JP3669202B2 - Battery status monitoring device - Google Patents

Battery status monitoring device Download PDF

Info

Publication number
JP3669202B2
JP3669202B2 JP11257099A JP11257099A JP3669202B2 JP 3669202 B2 JP3669202 B2 JP 3669202B2 JP 11257099 A JP11257099 A JP 11257099A JP 11257099 A JP11257099 A JP 11257099A JP 3669202 B2 JP3669202 B2 JP 3669202B2
Authority
JP
Japan
Prior art keywords
battery
current
capacity
battery capacity
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11257099A
Other languages
Japanese (ja)
Other versions
JP2000306613A (en
Inventor
典彦 枚田
達夫 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP11257099A priority Critical patent/JP3669202B2/en
Publication of JP2000306613A publication Critical patent/JP2000306613A/en
Application granted granted Critical
Publication of JP3669202B2 publication Critical patent/JP3669202B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車載バッテリの充放電状態を監視するバッテリ状態監視装置に関する。
【0002】
【従来の技術】
従来、特にパラレルハイブリッド電気自動車(PHEV)に搭載されているリチウムイオンバッテリの充放電状態を監視するバッテリ状態監視装置では、バッテリの充放電電圧と充放電電流とから開放電圧OCVを推定し、さらにこの開放電圧からバッテリ容量SOCを推定し、このバッテリ容量推定値を諸々の制御に利用している。
【0003】
つまり、図4に示すように、バッテリの開放電圧OCVは、検出されるバッテリ電圧Vbとバッテリ電流Ib、そして2点のバッテリ電圧Vb1,Vb2とバッテリ電流Ib1,Ib2とから求めることができる内部抵抗Rnとから、次のようにして求める。
【0004】
OCV=Vb+Ib・Rn
だたし、内部抵抗Rnは、Rn=(Vb2−Vb1)/(Ib2−Ib1)で求められる。
【0005】
そして、リチウムイオンバッテリの場合、バッテリの開放電圧OCVとバッテリ容量SOCとは、図5に示すような相関関係があり、OCVからSOVを一義的に決定する。
【0006】
【発明が解決しようとする課題】
ところが、このような従来のバッテリ状態監視装置の場合、次のような問題点があった。リチウムイオンバッテリでは、図6に示すように、放電率により内部抵抗が変化し、その変化の挙動は放電率が小さい間は放電サイクルそれぞれにおいてほぼリニアであるが、たとえば、30Aを超えるような大きな放電率になると内部抵抗を厳密に規定することができなくなる。そのため、開放電圧OCVが正確に求められず、結果的にバッテリ容量SOCも正確に推定することができなくなる問題点があった。
【0007】
本発明はこのような従来の問題点に鑑みてなされたもので、放電率が大きい場合にも正確にバッテリ容量を推定することができるバッテリ状態監視装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
