R0 / (α × γ) (5)
[0021]
The charge amount CAPSOC5 is obtained from the open circuit voltage E3 estimated from the equation (4) and the correlation diagram of FIG. 7A, and the charge amount RSOC is reset to the charge amount CAPSOC5 as shown in FIG. 7B. The open-circuit voltage E3 calculated by the equation (4) can be obtained sequentially from the measured I and V. However, if the current value I is large, the error due to the correction coefficient γ becomes large, or if the battery capacity is small, diffusion occurs. Since the resistance increases and the SOC decreases, the calculation of the open circuit voltage E3 is effective when used when the current value I is small. For example, it is used when the current value I is I ≦ 5CA. Note that C is a rated capacity, and if the rated capacity = 3 Ah, 5C is 15 A. In the following description, it is assumed that the upper limit value of the current value I at the time of calculation is 5 CA (= 15 A).
[0022]
As described above, when the charge amount RSOC is reset using the charge amount CAPSOC obtained from the open circuit voltage (E1 to E3), the charge obtained by any one of the methods (1) to (3) described above. It may be reset by the amount CAPSOC, or a combination of these may be used. However, in the case of {circle over (1)}, the open-circuit voltage at no load can be obtained only at the time of starting and stopping, so other than the resetting by only the charge amount CAPSOC obtained in {circle around (1)}, the other {2}, {3} It is preferably performed in combination with ▼.
[0023]
In the following, a case where reset is performed by combining three of (1) to (3) will be described.
(A) At start-up, a reset is performed when the deviation between the charge amount CAPSOC based on the open circuit voltage E1 of (1) and the charge amount RSOC based on the Ah integrated value exceeds a predetermined value Δ1 (eg, Δ1 = 1%). (B) During traveling, resetting is performed when the deviation between the charge amount CAPSOC based on the open circuit voltage E2 in (2) and the charge amount RSOC based on the Ah integrated value becomes equal to or greater than a predetermined value Δ1.
[0024]
By the way, when the load fluctuation is small, such as when driving at a constant speed, the regression line L in FIG. If the open-circuit voltage E2 is not obtained, it is impossible to evaluate whether or not the above-described deviation can be obtained, and the charge amount RSOC based on the Ah integrated value is actually greater than or equal to the predetermined value Δ1. However, there is a disadvantage that the reset is not performed. Therefore, in order to prevent such inconvenience, when it is determined that power calculation is not possible during constant speed driving or the like, the deviation between the charge amount CAPSOC based on the open circuit voltage E3 of (3) and the RSOC based on the Ah integrated value is If the predetermined value Δ2 or more is reached, the charge amount RSOC is reset with the calculated charge amount CAPSOC. Here, the predetermined value Δ2 is set to a value (for example, 5%) that satisfies Δ2 ≧ Δ1.
[0025]
When resetting with the charge amount CAPSOC based on the open circuit voltage E2 or the open circuit voltage E3 during driving, the charge amount RSOC changes suddenly when the Ah calculation value is replaced with the integrated current value CAPAH calculated by equation (2). There is a case. Therefore, in order to prevent the control of the system from becoming unstable due to such a sudden change in the charge amount SOC during traveling, for example, gradually over several tens of seconds (10 seconds in the case of the following equation (6)) The charge amount RSOC is changed to the value of the charge amount CAPSOC. That is, the charge amount RSOC is calculated using the current integrated value CAPAH calculated by the following equation (6).
[Formula 6]
CAPAH = [{Ah (Pmin) × (1−CAPSOC / 100)} × T / 10 + {CAPAH × (1−T / 10)} (6)
[0026]
FIG. 8 is a functional block diagram of the calculation unit 1a of the controller 1 shown in FIG. Reference numeral 22 denotes an Ah calculation unit that calculates the Ah integrated value by integrating the current value I from the current sensor 9, and 23 is charged from the Ah integrated value and the battery capacity Ah (Pmin) calculated by the battery capacity calculation unit 20. This is an RSOC operation unit for calculating the quantity RSOC. 21 also samples the voltage value V from the voltage sensor 8 and the current value I from the current sensor 9 to calculate the open circuit voltage E2, the internal resistance R, and the power calculation value P of the secondary battery 6 (see FIG. 1). An instantaneous power calculation unit 25 is an open-circuit voltage E3 calculation unit that calculates the open-circuit voltage E3 by the equation (4) based on the voltage value V and the current value I. The power calculation unit 21 also determines whether or not power calculation is possible based on the sampled voltage value V and current value I.