請求項1の発明のバッテリ状態監視装置は、リチウムイオンバッテリの状態を監視するバッテリ監視装置において、バッテリ電流を検出する電流検出手段と、バッテリ電圧を検出する電圧検出手段と、前記電流検出手段の検出した前記バッテリ電流と前記電圧検出手段の検出した前記バッテリ電圧とに基づいて、バッテリの内部抵抗を演算する内部抵抗演算手段と、前記バッテリ電流、前記バッテリ電圧及び前記内部抵抗を用いてバッテリ開放電圧を演算する開放電圧演算手段と、前記開放電圧演算手段の算出した前記バッテリ開放電圧からバッテリ容量を推定するバッテリ容量推定手段と、前記バッテリ電流を用いて電流容量を積算する電流容量演算手段と、前記バッテリ電流が所定範囲内にある場合には前記バッテリ容量推定手段の推定する前記バッテリ容量を最終バッテリ容量とし、前記バッテリ電流が前記所定範囲外である場合には当該所定範囲外に逸脱する直前に前記バッテリ容量推定手段の推定したバッテリ容量に対して、当該所定範囲外に逸脱した時点以降に前記電流容量演算手段の積算した電流容量を加算して最終バッテリ容量として出力するバッテリ容量補正手段とを備えたものである。
【0009】
請求項2の発明のバッテリ状態監視装置は、請求項1において、前記バッテリ容量補正手段が、前記内部抵抗の電流依存変化率がほぼ一定の範囲を前記バッテリ電流の所定範囲としたものである。
【0010】
請求項1及び2の発明のバッテリ状態監視装置では、内部抵抗演算手段により電流検出手段の検出したバッテリ電流と電圧検出手段の検出したバッテリ電圧とに基づいてバッテリの内部抵抗を演算し、また開放電圧演算手段によりバッテリ電流検出手段の検出するバッテリ電流、バッテリ電圧検出手段の検出するバッテリ電圧及び前記内部抵抗を用いてバッテリ開放電圧を演算し、さらに、バッテリ容量推定手段がこの開放電圧演算手段の算出したバッテリ開放電圧からバッテリ容量を推定する。一方、電流容量演算手段が電流検出手段の検出するバッテリ電流を用いて電流容量を積算する。
【0011】
そして、バッテリ容量補正手段は、バッテリ電流が所定範囲内にある場合にはバッテリ容量推定手段の推定するバッテリ容量を最終バッテリ容量とし、バッテリ電流が所定範囲外である場合には当該所定範囲外に逸脱する直前にバッテリ容量推定手段の推定したバッテリ容量に対して、当該所定範囲外に逸脱した時点以降に電流容量演算手段の積算した電流容量を加算して最終バッテリ容量として出力する。
【0012】
これにより、バッテリ電流がバッテリの内部抵抗の変化率がほぼ一定となる所定範囲内にある場合にはバッテリ開放電圧からバッテリ容量を正確に推定して最終バッテリ容量として出力し、また、バッテリ電流がバッテリの内部抵抗の変化率がほぼ一定となる所定範囲を逸脱した場合にはその範囲を逸脱する直前のバッテリ開放電圧から推定したバッテリ容量に対して、所定範囲を逸脱した後の電流容量の積算値を加算する補正を行って最終バッテリ容量として出力することができ、バッテリ電流の変化が激しい使用状態でも正確なバッテリ容量監視が可能である。
【0013】
請求項3の発明のバッテリ状態監視装置は、請求項1又は2において、前記バッテリ容量補正手段が、前記バッテリ電流が前記所定範囲内に復帰したときに、前記最終バッテリ容量を前記バッテリ容量推定手段の推定する前記バッテリ容量にリセットするようにしたものであり、放電率の変化が激しい使用状態の後でもバッテリ容量を正確に監視できる。
【0014】
【発明の効果】
請求項1及び2の発明によれば、リチウムイオンバッテリの状態を監視するバッテリ監視装置において、バッテリ電流がバッテリの内部抵抗の変化率がほぼ一定となる所定範囲内にある場合にはバッテリ開放電圧からバッテリ容量を正確に推定して最終バッテリ容量として出力し、また、バッテリ電流がバッテリの内部抵抗の変化率がほぼ一定となる所定範囲を逸脱した場合にはその範囲を逸脱する直前のバッテリ開放電圧から推定したバッテリ容量に対して、所定範囲を逸脱した後の電流容量の積算値を加算する補正を行って最終バッテリ容量として出力することができ、バッテリ電流の変化が激しい使用状態でも正確なバッテリ容量監視が可能である。
【0015】