[0027]
The calculated open-circuit voltages E2 and E3 and the open-circuit voltage E1 detected when there is no load are input to the CAPAH calculation unit 24. The CAPAH calculation unit 24 (a) calculates the charge amount CAPSOC according to each open circuit voltage E1 to E3, (b) calculates the deviation between the calculated charge amount CAPSOC and the charge amount RSOC calculated by the RSOC calculation unit 23, (C) The current integrated value CAPAH corresponding to the charge amount CAPSOC is calculated, and the current integrated value CAPAH of (c) is output to the RSOC computing unit 23 according to the magnitude of the deviation.
[0028]
That is, when the deviation from the charge amount CAPSOC based on the open circuit voltages E1 and E2 is equal to or greater than the predetermined value Δ1, the CAPAH calculation unit 24 calculates the current integrated value calculated from the charge amount CAPSOC based on the open circuit voltage E1 when starting. CAPAH is output, and during traveling, the current integrated value CAPAH calculated from the charge amount CAPSOC based on the open circuit voltage E2 is output. On the other hand, when the deviation from the charge amount CAPSOC based on the open circuit voltage E3 becomes equal to or greater than a predetermined value Δ2 during traveling, the integrated current value CAPAH calculated from the charge amount CAPSOC based on the open circuit voltage E3 is output.
[0029]
In the CAPAH calculation unit 24, for example, a table of SOC vs. open circuit voltage as shown in FIG. 3 is stored in advance in a memory (not shown) of the controller 1, and the charge amount CAPSOC is obtained using the table. To do. When receiving the current integrated value CAPAH from the CAPAH calculating unit 24, the RSOC calculating unit 23 replaces the Ah calculated value used for calculating the charge amount RSOC with the received current integrated value CAPAH.
[0030]
[Description of Battery Capacity Calculation Unit 20]
Next, an outline of a calculation method of the battery capacity Ah (Pmin) in the battery capacity calculation unit 20 will be described. FIG. 9 is a diagram for explaining temperature correction and deterioration correction of the initial characteristics of the secondary battery 6, and shows the relationship Ah (P) between the power characteristics and the discharge electricity quantity, respectively. The curve L1 in FIG. 9A shows the initial characteristics of the battery (when there is no deterioration and the battery temperature is the reference temperature). In the case of a lithium ion battery or the like, Ah (P) is n of the power P. It can be approximated by The initial characteristic L1 can be approximated by the following equation (7).
[Expression 7]
Ah (P) = aPThree+ BP2+ CP + d (7)
Here, the coefficients a, b, c, and d are determined from the characteristics of the initial battery.
[0031]
When temperature correction is performed on the initial characteristic L1 with the temperature correction coefficient α, the temperature correction characteristic L2 shown in FIG. 9B is obtained. This temperature correction characteristic L2 is expressed by the following equation (8).
[Equation 8]
Figure 0003879278
As can be seen from FIG. 9B, α is proportional to the power, and the P intercept Pref of the temperature correction characteristic L2 is Pref = P0 × α. The temperature correction coefficient α is a parameter representing the internal resistance change of the secondary battery, and is calculated by the α calculation unit 201 of the battery capacity calculation unit 20 based on the battery temperature T from the temperature sensor 10 and is a table corresponding to the temperature T. Reference value. P0 is a P intercept of the characteristic L1.
[0032]
Further, by performing deterioration correction as expressed by the following expression (9) on the temperature corrected expression (8), the relational expression Ah (P) subjected to temperature correction and deterioration correction is calculated as a power capacity calculation. Calculated by the unit 203.
[Equation 9]
Figure 0003879278
Here, γ is a parameter representing a change in internal resistance of the battery, and β is a parameter representing a change in electric capacity, which is called an internal resistance deterioration correction coefficient and a capacity deterioration correction coefficient, respectively. The battery capacity Ah (Pmin) described above is obtained by substituting the minimum guaranteed output Pmin necessary for the vehicle system into Ah (P) obtained by the equation (9).
[0033]
The internal resistance deterioration correction coefficient γ described above is determined in the γ calculation unit 202 of the battery capacity calculation unit 20 based on the temperature correction coefficient α calculated by the α calculation unit 201 and the internal resistance R calculated by the instantaneous power calculation unit 21. It is calculated by the following equation (10).
[Expression 10]
γ = (R0 / α) / R (10)
Here, R0 is the initial internal resistance of the battery. On the other hand, the capacity deterioration correction coefficient β is determined by the β calculation unit 204 of the battery capacity calculation unit 20 based on the Ah integrated value calculated by the Ah calculation unit 22 and Ah (P / αγ) calculated by the power capacity calculation unit 203. It is calculated by the following equation (11).
## EQU11 ##
β = (Ah integrated value) / Ah (P / αγ) (11)
Ah (P) expressed by the equation (9) is as shown by a curve L3 in FIG. In FIG. 9C, the curve L2 'is a curve obtained by correcting the characteristic curve L2 with the internal resistance deterioration correction coefficient γ, and the characteristic curve L2 is obtained by correcting the curve L2' with the capacity deterioration correction coefficient β.
[0034]
The above-described method can be applied as long as there is a correlation that can be expressed by the above parameters in the relationship between power characteristics and the amount of discharge electricity, and can be used regardless of the battery type such as a lead acid battery or a nickel metal hydride battery. However, it is necessary to examine for each battery which coefficient (α, β, γ) the temperature correction and deterioration correction are applied to. Note that Ah (P) is not necessarily approximated by an nth-order expression of P. For example, if the relationship between P and Ah is held as a table, a solution is obtained in the same manner as the calculation procedure described above by using interpolation calculation. Can do.
[0035]
FIG. 10 is a flowchart showing the procedure for calculating the amount of charge. The flow starts when the IG key is turned on. Hereinafter, the charge amount CAPSOC based on the open circuit voltages E1 and E2 is referred to as a charge amount ECAPSOC, and the charge amount CAPSOC based on the open circuit voltage E3 is referred to as a charge amount VCAPSOC. Step S1 is a step for determining whether or not there is a no-load state. If it is a no-load state, the process proceeds to step S2, and if it is a load state (during charge / discharge), the process proceeds to step S7. When the process proceeds from step S1 to step S2, the open circuit voltage E1 is calculated in step S2, and the charge amount ECAPSOC based on the open circuit voltage E1 is obtained from the correlation shown in FIG. 3, and then the process proceeds to step S3.
[0036]
On the other hand, when the process proceeds from step S1 to step S7, it is determined whether or not power calculation is possible in step S7 (for example, sampling data that captures changes in the current value I and voltage value V in the instantaneous power calculation unit 21). If the power calculation is possible, the process proceeds to step S8. If the power calculation is impossible, the process proceeds to step S10. In step S8, the open circuit voltage E2 is calculated and the charge amount ECAPSOC based on the open circuit voltage E2 is obtained from the correlation shown in FIG. 3, and then the process proceeds to step S3. When calculating the charge amount ECAPSOC in step S8, the moving average of the open circuit voltage E2, that is, the average value of the past three values obtained by calculation is used. Next, in step S3, a deviation ESOCOFS of the charge amount RSOC (obtained from the Ah integrated value) with respect to the charge amount ECAPSOC calculated in step S2 or step S8 is calculated by the following equation (12).
[Expression 12]
ESOCOFS = RSOC−ECAPSOC (12)
[0037]
Step S4 is a step for determining whether or not the absolute value of the deviation ESOCOFS is 1% or more. If it is 1% or more, the process proceeds to step S5. If it is smaller than 1%, the process proceeds to step S9 and is based on the Ah integrated value. After calculating the charge amount RSOC by the equation (1), the process proceeds to step S16. In step S5, the current accumulated value CAPAH is calculated by substituting the charge amount ECAPSOC calculated in step S2 or step S8 for the charge amount CAPSOC of the equation (2) (or equation (6)), and the current accumulated value CAPAH is calculated as Ah. Reset accumulated value. In step S6, the charge amount RSOC based on the current integrated value CAPAH calculated in step S5 is calculated by equation (1), and then the process proceeds to step S16.