請求項3の発明によれば、請求項1又は2の発明の効果に加えて、バッテリ電流が所定範囲内に復帰したときに、最終バッテリ容量としてバッテリ容量推定手段の推定するバッテリ容量にリセットするようにしたので、放電率の変化が激しい使用状態の後でもバッテリ容量を正確に監視できる。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図に基づいて詳説する。図1は本発明の1つの実施の形態の構成を示している。この実施の形態のバッテリ状態監視装置は、バッテリ1から負荷2に流れるバッテリ電流Ibを検出する電流計3、バッテリ電圧Vbを検出する電圧計4、このバッテリ電流Ib、バッテリ電圧Vbを入力してバッテリ容量SOCを演算し、エンジン5その他の諸々の機器を制御するコントローラ6、エンジン5の駆動によって発電し、バッテリ1に充電電流を供給する発電機7を備えている。なお、パラレルハイブリッド電気自動車PHEVの場合、エンジン5の回転出力は直接、自動車を走行駆動するために利用される。
【0017】
図2には、コントローラ6におけるバッテリ容量演算回路の構成が示してある。バッテリ容量演算回路は、全体の制御を行う演算制御部11、バッテリ電流Ibとバッテリ電圧Vbから開放電圧OCVを求めるOCV演算部12、OCV−SOCの相関特性データを内蔵し、OCV演算部12から出力される開放電圧OCVに対応するバッテリ容量SOCを推定して出力するSOC換算部13、バッテリ電流Ibを時間積算することによって電流容量ΣA(h)を演算する電流容量演算部14、演算制御部11の指示によりSOC換算部13からのバッテリ容量推定値SOCに対して電流容量演算部14からの電流容量ΣA(h)を用いて補正を行い最終的なバッテリ容量SOCを求めるSOC補正部15、そして最終的なバッテリ容量SOCを出力するSOC出力部16から構成されている。
【0018】
次に、上記構成のバッテリ状態監視装置の動作を説明する。この実施の形態の場合、図3に示すように、開放電圧OCVから換算したバッテリ容量SOCを直接に最終バッテリ容量SOCとして使用する領域を、放電率が−10A〜10Aの範囲に設定している。なお、この領域は、従来例のところで説明したように、図6に示したグラフにおいて、リチウムイオンバッテリの放電率の変化による内部抵抗の変化率がほぼ一定である範囲、−30A〜+30A程度の範囲内に設定することができる。 OCV演算部12はバッテリ電流計3の検出するバッテリ電流Ib(放電時プラス(+)、充電時マイナス(−)とする)、バッテリ電圧計4の検出するバッテリ電圧Vbを所定の周期で取り込む。そして、これまでに取り込んだ有効な2組のバッテリ電流とバッテリ電圧との検出値(ここで採用する検出値は内部抵抗を有効に演算できる2組の検出値を採用する)Ib1,Ib2;Vb1,Vb2により、上述した式によって内部抵抗Rnを求めておき、新たに取り込んだバッテリ電流Ibとバッテリ電圧Vbにより、開放電圧OCVを、
OCV=Vb+Ib・Rn
によって求め、SOC換算部13に出力する。
【0019】
SOC換算部13では、内蔵する図5に示した開放電圧OCV−バッテリ容量SOC相関特性データを参照し、入力されるバッテリ開放電圧OCVに対応するバッテリ容量SOCを求めて出力する。
【0020】
演算制御部11はバッテリ電流Ibを監視していて、このバッテリ電流Ibが上述した所定の電流範囲を逸脱した場合、電流容量演算部14に積算指令を与え、またSOC補正部15に補正指令を与える。
【0021】
そして、電流容量演算部14は、入力されるバッテリ電流Ibの時間積分を行って電流容量積算値ΣA(h)を求めてSOC補正部15に出力する。SOC補正部15は、制御演算部11から補正指令がない場合にはSOC換算部13からのバッテリ容量SOCを最終バッテリ容量としてSOC出力部16に出力し、制御演算部11から補正指令を受け取ると、SOC換算部13からのバッテリ容量換算値SOCに対して、電流容量演算部14からの電流容量積算値ΣA(h)を加算して最終バッテリ容量SOCを推定し、SOC出力部16に出力する。
【0022】
つまり、次のような補正演算を行うのである。
【0023】
【数1】