[0038]
By the way, if it is determined in step S7 that power calculation is not possible and the process proceeds to step S10, it is determined in step S10 whether or not the current value I is 15 A or less, and if it is 15 A or less, the process proceeds to step S11. If it exceeds 15A, the process proceeds to step S9. In step S11, the open circuit voltage E3 at the time of load is calculated by the equation (4), and the charge amount VCAPSOC based on the open circuit voltage E3 is obtained from the relationship shown in FIG. In step S12, the deviation VSOCOFS of the charge amount RSOC (obtained from the Ah integrated value) with respect to the charge amount VCAPSOC calculated in step S11 is calculated by the following equation (13).
[Formula 13]
VSOCOFS = RSOC−VCAPSOC (13)
[0039]
Step S13 is a step for determining whether or not the absolute value of the deviation VSOCOFS is 5% or more. If it is 5% or more, the routine proceeds to step S14, where the charge amount CAPSOC of the equation (2) or (6) is set to the step S11. The Ah integrated value is reset with the current integrated value CAPAH obtained by substituting the charged amount VCAPSOC of the current value, and if it is smaller than 5%, the process proceeds to step S9. Next, in step S15, if the charge amount RSOC based on the current integrated value CAPAH calculated in step S14 is calculated by the equation (1), the process proceeds to step S16.
[0040]
Steps S16 to S20 are steps related to learning of the internal resistance deterioration correction coefficient γ and the capacity deterioration correction coefficient β, and are updated to the latest γ and β by executing these steps. First, step S16 is a step for determining whether or not the power calculation condition is satisfied, that is, whether or not a predetermined number or more of sampling data capturing changes in the current value I and the voltage value V have been collected. If so, the process proceeds to step S17. Step S17 is a step of determining whether or not the charge amount RSOC is equal to or greater than a predetermined value KCMSOC (for example, 40%). If the charge amount RSOC is smaller than the predetermined value KCMSOC, the process proceeds to step S19. In step S18, γ is updated with γ calculated by the following equation (14), and then step S19 follows.
[Expression 14]
γ = (R0 / α) / R (14)
However, R0 is an internal resistance initial value, and R is an internal resistance calculated by power calculation.
[0041]
Step S19 is a step of determining whether or not the charge amount RSOC is equal to or less than a predetermined value KCLSOC (for example, 50%). If the charge amount RSOC is greater than the predetermined value KCLSOC, the process returns to step S7. In step S20, β is updated with β calculated by the following equation (15), and the flow returns to step S7.
[Expression 15]
β = CAPAH / Ah (P / αγ) (15)
However, the latest value is used for the current integrated value CAPAH.
[0042]
As described above, in the present embodiment, if the error of the charge amount RSOC based on the Ah integrated value becomes equal to or greater than the predetermined value Δ1 or Δ2, the Ah integrated value at the time of calculating the charge amount RSOC is changed to the open circuit voltage E1. By replacing with the current integrated value CAPAH calculated from ~ E3, it is possible to reduce the influence of the accumulated error of the Ah integrated value on the charge amount RSOC. Further, when the driving state is constant, for example, when the driving speed is large such that the current value I exceeds 15A, the charge amount can be accurately calculated in various driving patterns by properly using the open-circuit voltages E1 to E3. .
[0043]
  In the correspondence between the embodiment described above and the elements of the claims, the open circuit voltage E 2 And E Three Constitutes the open circuit voltage calculation value and the open circuit voltage E 2 Is the first open circuit voltage, the open circuit voltage E Three Constitutes a second open-circuit voltage.
[0044]
  Also,The current sensor 9 is a current detection unit, the voltage sensor 8 is a voltage detection unit, the Ah calculation unit 22 is a current integration unit, the instantaneous power calculation unit 21 and the open-circuit voltage E3 calculation unit 25 are open-circuit voltage calculation units,CAPAH The calculation unit 24 is a charge amount calculation means.The RSOC calculator 23 and the CAPAH calculator 24 constitute correction means.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a parallel hybrid vehicle.