Figure 0003669202
ここで、Kはバッテリ容量推定値であり、次の電流容量AhをSOCの単位である%に合わせるための換算値である。すなわち、
【数2】
Figure 0003669202
で求める。例えば、1Ahは33%であり、3Ahであれば100%であるので、K=1Ah/33%を用いる。
【0024】
これにより、SOC出力部16は最終バッテリ容量として、開放電圧OCVから正確に換算できる電流範囲を超えたバッテリの使用状態においても電流容量によりバッテリ容量を補正してほぼ正確にバッテリ容量SOCを出力することができる。
【0025】
制御演算部11は、バッテリ電流Ibが所定範囲内に復帰したときには電流容量演算部14とSOC補正部15に対してリセット指令を与え、電流容量演算部14の電流容量積算演算をリセットさせ、またSOC補正部15の電流容量積算値ΣA(h)による補正演算を中止させ、SOC換算部13が出力するSOC換算値を最終SOCとしてSOC出力部16に出力するようにする。
【0026】
これにより、バッテリ開放電圧OCVからバッテリ容量SOCを正確に換算できる範囲では常にその換算値を用いてバッテリ容量SOCを求め、換算が正確にできる範囲を逸脱する使用状態では電流容量積算値によってバッテリ容量を補正し、常にほぼ正確なバッテリ容量SOCを演算出力できる。
【0027】
なお、電流容量演算部14は、バッテリ1の特性に依存するが、リチウムイオンバッテリの場合、例えば、バッテリ電流Ibの使用状態が、1秒当りに60A以上も急激に変化するようなものであれば、バッテリ電圧Vbはバッテリ電流Ibの放電に見合う電圧値まで低下するのに時間遅れがあり、バッテリ電流Ibとバッテリ電圧Vbによってバッテリ開放電圧OCVを求めても正確な値を得ることができなくなる。
【0028】
そこで、制御演算部11にこのバッテリ電流Ibの時間変化をも監視させ、例えば、20C(1時間放電容量1Cの20倍の速さでの放電)を超える放電である場合にも、OCVからSOCを換算して最終バッテリ容量を求めることを中止し、電流容量演算部14に電流容量積算演算を開始させ、直前のSOCに対して補正演算を行い、最終SOCを出力する構成にすることができる。
【図面の簡単な説明】
【図1】本発明の1つの実施の形態の構成のブロック図。
【図2】上記の実施の形態におけるコントローラの詳しい構成を示すブロック図。
【図3】上記の実施の形態によるバッテリ容量SOC演算の場合分けを示す説明図。
【図4】一般的なリチウムイオンバッテリの開放電圧OCVとバッテリ電流との関係を示すグラフ。
【図5】一般的なリチウムイオンバッテリの開放電圧OCV−バッテリ容量SOCの関係を示すグラフ。
【図6】一般的なリチウムイオンバッテリの内部抵抗特性の変化を示すグラフ。
【符号の説明】
1 バッテリ
2 負荷
3 電流計
4 電圧計
5 エンジン
6 コントローラ
11 演算制御部
12 OCV演算部
13 SOC換算部
14 電流容量演算部
15 SOC補正部
16 SOC出力部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a battery state monitoring device that monitors a charge / discharge state of an in-vehicle battery.
[0002]
[Prior art]
Conventionally, in a battery state monitoring device that monitors a charge / discharge state of a lithium ion battery mounted on a parallel hybrid electric vehicle (PHEV) in particular, an open circuit voltage OCV is estimated from the charge / discharge voltage and the charge / discharge current of the battery, The battery capacity SOC is estimated from this open circuit voltage, and this battery capacity estimated value is used for various controls.
[0003]
That is, as shown in FIG. 4, the open circuit voltage OCV of the battery is an internal resistance that can be obtained from the detected battery voltage Vb and battery current Ib, and two battery voltages Vb1 and Vb2 and battery currents Ib1 and Ib2. It calculates | requires as follows from Rn.
[0004]
OCV = Vb + Ib · Rn
However, the internal resistance Rn is obtained by Rn = (Vb2-Vb1) / (Ib2-Ib1).
[0005]
In the case of a lithium ion battery, the open circuit voltage OCV and the battery capacity SOC have a correlation as shown in FIG. 5, and the SOV is uniquely determined from the OCV.
[0006]
[Problems to be solved by the invention]
However, such a conventional battery state monitoring device has the following problems. In the lithium ion battery, as shown in FIG. 6, the internal resistance changes depending on the discharge rate, and the behavior of the change is almost linear in each discharge cycle while the discharge rate is small. When the discharge rate is reached, the internal resistance cannot be strictly defined. Therefore, there is a problem that the open circuit voltage OCV cannot be accurately obtained, and as a result, the battery capacity SOC cannot be accurately estimated.
[0007]
The present invention has been made in view of such a conventional problem, and an object of the present invention is to provide a battery state monitoring device capable of accurately estimating the battery capacity even when the discharge rate is large.
[0008]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a battery monitoring apparatus for monitoring a state of a lithium ion battery, wherein a current detection means for detecting a battery current, a voltage detection means for detecting a battery voltage, and the current detection means Based on the detected battery current and the battery voltage detected by the voltage detection means, internal resistance calculation means for calculating the internal resistance of the battery, and using the battery current, the battery voltage, and the internal resistance to open the battery An open-circuit voltage calculating means for calculating a voltage; a battery capacity estimating means for estimating a battery capacity from the battery open voltage calculated by the open-circuit voltage calculating means; and a current capacity calculating means for integrating the current capacity using the battery current; When the battery current is within a predetermined range, the battery capacity estimating means estimates If the battery current is out of the predetermined range, the battery capacity estimated by the battery capacity estimation means immediately before deviating from the predetermined range is outside the predetermined range. And a battery capacity correcting means for adding the current capacity accumulated by the current capacity calculating means and outputting the result as the final battery capacity after the point of departure.
[0009]
A battery state monitoring device according to a second aspect of the present invention is the battery state monitoring device according to the first aspect, wherein the battery capacity correction means sets the predetermined range of the battery current in a range in which the current dependent change rate of the internal resistance is substantially constant.
[0010]
In the battery state monitoring device according to the first and second aspects of the present invention, the internal resistance of the battery is calculated based on the battery current detected by the current detection means and the battery voltage detected by the voltage detection means by the internal resistance calculation means, and then opened. The voltage calculation means calculates the battery open voltage using the battery current detected by the battery current detection means, the battery voltage detected by the battery voltage detection means, and the internal resistance, and further the battery capacity estimation means uses the open voltage calculation means. The battery capacity is estimated from the calculated battery open voltage. On the other hand, the current capacity calculation means integrates the current capacity using the battery current detected by the current detection means.
[0011]
The battery capacity correcting means sets the battery capacity estimated by the battery capacity estimating means as the final battery capacity when the battery current is within the predetermined range, and out of the predetermined range when the battery current is outside the predetermined range. Immediately before the departure, the battery capacity estimated by the battery capacity estimation means is added with the current capacity accumulated by the current capacity calculation means after the time of departure from the predetermined range, and output as the final battery capacity.
[0012]
As a result, when the battery current is within a predetermined range where the rate of change of the internal resistance of the battery is substantially constant, the battery capacity is accurately estimated from the battery open voltage and output as the final battery capacity. When the rate of change of the internal resistance of the battery deviates from a predetermined range, the integration of the current capacity after deviating from the predetermined range with respect to the battery capacity estimated from the battery open voltage immediately before deviating from the range. Correction for adding values can be performed and output as the final battery capacity, and accurate battery capacity monitoring can be performed even in a usage state where the battery current changes drastically.
[0013]
According to a third aspect of the present invention, there is provided the battery state monitoring device according to the first or second aspect, wherein the battery capacity correcting means determines the battery capacity estimating means when the battery current returns to the predetermined range. The battery capacity is reset to the estimated battery capacity, and the battery capacity can be accurately monitored even after a use state in which the discharge rate changes drastically.
[0014]
【The invention's effect】
According to the first and second aspects of the invention, in the battery monitoring device for monitoring the state of the lithium ion battery, when the battery current is within a predetermined range in which the rate of change of the internal resistance of the battery is substantially constant, the battery open voltage The battery capacity is accurately estimated and output as the final battery capacity. If the battery current deviates from a predetermined range where the rate of change of the internal resistance of the battery is almost constant, the battery is released immediately before deviating from that range. The battery capacity estimated from the voltage can be corrected by adding the integrated value of the current capacity after deviating from the specified range and output as the final battery capacity. Battery capacity monitoring is possible.
[0015]
According to the invention of claim 3, in addition to the effect of the invention of claim 1 or 2, when the battery current returns to a predetermined range, the battery capacity is reset to the battery capacity estimated by the battery capacity estimating means as the final battery capacity. As a result, the battery capacity can be accurately monitored even after a use state in which the discharge rate changes drastically.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows the configuration of one embodiment of the present invention. The battery state monitoring device of this embodiment receives an ammeter 3 for detecting a battery current Ib flowing from the battery 1 to the load 2, a voltmeter 4 for detecting the battery voltage Vb, and the battery current Ib and the battery voltage Vb. A controller 6 that calculates the battery capacity SOC and controls the engine 5 and other devices, and a generator 7 that generates electric power by driving the engine 5 and supplies a charging current to the battery 1 are provided. In the case of a parallel hybrid electric vehicle PHEV, the rotational output of the engine 5 is directly used to drive the vehicle.
[0017]
FIG. 2 shows the configuration of the battery capacity calculation circuit in the controller 6. The battery capacity calculation circuit includes a calculation control unit 11 that performs overall control, an OCV calculation unit 12 that obtains an open circuit voltage OCV from the battery current Ib and the battery voltage Vb, and OCV-SOC correlation characteristic data. An SOC conversion unit 13 that estimates and outputs the battery capacity SOC corresponding to the output open circuit voltage OCV, a current capacity calculation unit 14 that calculates the current capacity ΣA (h) by integrating the battery current Ib over time, and a calculation control unit 11, the SOC correction unit 15 that corrects the estimated battery capacity SOC from the SOC conversion unit 13 using the current capacity ΣA (h) from the current capacity calculation unit 14 to obtain the final battery capacity SOC, The SOC output unit 16 outputs the final battery capacity SOC.
[0018]