FIGS. 2A and 2B are conceptual diagrams of changes in charge amount SOC, where FIG. 2A shows a charge amount RSOC based on an Ah integrated value and a true charge amount SOC, and FIG. 2B shows a charge amount calculation method according to the present invention; The figure which shows charge amount RSOC.
FIG. 3 is a diagram showing a correlation between an open circuit voltage and a charge amount SOC.
FIGS. 4A and 4B are diagrams for explaining a reset of the charge amount RSOC based on an open circuit voltage when there is no load, where FIG. 4A is a correlation diagram between the open circuit voltage and the charge amount SOC, and FIG. 4B shows a change in the charge amount RSOC; Figure.
FIG. 5 is a diagram illustrating power calculation.
6A and 6B are diagrams for explaining reset of the charge amount RSOC based on the open circuit voltage E2, where FIG. 6A is a correlation diagram between the open circuit voltage and the charge amount SOC, and FIG. 6B is a diagram illustrating a change in the charge amount RSOC;
7A and 7B are diagrams for explaining a reset of the charge amount RSOC based on the open circuit voltage E3, where FIG. 7A is a correlation diagram between the open circuit voltage and the charge amount SOC, and FIG. 7B is a diagram showing a change in the charge amount RSOC;
FIG. 8 is a functional block diagram of a calculation unit 1a.
FIGS. 9A and 9B are diagrams for explaining temperature correction and deterioration correction of the initial characteristics of the secondary battery. FIG. 9A is a diagram illustrating the initial characteristics L1, FIG. 9B is a diagram illustrating the temperature correction characteristics L2, and FIG. The figure which shows the characteristic L3 by which temperature correction and deterioration correction were carried out.
FIG. 10 is a flowchart showing a calculation procedure of a charge amount SOC;
[Explanation of symbols]
1 Controller
1a Calculation unit
1b Control unit
2 Engine
3 Motor
6 Secondary battery
8 Voltage sensor
9 Current sensor
10 Temperature sensor
20 Battery capacity calculator
21 Instantaneous power calculator
22 Ah calculation unit
23 RSOC calculator
24 CAPAH operation section
25 Open circuit voltage E3 calculation part
201 α arithmetic unit
202 γ operation unit
203 Power capacity calculator
204 β arithmetic unit

Claims (6)

二次電池の充放電電流値に基づいて電流積算値を算出し、その電流積算値に基づいて前記二次電池の第1の充電量を算出するハイブリッド車の充電量演算方法において、In the hybrid vehicle charge amount calculation method for calculating a current integrated value based on a charge / discharge current value of a secondary battery and calculating a first charge amount of the secondary battery based on the current integrated value.
(a)前記二次電池の無負荷状態時の端子電圧値に基づいて第2の充電量を算出し、前記第2の充電量と前記第1の充電量との差が所定値以上となったときに前記第1の充電量を前記第2の充電量で置き換える第1の補正方法、  (A) A second charge amount is calculated based on a terminal voltage value when the secondary battery is in a no-load state, and a difference between the second charge amount and the first charge amount is a predetermined value or more. A first correction method for replacing the first charge amount with the second charge amount when
(b)前記二次電池の充放電時の端子電圧値と電流値とをサンプリングし、それらを一次回帰演算して得られる端子電圧値と電流値との特性直線に基づいて第1の開放電圧を算出し、前記第1の開放電圧に基づいて算出される第3の充電量と前記第1の充電量との差が所定値以上となったときに前記第1の充電量を前記第3の充電量で置き換える第2の補正方法、  (B) The first open circuit voltage based on the characteristic line between the terminal voltage value and the current value obtained by sampling the terminal voltage value and the current value at the time of charging / discharging of the secondary battery and performing a linear regression operation on them And when the difference between the third charge amount calculated based on the first open circuit voltage and the first charge amount is equal to or greater than a predetermined value, the first charge amount is set to the third charge amount. The second correction method to replace with the charge amount of
(c)前記二次電池の充放電時の端子電圧値,電流値および内部抵抗値に基づいて第2の開放電圧を算出し、前記第2の開放電圧に基づいて算出される第4の充電量と前記第1の充電量との差が所定値以上となったときに前記第1の充電量を前記第4の充電量で置き換える第3の補正方法、の内の少なくとも1つの補正方法を用いて前記第1の充電量を補正することを特徴とするハイブリッド車の充電量演算方法。  (C) Fourth charge calculated based on the second open-circuit voltage by calculating a second open-circuit voltage based on the terminal voltage value, current value, and internal resistance value at the time of charging / discharging of the secondary battery. At least one of the third correction methods for replacing the first charge amount with the fourth charge amount when the difference between the charge amount and the first charge amount becomes a predetermined value or more. A hybrid vehicle charge amount calculation method using the first charge amount to correct the first charge amount.