Next, the operation of the battery state monitoring apparatus having the above configuration will be described. In the case of this embodiment, as shown in FIG. 3, the area where the battery capacity SOC converted from the open circuit voltage OCV is directly used as the final battery capacity SOC is set in the range of -10A to 10A. . Note that, as described in the conventional example, this region is a range in which the rate of change of the internal resistance due to the change in the discharge rate of the lithium ion battery is substantially constant, about −30 A to +30 A in the graph shown in FIG. Can be set within range. The OCV calculation unit 12 takes in the battery current Ib (plus (+) during discharge and minus (-) during charge) detected by the battery ammeter 3 and the battery voltage Vb detected by the battery voltmeter 4 at a predetermined cycle. The detected values of the two valid battery currents and battery voltages that have been captured so far (the detected values used here are the two detected values that can effectively calculate the internal resistance) Ib1, Ib2; Vb1 , Vb2, the internal resistance Rn is obtained by the above-described equation, and the open-circuit voltage OCV is obtained from the newly taken battery current Ib and battery voltage Vb.
OCV = Vb + Ib · Rn
And output to the SOC conversion unit 13.
[0019]
The SOC conversion unit 13 refers to the built-in open circuit voltage OCV-battery capacity SOC correlation characteristic data shown in FIG. 5 and obtains and outputs the battery capacity SOC corresponding to the input battery open voltage OCV.
[0020]
The arithmetic control unit 11 monitors the battery current Ib. When the battery current Ib deviates from the predetermined current range described above, the arithmetic control unit 11 gives an integration command to the current capacity calculation unit 14 and gives a correction command to the SOC correction unit 15. give.
[0021]
Then, the current capacity calculator 14 performs time integration of the input battery current Ib to obtain a current capacity integrated value ΣA (h) and outputs it to the SOC corrector 15. When there is no correction command from the control calculation unit 11, the SOC correction unit 15 outputs the battery capacity SOC from the SOC conversion unit 13 to the SOC output unit 16 as the final battery capacity and receives the correction command from the control calculation unit 11. The current capacity integrated value ΣA (h) from the current capacity calculation unit 14 is added to the battery capacity conversion value SOC from the SOC conversion unit 13 to estimate the final battery capacity SOC and output it to the SOC output unit 16. .
[0022]
That is, the following correction calculation is performed.
[0023]
[Expression 1]
Figure 0003669202
Here, K is an estimated battery capacity value, which is a conversion value for adjusting the next current capacity Ah to% which is a unit of SOC. That is,
[Expression 2]
Figure 0003669202
Ask for. For example, since 1Ah is 33% and 3Ah is 100%, K = 1Ah / 33% is used.
[0024]
As a result, the SOC output unit 16 corrects the battery capacity with the current capacity and outputs the battery capacity SOC almost accurately even when the battery is in use, exceeding the current range that can be accurately converted from the open circuit voltage OCV, as the final battery capacity. be able to.
[0025]
The control calculation unit 11 gives a reset command to the current capacity calculation unit 14 and the SOC correction unit 15 when the battery current Ib returns within a predetermined range, and resets the current capacity integration calculation of the current capacity calculation unit 14, The correction calculation by the current capacity integrated value ΣA (h) of the SOC correction unit 15 is stopped, and the SOC conversion value output from the SOC conversion unit 13 is output to the SOC output unit 16 as the final SOC.
[0026]
Thus, the battery capacity SOC is always obtained using the converted value in the range where the battery capacity SOC can be accurately converted from the battery open voltage OCV, and the battery capacity is calculated based on the current capacity integrated value in the usage state deviating from the range where the conversion can be accurately performed. Can be calculated and the battery capacity SOC can always be calculated and output.
[0027]
The current capacity calculation unit 14 depends on the characteristics of the battery 1, but in the case of a lithium ion battery, for example, the usage state of the battery current Ib may change abruptly by 60 A or more per second. For example, the battery voltage Vb has a time delay in dropping to a voltage value commensurate with the discharge of the battery current Ib, and an accurate value cannot be obtained even when the battery open voltage OCV is obtained from the battery current Ib and the battery voltage Vb. .
[0028]
Therefore, the control calculation unit 11 also monitors the time change of the battery current Ib. For example, even when the discharge exceeds 20C (discharge at a speed 20 times the discharge capacity 1C for 1 hour), the OCV to the SOC The calculation of the final battery capacity can be stopped by converting the value, the current capacity calculation unit 14 can start the current capacity integration calculation, the correction calculation is performed on the immediately preceding SOC, and the final SOC can be output. .
[Brief description of the drawings]
FIG. 1 is a block diagram of a configuration of one embodiment of the present invention.
FIG. 2 is a block diagram showing a detailed configuration of a controller in the embodiment.
FIG. 3 is an explanatory diagram showing a case classification of battery capacity SOC calculation according to the above embodiment.
FIG. 4 is a graph showing a relationship between an open circuit voltage OCV and a battery current of a general lithium ion battery.
FIG. 5 is a graph showing a relationship between an open circuit voltage OCV and a battery capacity SOC of a general lithium ion battery.
FIG. 6 is a graph showing a change in internal resistance characteristics of a general lithium ion battery.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Battery 2 Load 3 Ammeter 4 Voltmeter 5 Engine 6 Controller 11 Calculation control part 12 OCV calculation part 13 SOC conversion part 14 Current capacity calculation part 15 SOC correction part 16 SOC output part