請求項1に記載の充電量演算方法において、
前記第1の補正方法および前記第2の補正方法を用いて前記第1の充電量を補正することを特徴とするハイブリッド車の充電量演算方法。
The charge amount calculation method according to claim 1,
A charge amount calculation method for a hybrid vehicle, wherein the first charge amount is corrected using the first correction method and the second correction method.
請求項1に記載の充電量演算方法において、
前記第1の補正方法および前記第3の補正方法を用いて前記第1の充電量を補正することを特徴とするハイブリッド車の充電量演算方法。
The charge amount calculation method according to claim 1,
A charge amount calculation method for a hybrid vehicle, wherein the first charge amount is corrected using the first correction method and the third correction method.
請求項1に記載の充電量演算方法において、The charge amount calculation method according to claim 1,
前記第1の補正方法、前記第2の補正方法および前記第3の補正方法の内の少なくとも1つの補正方法を、車両の走行状態に基づいて選択して用いることを特徴とするハイブリッド車の充電量演算方法。Charging a hybrid vehicle, wherein at least one of the first correction method, the second correction method, and the third correction method is selected and used based on a running state of the vehicle. Quantity calculation method.
請求項4に記載の充電量演算方法において、The charge amount calculation method according to claim 4,
車両起動時には前記第1の補正方法を用いて前記第1の充電量を補正し、When the vehicle is started, the first charge amount is corrected using the first correction method,
車両走行時であって前記特性直線が得られる走行状態である場合には、前記第2の補正方法を用いて前記第1の充電量を補正し、When the vehicle is traveling and is in a traveling state where the characteristic straight line is obtained, the first charge amount is corrected using the second correction method,
車両走行時であって前記特性直線が得られない走行状態である場合には、前記第3の補正方法を用いて前記第1の充電量を補正することを特徴とするハイブリッド車の充電量演算方法。  Charge amount calculation for a hybrid vehicle, wherein the first charge amount is corrected using the third correction method when the vehicle is traveling and the characteristic line cannot be obtained. Method.
二次電池の充放電電流値を検出する電流検出手段と、Current detection means for detecting a charge / discharge current value of the secondary battery;
前記電流検出手段の電流検出値に基づいて電流積算値を算出する電流積算手段とを備え、前記電流積算値に基づいて前記二次電池の第1の充電量を算出するハイブリッド車の充電量演算装置において、  Charge amount calculation for a hybrid vehicle, comprising current integration means for calculating a current integration value based on a current detection value of the current detection means, and calculating a first charge amount of the secondary battery based on the current integration value In the device
前記二次電池の端子電圧を検出する電圧検出手段と、  Voltage detecting means for detecting a terminal voltage of the secondary battery;
前記電流検出手段の検出値および前記電圧検出手段の検出値に基づいて前記二次電池の開放電圧を算出する開放電圧演算手段と、An open voltage calculation means for calculating an open voltage of the secondary battery based on a detection value of the current detection means and a detection value of the voltage detection means;
前記開放電圧演算手段による開放電圧算出値に応じた第2の充電量を算出する充電量演算手段と、  A charge amount calculating means for calculating a second charge amount according to an open voltage calculation value by the open voltage calculating means;
前記第1の充電量と前記第2の充電量との差が所定値以上となったときに、前記第2の充電量に基づいて前記第1の充電量を補正する補正手段と、を設けたことを特徴とするハイブリッド車の充電量演算装置。  And a correction unit that corrects the first charge amount based on the second charge amount when a difference between the first charge amount and the second charge amount is equal to or greater than a predetermined value. A charge amount calculation device for a hybrid vehicle characterized by the above.