Claims (3)

リチウムイオンバッテリの状態を監視するバッテリ監視装置において、
バッテリ電流を検出する電流検出手段と、
バッテリ電圧を検出する電圧検出手段と、
前記電流検出手段の検出した前記バッテリ電流と前記電圧検出手段の検出した前記バッテリ電圧とに基づいて、バッテリの内部抵抗を演算する内部抵抗演算手段と、
前記バッテリ電流、前記バッテリ電圧及び前記内部抵抗を用いてバッテリ開放電圧を演算する開放電圧演算手段と、
前記開放電圧演算手段の算出した前記バッテリ開放電圧からバッテリ容量を推定するバッテリ容量推定手段と、
前記バッテリ電流を用いて電流容量を積算する電流容量演算手段と、
前記バッテリ電流が所定範囲内にある場合には前記バッテリ容量推定手段の推定する前記バッテリ容量を最終バッテリ容量とし、前記バッテリ電流が前記所定範囲外である場合には当該所定範囲外に逸脱する直前に前記バッテリ容量推定手段の推定したバッテリ容量に対して、当該所定範囲外に逸脱した時点以降に前記電流容量演算手段の積算した電流容量を加算して最終バッテリ容量として出力するバッテリ容量補正手段とを備えて成るバッテリ状態監視装置。
In a battery monitoring device that monitors the state of a lithium ion battery,
Current detection means for detecting battery current;
Voltage detection means for detecting the battery voltage;
Internal resistance calculating means for calculating the internal resistance of the battery based on the battery current detected by the current detecting means and the battery voltage detected by the voltage detecting means;
An open voltage calculation means for calculating a battery open voltage using the battery current, the battery voltage and the internal resistance;
Battery capacity estimating means for estimating a battery capacity from the battery open voltage calculated by the open voltage calculating means;
Current capacity calculating means for integrating current capacity using the battery current;
When the battery current is within the predetermined range, the battery capacity estimated by the battery capacity estimating means is set as the final battery capacity, and when the battery current is outside the predetermined range, immediately before deviating from the predetermined range. Battery capacity correcting means for adding the current capacity accumulated by the current capacity calculating means after the time deviating from the predetermined range to the battery capacity estimated by the battery capacity estimating means and outputting as a final battery capacity A battery state monitoring device comprising:
前記バッテリ容量補正手段は、前記内部抵抗の電流依存変化率がほぼ一定の範囲を前記バッテリ電流の所定範囲としたことを特徴とする請求項1に記載のバッテリ状態監視装置。2. The battery state monitoring device according to claim 1, wherein the battery capacity correction unit sets a predetermined range of the battery current as a range in which a current dependent change rate of the internal resistance is substantially constant. 前記バッテリ容量補正手段は、前記バッテリ電流が前記所定範囲内に復帰したときに、前記最終バッテリ容量を前記バッテリ容量推定手段の推定する前記バッテリ容量にリセットすることを特徴とする請求項1または2に記載のバッテリ状態監視装置。3. The battery capacity correction unit, when the battery current returns to the predetermined range, resets the final battery capacity to the battery capacity estimated by the battery capacity estimation unit. The battery state monitoring device described in 1.
JP11257099A 1999-04-20 1999-04-20 Battery status monitoring device Expired - Fee Related JP3669202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11257099A JP3669202B2 (en) 1999-04-20 1999-04-20 Battery status monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11257099A JP3669202B2 (en) 1999-04-20 1999-04-20 Battery status monitoring device