JP31891298A 1998-11-10 1998-11-10 Charge amount calculation method and charge amount calculation device for hybrid vehicle Expired - Lifetime JP3879278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31891298A JP3879278B2 (en) 1998-11-10 1998-11-10 Charge amount calculation method and charge amount calculation device for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31891298A JP3879278B2 (en) 1998-11-10 1998-11-10 Charge amount calculation method and charge amount calculation device for hybrid vehicle

Publications (2)

Publication Number Publication Date
JP2000150003A JP2000150003A (en) 2000-05-30
JP3879278B2 true JP3879278B2 (en) 2007-02-07

Family

ID=18104370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31891298A Expired - Lifetime JP3879278B2 (en) 1998-11-10 1998-11-10 Charge amount calculation method and charge amount calculation device for hybrid vehicle

Country Status (1)

Country Link
JP (1) JP3879278B2 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100849114B1 (en) * 2000-11-30 2008-07-30 코닌클리케 필립스 일렉트로닉스 엔.브이. A method of predicting the state of charge as well as the use time left of a rechargeable battery
KR20020054812A (en) * 2000-12-28 2002-07-08 이계안 A compensation method of battery soc for electric vehicle and hybrid electric vehicle
KR100387501B1 (en) * 2000-12-28 2003-06-18 현대자동차주식회사 Method for correcting soc of battery
JP3925507B2 (en) * 2004-04-23 2007-06-06 ソニー株式会社 Secondary battery charging method and battery pack
WO2005116675A1 (en) * 2004-05-26 2005-12-08 Nec Lamilion Energy, Ltd. Secondary battery residual-capacity estimating method and apparatus
JP4571000B2 (en) * 2005-03-29 2010-10-27 富士重工業株式会社 Remaining capacity calculation device for power storage device
KR101256073B1 (en) 2005-10-11 2013-04-18 삼성에스디아이 주식회사 Method of estimating SOC for battery and battery management system using the same
JP4984527B2 (en) 2005-12-27 2012-07-25 トヨタ自動車株式会社 Secondary battery charge state estimation device and charge state estimation method
JP2008199723A (en) * 2007-02-09 2008-08-28 Railway Technical Res Inst Residual capacity estimation unit of battery
KR100962856B1 (en) * 2008-04-03 2010-06-09 현대자동차주식회사 Method for estimating remaining capacity of battery
JP5439126B2 (en) * 2009-03-31 2014-03-12 株式会社日立製作所 Status detector for power supply
JP5463810B2 (en) * 2009-09-09 2014-04-09 日産自動車株式会社 Battery pack capacity adjustment device
EP2555008A4 (en) 2010-03-30 2013-08-28 Honda Motor Co Ltd Method for detecting battery capacity of secondary battery
MX2012012939A (en) * 2010-06-07 2013-01-17 Mitsubishi Electric Corp Charge status estimation apparatus.
FR2974921B1 (en) * 2011-05-05 2015-07-17 Renault Sas METHOD FOR PROCESSING A SIGNAL THAT QUANTIFIES THE CHARGING CONDITION OF AN ELECTRIC BATTERY OF A MOTOR VEHICLE ACCORDING TO TIME
FR2976364A1 (en) * 2011-06-07 2012-12-14 Peugeot Citroen Automobiles Sa Method for determining state of charge of electric battery of e.g. electric car, involves adjusting value of previous charge state of battery if verification of previous charge state calculation indicates error greater than preset threshold
WO2013002343A1 (en) * 2011-06-29 2013-01-03 三洋電機株式会社 Battery state detection device
JP5403437B2 (en) * 2011-07-29 2014-01-29 横河電機株式会社 Battery monitoring device
JP5882336B2 (en) * 2011-08-30 2016-03-09 三洋電機株式会社 Battery system, electric vehicle, moving object, power storage device, and power supply device
US9658293B2 (en) 2012-02-29 2017-05-23 Sanyo Electric Co., Ltd. Power supply unit, vehicle and storage battery unit equipped with power supply unit, and remaining capacity detecting method of battery
JP6040724B2 (en) * 2012-03-13 2016-12-07 日産自動車株式会社 Battery remaining capacity calculation device and battery remaining capacity calculation method
JP5783122B2 (en) 2012-04-11 2015-09-24 トヨタ自動車株式会社 Battery state estimation device
JP5999048B2 (en) * 2012-10-24 2016-09-28 トヨタ自動車株式会社 Power storage system
JP5977658B2 (en) * 2012-12-06 2016-08-24 株式会社デンソー Charge control device
US20150042267A1 (en) * 2013-08-12 2015-02-12 O2Micro Inc. System and Method for Controlling a Battery
WO2015045015A1 (en) * 2013-09-25 2015-04-02 株式会社日立製作所 Status determining method for secondary battery, status determining apparatus for secondary battery, secondary battery system, and charge/discharge control apparatus having status determining apparatus
JP6279387B2 (en) * 2014-04-10 2018-02-14 カルソニックカンセイ株式会社 Specific gravity estimation device and specific gravity estimation method
JP6164168B2 (en) * 2014-06-26 2017-07-19 トヨタ自動車株式会社 Vehicle control device
WO2016129248A1 (en) * 2015-02-13 2016-08-18 パナソニックIpマネジメント株式会社 Secondary battery state-of-charge estimating device and secondary battery state-of-charge estimating method
KR101726384B1 (en) * 2015-04-02 2017-04-12 주식회사 엘지화학 Apparatus and method for controlling charging of secondary battery
CN113762948A (en) * 2020-06-02 2021-12-07 车主邦(北京)科技有限公司 Charging order settlement method and system
KR102481221B1 (en) * 2020-09-17 2022-12-26 한화솔루션 주식회사 Estimating device for the state of charge on energy storage system and method thereof
JP2022182460A (en) * 2021-05-28 2022-12-08 株式会社Gsユアサ Estimation device, power storage device, and estimation method
JP2023027446A (en) 2021-08-17 2023-03-02 矢崎総業株式会社 Storage battery control device, power storage system, and storage battery control method

Also Published As

Publication number Publication date
JP2000150003A (en) 2000-05-30

Similar Documents

Publication Publication Date Title
JP3879278B2 (en) Charge amount calculation method and charge amount calculation device for hybrid vehicle
US10802080B2 (en) Battery system in vehicle and aging deterioration estimation method for battery
JP3395694B2 (en) Calculation method for battery capacity deterioration of secondary battery
US9475480B2 (en) Battery charge/discharge control device and hybrid vehicle using the same
JP4786058B2 (en) Power storage device remaining capacity detection device
JP4097183B2 (en) Secondary battery remaining capacity estimation method and apparatus, and battery pack system
CN108819731B (en) Charge rate estimation method and vehicle-mounted battery system
US7456612B2 (en) Method for estimating polarization voltage of secondary cell, method and device for estimating remaining capacity of secondary cell, battery pack system, and vehicle
JP4523738B2 (en) Secondary battery remaining capacity control method and apparatus
JP3571026B2 (en) Pseudo-adaptive method and system for determining state of charge of battery
US8000915B2 (en) Method for estimating state of charge of a rechargeable battery
JP3543662B2 (en) SOC calculation method for secondary battery for electric vehicle
JP2004014205A (en) Detection system of battery abnormality and degradation
JP2002243813A (en) Arithmetic unit for computing deterioration of capacity of secondary battery
CN112379282B (en) Method for improving SOC estimation precision of power battery based on ampere-hour integration method
US20120133332A1 (en) Storage capacity management system
JP2015155859A (en) Battery residual amount estimation device, battery pack, power storage device, electric vehicle and battery residual amount estimation method
JP3711881B2 (en) Charge / discharge control device
JP3669202B2 (en) Battery status monitoring device
JPH0659003A (en) Remaining capacity meter for battery
WO2019184842A1 (en) Method and apparatus for calculating soc of power battery pack, and electric vehicle
JP2000069606A (en) Battery control unit
JP2018155706A (en) Device for estimating degradation state of secondary battery, battery system having the same, and electric vehicle
JP3104483B2 (en) Battery remaining capacity detection device for hybrid vehicles
JP2006020401A (en) Battery managing system of hybrid vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

EXPY Cancellation because of completion of term