Publications (2)

Publication Number Publication Date
JP2000306613A JP2000306613A (en) 2000-11-02
JP3669202B2 true JP3669202B2 (en) 2005-07-06

Family

ID=14590027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11257099A Expired - Fee Related JP3669202B2 (en) 1999-04-20 1999-04-20 Battery status monitoring device

Country Status (1)

Country Link
JP (1) JP3669202B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586130B1 (en) * 2000-11-22 2003-07-01 Honeywell International Inc. Method and apparatus for determining the state of charge of a lithium-ion battery
KR100384160B1 (en) * 2000-12-27 2003-05-16 현대자동차주식회사 Method for modeling operation the charge/discharge characteristics of a battery according to a status of capacitance
KR100673036B1 (en) * 2001-11-09 2007-01-22 현대중공업 주식회사 Battery state of charge presumed method of battery management system for electric vehicle
KR100412688B1 (en) * 2001-12-18 2003-12-31 현대자동차주식회사 Method for battery state of charge reset in hybrid electric vehicle
KR100460876B1 (en) * 2002-05-29 2004-12-09 현대자동차주식회사 State of charge detection method of electric vehicle
US7317300B2 (en) 2003-06-23 2008-01-08 Denso Corporation Automotive battery state monitor apparatus
JP4408058B2 (en) * 2004-05-14 2010-02-03 パナソニック株式会社 Battery evaluation device
KR100756837B1 (en) * 2005-06-30 2007-09-07 주식회사 엘지화학 Method and apparatus of estimating state of health of battery
JP2007172951A (en) * 2005-12-21 2007-07-05 Yamaha Motor Co Ltd Hybrid power supply system
JP4984527B2 (en) 2005-12-27 2012-07-25 トヨタ自動車株式会社 Secondary battery charge state estimation device and charge state estimation method
JP4600390B2 (en) 2006-12-14 2010-12-15 トヨタ自動車株式会社 Power supply system, vehicle including the same, and control method thereof
JP4706648B2 (en) * 2007-03-06 2011-06-22 トヨタ自動車株式会社 Electric vehicle, charging state estimation method, and computer-readable recording medium recording a program for causing a computer to execute the charging state estimation method
JP5217212B2 (en) * 2007-03-30 2013-06-19 富士電機株式会社 Boost chopper
KR101065551B1 (en) 2010-01-08 2011-09-19 주식회사 엘지화학 Battery capacity estimation device and method
KR101498760B1 (en) * 2012-01-12 2015-03-04 주식회사 엘지화학 Apparatus and method of estimating state of charging for battery, and battery management system using the same
EP3264119A4 (en) 2015-02-19 2019-01-02 Kabushiki Kaisha Toshiba, Inc. Electricity storage system, electricity storage control method, and electricity storage control program
CN106165186B (en) 2015-03-16 2018-11-23 株式会社东芝 Accumulator control device and accumulator control method
CN107589377B (en) * 2017-08-10 2019-12-06 北京普莱德新能源电池科技有限公司 battery pack running state acquisition device

Also Published As

Publication number Publication date
JP2000306613A (en) 2000-11-02

Similar Documents

Publication Publication Date Title
JP3669202B2 (en) Battery status monitoring device
US7456612B2 (en) Method for estimating polarization voltage of secondary cell, method and device for estimating remaining capacity of secondary cell, battery pack system, and vehicle
US7339351B2 (en) Method and apparatus for estimating remaining capacity of secondary battery
JP5393837B2 (en) Battery charge rate estimation device
JP4692246B2 (en) Secondary battery input / output possible power estimation device
JP5009223B2 (en) Secondary battery remaining capacity estimation method and apparatus
US20120271578A1 (en) Battery management system
WO2012098770A1 (en) Device for estimating state of charge of battery
WO2013051241A1 (en) Battery state-of-charge estimation device and state-of-charge estimation method
JP5389136B2 (en) Charging rate estimation apparatus and method
JP2015155859A (en) Battery residual amount estimation device, battery pack, power storage device, electric vehicle and battery residual amount estimation method
JP2000150003A (en) Method and device for charged amount calculation for hybrid vehicle
JP2001021628A (en) Apparatus for measuring capacity of battery with rechargeable capacity calculation function by using temperature sensor
JP2010019595A (en) Residual capacity calculating apparatus of storage device
JP2012047580A (en) Charging rate estimation device for battery
JP5389137B2 (en) Charging rate estimation apparatus and method
KR20150019190A (en) Method of Estimating Battery Stste-Of-Charge and Apparatus therefor the same
US20070170892A1 (en) Method and apparatus for estimating remaining capacity of electric storage
WO2005116675A1 (en) Secondary battery residual-capacity estimating method and apparatus
JP5090865B2 (en) Electromotive force calculation device and charging state estimation device
JP3714214B2 (en) Secondary battery charge rate estimation device
JP2004245673A (en) Method and device for predicting residual capacity of storage capacitor, and storage capacitor pack
JP2006025538A (en) State-of-charge estimating method of secondary battery, recording medium for recording program for making computer execute state-of-charge estimating method and battery control system
JP4638211B2 (en) Remaining capacity calculation device for power storage device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees