JP2000150003A - Method and device for charged amount calculation for hybrid vehicle - Google Patents

Method and device for charged amount calculation for hybrid vehicle

Info

Publication number
JP2000150003A
JP2000150003A JP10318912A JP31891298A JP2000150003A JP 2000150003 A JP2000150003 A JP 2000150003A JP 10318912 A JP10318912 A JP 10318912A JP 31891298 A JP31891298 A JP 31891298A JP 2000150003 A JP2000150003 A JP 2000150003A
Authority
JP
Japan
Prior art keywords
charge amount
secondary battery
value
calculating
calculation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10318912A
Other languages
Japanese (ja)
Other versions
JP3879278B2 (en
Inventor
Tadashi Tsuji
匡 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP31891298A priority Critical patent/JP3879278B2/en
Publication of JP2000150003A publication Critical patent/JP2000150003A/en
Application granted granted Critical
Publication of JP3879278B2 publication Critical patent/JP3879278B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a charged amount calculating device for hybrid vehicle capable of calculating accurately the charged amount SOC(state of change) of a secondary battery. SOLUTION: This device for charged amount calculation for a hybrid vehicle is composed of a voltage sensor 8 to sense the terminal voltage V of a secondary battery, a current sensor 9 to sense the charge/discharge current value I, an Ah calculation part 22 to calculate the cumulated amperage Ah on the basis of the sensed current value I, an RSOC calculation part 23 to calculate the first charged amount on the basis of Ah, a momentary power calculation part 21 and release voltage E3 calculation part 25 to calculate the release voltages E2 and E3 of the secondary battery on the basis of the second current I and voltage V, respectively, and a CAPAH calculation part 24 to calculate the second charged amount in compliance with the release voltages E2 and E3. When the difference between the first and second charged amounts becomes over the specified value, the first charged amount is corrected on the basis of the second charged amount.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ハイブリッド車等
に用いられる駆動用二次電池の充電量演算方法および充
電量演算装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for calculating a charge amount of a driving secondary battery used in a hybrid vehicle or the like.

【0002】[0002]

【発明が解決しようとする課題】走行駆動源として内燃
エンジンおよび電動モータを備え、それらの両方または
いずれか一方の駆動力により走行するハイブリッド方式
の電気自動車(以下では、ハイブリッド車と呼ぶ)が知
られている。このようなハイブリッド車では、モータ駆
動用二次電池の充電量SOC(State of charge)の算出方
法の一つとして、充放電時の電流を積算して得られるAh
積算値(=Σ(I×t):Iは電流値、tは時間)と電
池容量とから算出する方法がある。
A hybrid electric vehicle (hereinafter, referred to as a hybrid vehicle) which includes an internal combustion engine and an electric motor as a driving source for driving and runs by using both or one of the driving forces is known. Have been. In such a hybrid vehicle, one of the methods of calculating the state of charge (SOC) of the motor driving secondary battery is Ah, which is obtained by integrating the current during charging and discharging.
There is a method of calculating from the integrated value (= Σ (I × t): I is a current value, t is time) and the battery capacity.

【0003】しかしながら、上述した算出方法では、電
流値Iに検出誤差ΔIがあった場合に誤差が累積される
ことになる。このAh積算値に含まれる累積誤差Σ(ΔI
×t)によって、充電量SOCの算出を行うたびに誤差が
大きくなって実際の充電量SOCと大きくずれてしまうと
いう問題があった。
However, in the above-described calculation method, if the current value I has a detection error ΔI, the errors are accumulated. The accumulated error こ の (ΔI
Xt), there is a problem that every time the charge amount SOC is calculated, the error increases and the actual charge amount SOC greatly deviates.

【0004】本発明の目的は、二次電池の充電量SOCを
精度良く算出することができるハイブリッド車の充電量
演算方法および充電量演算装置を提供することにある。
An object of the present invention is to provide a method and apparatus for calculating a charge amount of a hybrid vehicle, which can accurately calculate a charge amount SOC of a secondary battery.

【0005】[0005]

【課題を解決するための手段】発明の実施の形態を示す
図1および図8に対応付けて説明する。 (1)図8に対応付けて説明すると、請求項1の発明に
よるハイブリッド車の充電量演算方法は、(a)充放電
時における二次電池の電流値Iを積算し、その電流積算
値(Ah=ΣI・t)に基づいて二次電池の充電量を算出
する第1の算出方法、(b)無負荷状態における二次電
池の端子電圧値E1に基づいて二次電池の充電量を算出
する第2の算出方法、(c)充放電時の二次電池の端子
電圧値Vと電流値Iとに基くパワー演算により二次電池
の第1の開放電圧E2を算出し、第1の開放電圧E2に基
づいて二次電池の充電量を算出する第3の算出方法、
(d)充放電時の二次電池の端子電圧値V,電流値Iお
よび内部抵抗値に基づいて第2の開放電圧E3を算出
し、第2の開放電圧E3に基づいて二次電池の充電量を
算出する第4の算出方法、の内の少なくとも2つの算出
方法により二次電池の充電量を算出することにより上述
の目的を達成する。 (2)請求項2の発明は、請求項1に記載の充電量演算
方法において、第1の算出方法および第3の算出方法を
用いて二次電池の充電量を算出する。 (3)請求項3の発明は、請求項1に記載の充電量演算
方法において、第1の算出方法および第4の算出方法を
用いて二次電池の充電量を算出する。 (4)請求項4の発明は、請求項1に記載の充電量演算
方法において、第1の算出方法,第2の算出方法および
第3の算出方法を用いて二次電池の充電量を算出する。 (5)請求項5の発明は、請求項1に記載の充電量演算
方法において、第1の算出方法,第2の算出方法および
第4の算出方法を用いて二次電池の充電量を算出する。 (6)請求項6の発明は、二次電池の充放電電流値Iに
基づいて電流積算値Ahを算出し、その電流積算値Ahに基
づいて二次電池の第1の充電量を算出するハイブリッド
車の充電量演算方法に適用され、(a)二次電池の無負
荷状態時の端子電圧値E1に基づいて第2の充電量を算
出し、第2の充電量と第1の充電量との差が所定値以上
となったときに第1の充電量を第2の充電量で置き換え
る第1の補正方法、(b)二次電池の充放電時の端子電
圧値Vと電流値Iとに基づくパワー演算により第1の開
放電圧E2を算出し、第1の開放電圧E2に基づいて算出
される第3の充電量と第1の充電量との差が所定値以上
となったときに第1の充電量を第3の充電量で置き換え
る第2の補正方法、(c)二次電池の充放電時の端子電
圧値V,電流値Iおよび内部抵抗値に基づいて第2の開
放電圧E3を算出し、第2の開放電圧E3に基づいて算出
される第4の充電量と第1の充電量との差が所定値以上
となったときに第1の充電量を第4の充電量で置き換え
る第3の補正方法、の内の少なくとも2つの補正方法を
用いて第1の充電量を補正することにより上述の目的を
達成する。 (7)請求項7の発明は、請求項6に記載の充電量演算
方法において、第1の補正方法および第2の補正方法を
用いて第1の充電量を補正する。 (8)請求項8の発明は、請求項6に記載の充電量演算
方法において、第1の補正方法および第3の補正方法を
用いて第1の充電量を補正する。 (9)図1および図8に対応付けて説明すると、請求項
9の発明は、二次電池6の充放電電流値Iを検出する電
流検出手段9と、電流検出手段9の電流検出値Iに基づ
いて電流積算値Ahを算出する電流積算手段22と、電流
積算値Ahに基づいて二次電池6の第1の充電量を算出す
る第1の充電量演算手段23とを備えるハイブリッド車
の充電量演算装置に適用され、二次電池6の端子電圧V
を検出する電圧検出手段8と、電流検出手段9の検出値
Iおよび電圧検出手段8の検出値Vに基づいて二次電池
6の開放電圧E2,E3を算出する開放電圧演算手段2
1,25と、開放電圧演算手段21,25による開放電
圧算出値E2,E3に応じた第2の充電量を算出する第2
の充電量演算手段24と、第1の充電量と第2の充電量
との差が所定値以上となったときに、第2の充電量に基
づいて第1の充電量を補正する補正手段23,24と、
を設けたことにより上述の目的を達成する。
An embodiment of the present invention will be described with reference to FIGS. 1 and 8. FIG. (1) Explaining with reference to FIG. 8, the method of calculating the charge amount of a hybrid vehicle according to the first aspect of the present invention is as follows: (a) integrating the current value I of the secondary battery at the time of charging and discharging; A first method for calculating the charge amount of the secondary battery based on Ah = ΣI · t), (b) calculating the charge amount of the secondary battery based on the terminal voltage value E1 of the secondary battery in a no-load state (C) calculating a first open voltage E2 of the secondary battery by a power calculation based on the terminal voltage value V and the current value I of the secondary battery at the time of charging and discharging; A third calculation method for calculating the charge amount of the secondary battery based on the voltage E2,
(D) A second open circuit voltage E3 is calculated based on the terminal voltage value V, the current value I, and the internal resistance value of the secondary battery at the time of charging and discharging, and charging of the secondary battery is performed based on the second open circuit voltage E3. The above object is achieved by calculating the charge amount of the secondary battery by at least two of the fourth calculation methods for calculating the amount. (2) According to a second aspect of the present invention, in the charge amount calculation method according to the first aspect, the charge amount of the secondary battery is calculated using the first calculation method and the third calculation method. (3) According to a third aspect of the present invention, in the charge amount calculation method according to the first aspect, the charge amount of the secondary battery is calculated using the first calculation method and the fourth calculation method. (4) According to a fourth aspect of the present invention, in the charge amount calculation method according to the first aspect, the charge amount of the secondary battery is calculated using the first calculation method, the second calculation method, and the third calculation method. I do. (5) According to a fifth aspect of the present invention, in the charge amount calculation method according to the first aspect, the charge amount of the secondary battery is calculated using the first calculation method, the second calculation method, and the fourth calculation method. I do. (6) According to a sixth aspect of the present invention, a current integrated value Ah is calculated based on a charge / discharge current value I of a secondary battery, and a first charge amount of the secondary battery is calculated based on the current integrated value Ah. The method is applied to a method for calculating the charge amount of a hybrid vehicle. (A) A second charge amount is calculated based on a terminal voltage value E1 when the secondary battery is in a no-load state, and a second charge amount and a first charge amount are calculated. A first correction method for replacing the first charge amount with the second charge amount when the difference between the first charge amount and the second charge amount becomes equal to or more than a predetermined value. (B) The terminal voltage value V and the current value I during charging and discharging of the secondary battery The first open circuit voltage E2 is calculated by the power calculation based on the following equation, and the difference between the third charge amount calculated based on the first open circuit voltage E2 and the first charge amount becomes equal to or more than a predetermined value. The second correction method for replacing the first charge amount with the third charge amount, (c) the terminal voltage value V, the current value I, and the And the second open circuit voltage E3 is calculated based on the internal resistance value, and the difference between the fourth charge amount and the first charge amount calculated based on the second open circuit voltage E3 is equal to or greater than a predetermined value. The above object is achieved by correcting the first charge amount using at least two of the third correction methods, which sometimes replace the first charge amount with the fourth charge amount. (7) According to a seventh aspect of the present invention, in the charge amount calculation method according to the sixth aspect, the first charge amount is corrected using the first correction method and the second correction method. (8) According to an eighth aspect of the present invention, in the charge amount calculation method according to the sixth aspect, the first charge amount is corrected using the first correction method and the third correction method. (9) Explaining in connection with FIGS. 1 and 8, the invention of claim 9 is a current detecting means 9 for detecting a charging / discharging current value I of the secondary battery 6 and a current detecting value I of the current detecting means 9. And a first charge amount calculating means 23 for calculating a first charge amount of the secondary battery 6 based on the current integrated value Ah. The terminal voltage V of the secondary battery 6 is applied to the charge amount calculating device.
Voltage detecting means 8 for detecting the open-circuit voltage, and open-circuit calculating means 2 for calculating open-circuit voltages E2 and E3 of the secondary battery 6 based on the detected value I of the current detecting means 9 and the detected value V of the voltage detecting means 8.
A second charge amount that is calculated based on the open-circuit voltage calculation values E2 and E3 by the open-circuit voltage calculation means 21 and 25;
And a correction means for correcting the first charge amount based on the second charge amount when a difference between the first charge amount and the second charge amount becomes equal to or greater than a predetermined value. 23, 24,
The above-described object is achieved by providing the above.

【0006】なお、本発明の構成を説明する上記課題を
解決するための手段の項では、本発明を分かり易くする
ために発明の実施の形態の図を用いたが、これにより本
発明が発明の実施の形態に限定されるものではない。
In the section of the means for solving the above-mentioned problems, which explains the configuration of the present invention, the drawings of the embodiments of the present invention are used in order to make the present invention easier to understand. However, the present invention is not limited to the embodiment.

【0007】[0007]

【発明の効果】以上説明したように、請求項1〜請求項
5の発明によれば、異なる4つの算出方法の内の少なく
とも2つの算出方法を用いて二次電池の充電量を算出す
ることにより、種々の走行パターンにおいて充電量を精
度良く算出できる。請求項6〜請求項8の発明によれ
ば、第1の充電量を電流検出値誤差等による累積誤差の
影響の無い第2,第3または第4の充電量で置き換える
3種類の補正方法の少なくとも2つを用いることによ
り、充電量に対する電流検出値誤差等による累積誤差の
影響を低減することができるとともに、種々の走行パタ
ーンにおいて充電量を精度良く算出できる。請求項9の
発明によれば、開放電圧算出値に応じて得られる第2の
充電量は電流検出値誤差等による累積誤差の影響が無い
ので、電流積算値に基づく第1の充電量を第2の充電量
で補正することにより、充電量に対する電流検出値誤差
等による累積誤差の影響を低減することができるととも
に、種々の走行パターンにおいて充電量を精度良く算出
できる。
As described above, according to the first to fifth aspects of the present invention, the charge amount of the secondary battery is calculated by using at least two of the four different calculation methods. Thereby, the amount of charge can be accurately calculated in various running patterns. According to the sixth to eighth aspects of the present invention, there are provided three types of correction methods for replacing the first charge amount with the second, third, or fourth charge amount having no influence of a cumulative error due to a current detection value error or the like. By using at least two, the influence of the accumulated error due to the current detection value error or the like on the charge amount can be reduced, and the charge amount can be accurately calculated in various traveling patterns. According to the ninth aspect of the present invention, the second charge amount obtained according to the open-circuit voltage calculation value is not affected by the accumulated error due to the current detection value error or the like. By correcting with the charge amount of 2, the influence of the accumulated error due to the current detection value error or the like on the charge amount can be reduced, and the charge amount can be accurately calculated in various running patterns.

【0008】[0008]

【発明の実施の形態】以下、図1〜図10を参照して本
発明の実施の形態を説明する。図1はパラレル・ハイブ
リッド車の構成を示すブロック図である。エンジン2の
主軸には電動モータ3の回転子が直結されており、エン
ジン2および/またはモータ3の駆動力は駆動系4を介
して車軸7に伝達される。パラレル・ハイブリッド車に
おけるモータ3の運転モードには、車軸7を駆動する駆
動モードと二次電池6を充電する発電モードとがある。
車両自体の駆動モード時、すなわち加速時,平坦路走行
時や登坂時等に、モータ3へ電力を供給する二次電池6
が充分な充電状態にある場合には、モータ3を駆動モー
ドで運転してエンジン2とモータ3の両方の両駆動力に
より走行する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a block diagram showing a configuration of a parallel hybrid vehicle. The rotor of the electric motor 3 is directly connected to the main shaft of the engine 2, and the driving force of the engine 2 and / or the motor 3 is transmitted to the axle 7 via the drive system 4. The operation modes of the motor 3 in the parallel hybrid vehicle include a drive mode for driving the axle 7 and a power generation mode for charging the secondary battery 6.
A rechargeable battery 6 for supplying electric power to the motor 3 in a drive mode of the vehicle itself, that is, when accelerating, traveling on a flat road, or climbing a hill.
Is in a sufficiently charged state, the motor 3 is operated in the drive mode and the vehicle runs with both driving forces of the engine 2 and the motor 3.

【0009】ただし、二次電池6の充電状態が低い場合
にはモータ3を発電モードで運転して、エンジン2の駆
動力により走行を行うとともにエンジン2の駆動力によ
りモータ3の回転子を回転し、モータ3による発電を行
って二次電池6を充電する。インバータ5は二次電池6
からの直流電力を交流電力に変換してモータ3に供給す
るとともに、発電モード時にはモータ3からの交流電力
を直流電力に変換して二次電池6へ供給する。
However, when the state of charge of the secondary battery 6 is low, the motor 3 is operated in the power generation mode to run by the driving force of the engine 2 and to rotate the rotor of the motor 3 by the driving force of the engine 2. Then, the electric power is generated by the motor 3 to charge the secondary battery 6. The inverter 5 is a secondary battery 6
The DC power from the motor 3 is converted into AC power and supplied to the motor 3, and the AC power from the motor 3 is converted into DC power and supplied to the secondary battery 6 in the power generation mode.

【0010】一方、車両の制動モード時、すなわち減速
時や降坂時などには、駆動系4を介した車輪の回転力に
よってエンジン2およびモータ3が駆動される。このと
き、モータ3を発電モードで運転し回生エネルギーを吸
収して二次電池6を充電する。コントローラ1はマイク
ロコンピュータとその周辺部品から構成され、二次電池
6の端子電圧値Vを検出する電圧センサ8,充放電時の
電流値Iを検出する電流センサ9,二次電池6の温度T
を検出する温度センサ10が接続される。コントローラ
1の演算部1aでは上述した各センサの検出値に基づい
て二次電池6のSOCを演算し、制御部1bは各検出値
およびSOC等に基づいてエンジン2,インバータ5,
モータ3を制御する。
On the other hand, when the vehicle is in a braking mode, that is, at the time of deceleration or downhill, the engine 2 and the motor 3 are driven by the rotational force of the wheels via the drive system 4. At this time, the motor 3 is operated in the power generation mode to absorb the regenerative energy and charge the secondary battery 6. The controller 1 includes a microcomputer and its peripheral parts, and includes a voltage sensor 8 for detecting a terminal voltage value V of the secondary battery 6, a current sensor 9 for detecting a current value I during charging and discharging, and a temperature T of the secondary battery 6.
Is connected. The calculation unit 1a of the controller 1 calculates the SOC of the secondary battery 6 based on the detection values of the sensors described above, and the control unit 1b calculates the SOC of the engine 2, the inverter 5, and the like based on the detection values and the SOC.
The motor 3 is controlled.

【0011】次いで、コントローラ1の演算部1aで行
われる充電量演算方法について説明する。図2は演算に
より得られる充電量SOC(以下では充電量RSOCと記す)
と真の充電量SOCとを比較して示した概念図であり、
(a)は充放電時の電流値Iを積算して得られる電流積
算値(以下ではAh積算値と記す)に基づく充電量RSOCを
示し、(b)は本発明の充電量演算方法による充電量RS
OCを示す。ここで、(a)の場合も(b)の場合も、基
本的には次式(1)を用いて充電量RSOCを算出する。
Next, a method of calculating the amount of charge performed by the calculation unit 1a of the controller 1 will be described. FIG. 2 shows the state of charge SOC obtained by calculation (hereinafter referred to as state of charge RSOC).
FIG. 5 is a conceptual diagram showing a comparison between a true charge SOC and a true charge SOC.
(A) shows a charge amount RSOC based on a current integrated value (hereinafter referred to as an Ah integrated value) obtained by integrating a current value I during charge and discharge, and (b) shows a charge by a charge amount calculation method of the present invention. Quantity RS
Indicates OC. Here, in both cases (a) and (b), the charge amount RSOC is calculated basically using the following equation (1).

【数1】 RSOC(%)=[1−Ah/Ah(Pmin)]×100 …(1) 基本式(1)においてAhはAh積算値であり、Ah(Pmi
n)は二次電池の電池容量である。電池容量Ah(Pmin)の
算出方法については後述する。なお、Ah(Pmin)は単に
定格容量(3時間率容量など)としても良い。
RSOC (%) = [1-Ah / Ah (Pmin)] × 100 (1) In the basic formula (1), Ah is an integrated value of Ah, and Ah (Pmi
n) is the battery capacity of the secondary battery. The method for calculating the battery capacity Ah (Pmin) will be described later. Note that Ah (Pmin) may simply be a rated capacity (three-hour rate capacity or the like).

【0012】図2(a)に示す充電量RSOCでは、Ahと
して充放電時の電流値Iを積算したAh積算値のみが用い
られる。この場合、例えば前述したように電流値Iに誤
差ΔIがあると、Ah積算値には電流値Iの誤差ΔIが累
積されてしまい、図2(a)のようにSOC演算開始時の
充電量RSOCが真の充電量SOCと等しかったとしても、演
算を行うにつれて真の充電量SOCに対する誤差が増大す
る。
In the state of charge RSOC shown in FIG. 2A, only the Ah integrated value obtained by integrating the current value I during charging and discharging is used as Ah. In this case, for example, if the current value I has an error ΔI as described above, the error ΔI of the current value I is accumulated in the Ah integrated value, and the charge amount at the start of the SOC calculation as shown in FIG. Even if RSOC is equal to the true state of charge SOC, the error with respect to the true state of charge SOC increases as the calculation is performed.

【0013】ところで、二次電池としてはリチウムイオ
ン電池などが用いられるが、リチウムイオン電池では電
池の劣化度や温度にかかわらず開放電圧と充電量SOCと
の間に一定の相関がある。また、その再現性がとても良
い。図3はそのような相関の一例を示す図であり、開放
電圧が分かればこの相関から充電量SOCが一意的に決ま
る。図3では充電量SOC=100%に対応する開放電圧
はOCV(100)であるが、例えば、開放電圧の実測値として
OCV(100)が得られれば、そのときの二次電池の充電量SO
Cが100%であることを相関図から求めることができ
る。
Incidentally, a lithium ion battery or the like is used as a secondary battery. In a lithium ion battery, there is a certain correlation between the open-circuit voltage and the state of charge SOC regardless of the degree of deterioration or temperature of the battery. Also, its reproducibility is very good. FIG. 3 is a diagram showing an example of such a correlation. When the open circuit voltage is known, the SOC is uniquely determined from this correlation. In FIG. 3, the open-circuit voltage corresponding to the state of charge SOC = 100% is OCV (100).
If OCV (100) is obtained, the charge amount SO of the secondary battery at that time SO
It can be determined from the correlation diagram that C is 100%.

【0014】そこで、本発明による充電量演算方法で
は、開放電圧を実測または推定し、得られた開放電圧と
図3に示す相関とから充電量SOCを算出する。この充電
量SOC(以下では、これを充電量CAPSOCと記す)とAh積
算値に基づいて基本式(1)で算出される充電量RSOCと
の差(誤差に相当する)が所定値以上となったならば、
Ah積算値をその時点の充電量CAPSOCに相当するAh積算値
(以下、電流積算値CAPAHと記す)に置き換えてリセッ
トする。電流積算値CAPAHは次式(2)で算出される。
Therefore, in the charge amount calculation method according to the present invention, the open circuit voltage is measured or estimated, and the charge amount SOC is calculated from the obtained open circuit voltage and the correlation shown in FIG. The difference (corresponding to an error) between the charge amount SOC (hereinafter referred to as charge amount CAPSOC) and the charge amount RSOC calculated by the basic formula (1) based on the integrated value of Ah is equal to or greater than a predetermined value. If
The Ah integrated value is replaced with the Ah integrated value (hereinafter, referred to as the current integrated value CAPAH) corresponding to the current charge amount CAPSOC, and reset. The current integrated value CAPAH is calculated by the following equation (2).

【数2】 CAPAH=Ah(Pmin)×(1−CAPSOC/100) …(2)## EQU2 ## CAPAH = Ah (Pmin) × (1-CAPSOC / 100) (2)

【0015】充電量CAPSOCはAh積算値を用いて算出され
る充電量RSOCのように誤差が累積されないので、図2
(b)の一点鎖線で示すように真の充電量SOCに近い値
が得られる。図2(b)に示す例では、演算開始から次
第に誤差が大きくなった充電量RSOCを時刻t1において
充電量CAPSOCの値でリセットしている。そして、時刻t
1でRSOC=CAPSOCと置き換えられた充電量RSOCは、基本
式(1)のAh積算値の誤差が累積されるにつれて真の充
電量SOCとの誤差が大きくなり、その誤差が所定値以上
となった時点で再びリセットが行われる。このように、
本発明によるS充電量算方法では、真の充電量SOCとの
誤差が所定値以上となったならば上述したリセットを行
うため、演算値RSOCと真の充電量SOCとの誤差を所定値
以下に抑えることが可能となる。
Since the error is not accumulated in the charge amount CAPSOC unlike the charge amount RSOC calculated using the integrated value of Ah, FIG.
(B) As shown by the dashed line, a value close to the true state of charge SOC is obtained. In the example shown in FIG. 2B, the charge amount RSOC whose error gradually increases from the start of the calculation is reset by the value of the charge amount CAPSOC at time t1. And time t
In the state of charge RSOC replaced by RSOC = CAPSOC in 1, the error with the true state of charge SOC increases as the error of the integrated Ah value of the basic equation (1) increases, and the error becomes equal to or greater than a predetermined value. At that point, the reset is performed again. in this way,
In the S charge amount calculation method according to the present invention, if the error from the true charge amount SOC is equal to or more than a predetermined value, the above-described reset is performed. Therefore, the error between the calculated value RSOC and the true charge amount SOC is equal to or less than the predetermined value. It becomes possible to suppress to.

【0016】図3の相関を用いて充電量CAPSOCを算出す
る際の開放電圧としては次の三種類が考えられる。 無負荷時に実測して得られる開放電圧E1 充放電時にサンプリングされた電流値および電圧値か
ら得られるIV特性により、すなわちパワー演算(放電
IV外挿)により推定される開放電圧E2 充放電時の電流値および総電圧値に基づいて、次式
(3)により推定される開放電圧E3
The following three types of open-circuit voltages can be considered when calculating the charge amount CAPSOC using the correlation shown in FIG. The open-circuit voltage E1 measured and measured when there is no load. The open-circuit voltage E2 estimated by the IV characteristic obtained from the current value and the voltage value sampled during charging and discharging, that is, the power calculation (discharge IV extrapolation). The open circuit voltage E3 estimated by the following equation (3) based on the value and the total voltage value

【数3】 E3=(総電圧)+(電流)×(温度・劣化補正された内部抵抗) …(3)E3 = (total voltage) + (current) × (internal resistance corrected for temperature / deterioration) (3)

【0017】[の開放電圧E1による充電量SOC演算]
図4は上述したの実測開放電圧E1に基づいて充電量R
SOCのリセットを行う方法を説明する図であり、(a)
は開放電圧E1と充電量SOCの相関図、(b)は充電量RO
SCの時間変化を示す図である。図4(b)に示す例で
は、演算開始後の時刻t2およびt3においてリセット
を行っている。時刻t2における開放電圧E1をE1(2)
とすると、図4(a)の相関から充電量CAPSOC2が得ら
れる。そして、時刻t2における充電量RSOCを充電量CA
PSOC2にリセットする。すなわち、時刻t2におけるAh
積算値を、式(2)に充電量CAPSOC2を代入して得られ
る電流積算値CAPAHにリセットする。時刻t3の場合も
同様であり、開放電圧E1(3)から充電量CAPSOC3を求
め、時刻t3における充電量RSOCを充電量CAPSOC3にリ
セットする。図4(b)の二点鎖線RSOC’は、時刻t
2,t3でリセットを行わなかった場合のSOC演算値を
示している。なお、開放電圧E1の計測は無負荷時にし
か行えないので、例えば、車両起動時の無負荷時(強電
オン前)やキーオフ時に開放電圧E1を計測する。
[Calculation of SOC by open circuit voltage E1]
FIG. 4 shows the state of charge R based on the measured open circuit voltage E1 described above.
It is a figure explaining the method of resetting SOC, (a)
Is a correlation diagram between the open circuit voltage E1 and the state of charge SOC, and (b) is a state of charge RO
It is a figure which shows the time change of SC. In the example shown in FIG. 4B, the reset is performed at times t2 and t3 after the start of the calculation. The open circuit voltage E1 at time t2 is changed to E1 (2)
Then, the charge amount CAPSOC2 is obtained from the correlation in FIG. Then, the charge amount RSOC at time t2 is changed to the charge amount CA.
Reset to PSOC2. That is, Ah at time t2
The integrated value is reset to the integrated current value CAPAH obtained by substituting the charge amount CAPSOC2 into the equation (2). Similarly, at time t3, the charge amount CAPSOC3 is obtained from the open circuit voltage E1 (3), and the charge amount RSOC at time t3 is reset to the charge amount CAPSOC3. The two-dot chain line RSOC ′ in FIG.
2 shows the SOC calculation value when the reset is not performed at t3. Since the open circuit voltage E1 can be measured only when there is no load, for example, the open circuit voltage E1 is measured when there is no load at the time of starting the vehicle (before the strong power is turned on) or when the key is turned off.

【0018】[の開放電圧E2による充電量SOC演算]
まず、上述したのパワー演算による推定開放電圧E2
の算出方法について図5を参照して説明する。最初に、
二次電池の電流変化を捉えて電流値Iおよび電圧値Vを
サンプリングする。図5の×印はサンプリングデータを
IV座標上に示したものであり、これらのサンプリング
データに基づいてIV特性を一次回帰演算して特性直線
Lを求める。この直線Lと縦軸(電圧)との交点の値が
推定開放電圧E2である。直線Lと放電下限電圧(車両
システムとしての使用下限電圧)Vminとの交点から、
そのときの二次電池の最大出力Pmax=Vmin×Imaxが
パワー演算値Pとして算出される。また、直線Lの傾き
から二次電池の内部抵抗Rを算出することができる。た
だし、Imaxは直線Lにおいて電圧が放電下限電圧Vmin
となるときの値であり、放電下限電圧Vminは以下の
(a),(b)の要因から決定される。 (a)電池の寿命を考慮した使用電圧範囲の下限電圧
(放電終止電圧) (b)車両搭載ユニットの性能,機能を保証可能な使用
電圧範囲の下限電圧
[Calculation of SOC by Open Voltage E2]
First, the estimated open circuit voltage E2 obtained by the power calculation described above is used.
The calculation method of will be described with reference to FIG. At first,
A current value I and a voltage value V are sampled by detecting a change in the current of the secondary battery. The crosses in FIG. 5 indicate the sampling data on the IV coordinate, and the characteristic curve L is obtained by performing a linear regression operation on the IV characteristic based on the sampling data. The value at the intersection of the straight line L and the vertical axis (voltage) is the estimated open circuit voltage E2. From the intersection of the straight line L and the discharge lower limit voltage (lower limit voltage for use as a vehicle system) Vmin,
The maximum output Pmax = Vmin × Imax of the secondary battery at that time is calculated as the power calculation value P. Further, the internal resistance R of the secondary battery can be calculated from the slope of the straight line L. Here, Imax indicates that the voltage on the straight line L is lower than the discharge lower limit voltage Vmin.
The discharge lower limit voltage Vmin is determined from the following factors (a) and (b). (A) Lower limit voltage of operating voltage range considering battery life (discharge end voltage) (b) Lower limit voltage of operating voltage range capable of guaranteeing performance and function of vehicle mounted unit

【0019】図6は充電量RSOCのリセットを説明する図
であり、図4の場合と同様に(a)は相関図、(b)は
充電量RSOCの時間変化を示す図である。上述したパワー
演算により推定開放電圧E2が得られたならば、図6
(a)の相関図から充電量CAPSOC4を求めてその時の充
電量RSOCを充電量CAPSOC4にリセットする。なお、パワ
ー演算による開放電圧の推定は間欠的にしか行うことが
できないため、充電量CAPSOCの変化は図6(b)に示す
ように折れ線グラフとなる。算出された充電量CAPSOCは
真の充電量SOCの上下にばらついているが、このばらつ
きは放電IVサンプリング誤差に起因するものである。
FIGS. 6A and 6B are diagrams for explaining the reset of the charged amount RSOC. FIG. 6A is a correlation diagram similar to FIG. 4, and FIG. 6B is a diagram showing a time change of the charged amount RSOC. If the estimated open circuit voltage E2 is obtained by the power calculation described above, FIG.
The charge amount CAPSOC4 is obtained from the correlation diagram of (a), and the charge amount RSOC at that time is reset to the charge amount CAPSOC4. Since the open-circuit voltage can be estimated only intermittently by the power calculation, the change in the charge amount CAPSOC becomes a line graph as shown in FIG. 6B. The calculated charge amount CAPSOC fluctuates above and below the true charge amount SOC, but this variation is due to a discharge IV sampling error.

【0020】[の開放電圧E3による充電量SOC演算]
図7はの開放電圧E3による充電量SOC演算を説明する
図であり、図4の場合と同様に(a)は相関図、(b)
は充電量RSOCの時間変化を示す図である。充放電時の二
次電池の電流値をI、電圧値をV、補正された内部抵抗
をRで表すと、上述した式(3)は次式(4)のように
表される。
[Calculation of SOC by Open Voltage E3]
7A and 7B are diagrams for explaining the SOC calculation based on the open-circuit voltage E3. FIG. 7A is a correlation diagram, and FIG.
FIG. 4 is a diagram showing a change over time of a charged amount RSOC. When the current value of the secondary battery at the time of charging and discharging is represented by I, the voltage value is represented by V, and the corrected internal resistance is represented by R, the above equation (3) is represented by the following equation (4).

【数4】E3=V+I×R …(4) ただし、Rは、内部抵抗初期値R0,温度補正係数α,
内部抵抗劣化補正係数γを用いて式(5)のように表さ
れる。なお、温度補正係数α,内部抵抗劣化補正係数γ
については後述する。
E3 = V + I × R (4) where R is an internal resistance initial value R0, a temperature correction coefficient α,
It is expressed as Expression (5) using the internal resistance deterioration correction coefficient γ. The temperature correction coefficient α and the internal resistance deterioration correction coefficient γ
Will be described later.

【数5】R=R0/(α×γ) …(5)R = R0 / (α × γ) (5)

【0021】式(4)から推定される開放電圧E3と図
7(a)の相関図とから充電量CAPSOC5を求め、図7
(b)に示すように充電量RSOCを充電量CAPSOC5にリセ
ットする。式(4)で算出される開放電圧E3は測定さ
れたI,Vから逐次得ることができるが、電流値Iが大
きいと補正係数γによる誤差が大きくなったり、電池容
量が小さい場合には拡散抵抗増加,SOCの低下を伴うの
で、開放電圧E3の算出は電流値Iが小さい場合に使用
すると有効である。例えば、電流値IがI≦5CAのと
きに用いる。なお、Cは定格容量であり、定格容量=3
Ahの場合ならば5Cは15Aになる。以下では、算出
時の電流値Iの上限値を5CA(=15A)として説明
する。
The charge amount CAPSOC5 is obtained from the open circuit voltage E3 estimated from the equation (4) and the correlation diagram of FIG.
As shown in (b), the charge amount RSOC is reset to the charge amount CAPSOC5. The open circuit voltage E3 calculated by the equation (4) can be sequentially obtained from the measured I and V. However, when the current value I is large, the error due to the correction coefficient γ increases, and when the battery capacity is small, the diffusion voltage increases. Since the resistance is increased and the SOC is decreased, it is effective to calculate the open circuit voltage E3 when the current value I is small. For example, it is used when the current value I satisfies I ≦ 5CA. C is the rated capacity, and the rated capacity is 3
In the case of Ah, 5C becomes 15A. Hereinafter, the description will be made assuming that the upper limit value of the current value I at the time of calculation is 5 CA (= 15 A).

【0022】このように、開放電圧(E1〜E3)から得
られる充電量CAPSOCを用いて充電量RSOCをリセットする
場合には、上述した〜のいずれか一つの方法で得ら
れた充電量CAPSOCでリセットしても良いし、これらを組
み合わせて用いるようにしても良い。ただし、の場合
には無負荷時開放電圧は起動,停止時にしか得られない
ので、で得られる充電量CAPSOCのみでリセットを行う
よりも、他の,と組み合わせて行うのが好ましい。
As described above, when the charge amount RSOC is reset using the charge amount CAPSOC obtained from the open-circuit voltages (E1 to E3), the charge amount CAPSOC obtained by any one of the above-described methods 1 to 3 is used. Reset may be performed, or these may be used in combination. However, in the case of (1), the open-circuit voltage at no load can be obtained only at the time of starting and stopping. Therefore, it is preferable that the resetting is performed in combination with another one, rather than resetting only with the obtained charge amount CAPSOC.

【0023】以下では、〜の三つを組み合わせてリ
セットする場合について説明する。(a)起動時には、
の開放電圧E1に基づく充電量CAPSOCとAh積算値に基
づく充電量RSOCとの偏差が所定値Δ1(例えば、Δ1=1
%)以上となった時にリセットを行い、(b)走行時に
は、の開放電圧E2に基づく充電量CAPSOCとAh積算値
に基づく充電量RSOCとの偏差が所定値Δ1以上となった
時にリセットを行う。
In the following, a description will be given of a case where resetting is performed by combining the above three. (A) At startup,
The difference between the charge amount CAPSOC based on the open circuit voltage E1 and the charge amount RSOC based on the integrated value of Ah is a predetermined value Δ1 (for example, Δ1 = 1
%) Or more, and (b) at the time of traveling, reset when the deviation between the charge amount CAPSOC based on the open circuit voltage E2 and the charge amount RSOC based on the integrated value of Ah is equal to or greater than a predetermined value Δ1. .

【0024】ところで、定速走行時など負荷変動が小さ
な場合には図5の回帰直線Lが得られないため、開放電
圧E2を推定することができない。開放電圧E2が得られ
ないと、上述の偏差が得られなくなってリセットを行う
か否かが評価できなくなり、Ah積算値に基づく充電量RS
OCの偏差が実際に所定値Δ1以上となっていたとしても
リセットが行われないという不都合が生じる。そこで、
このような不都合を防止するために、定速走行時などの
パワー演算不可と判定された時には、の開放電圧E3
に基づく充電量CAPSOCとAh積算値に基づくRSOCとの偏差
が所定値Δ2以上となったならば、充電量RSOCを算出さ
れた充電量CAPSOCでリセットする。ここで、所定値Δ2
としてはΔ2≧Δ1となる値(例えば5%)に設定する。
When the load fluctuation is small, such as when the vehicle is traveling at a constant speed, the regression line L in FIG. 5 cannot be obtained, so that the open circuit voltage E2 cannot be estimated. If the open-circuit voltage E2 is not obtained, the above-mentioned deviation cannot be obtained, and it cannot be evaluated whether or not to perform the reset.
Even if the OC deviation is actually equal to or larger than the predetermined value Δ1, there is a disadvantage that the reset is not performed. Therefore,
In order to prevent such inconvenience, when it is determined that power calculation is not possible, such as when driving at a constant speed, the open voltage E3
If the deviation between the charge amount CAPSOC based on the calculated value and the RSOC based on the integrated value of Ah is equal to or greater than a predetermined value Δ2, the charge amount RSOC is reset with the calculated charge amount CAPSOC. Here, the predetermined value Δ2
Is set to a value that satisfies Δ2 ≧ Δ1 (for example, 5%).

【0025】なお、走行中に開放電圧E2や開放電圧E3
に基づく充電量CAPSOCでリセットを行う場合、Ah演算値
を式(2)で算出される電流積算値CAPAHで置き換えた
ときに充電量RSOCが急変する場合がある。そこで、この
ような走行中の充電量SOCの急変によりシステムの制御
が不安定になるのを防止するために、例えば、数十秒間
(次式(6)の場合には10秒間)かけて徐々に充電量
RSOCを充電量CAPSOCの値に変化させる。すなわち、次式
(6)で算出される電流積算値CAPAHを用いて充電量RSO
Cを演算する。
During running, the open circuit voltage E2 and the open circuit voltage E3
When the reset is performed with the charge amount CAPSOC based on the following equation, the charge amount RSOC may suddenly change when the Ah calculation value is replaced with the current integrated value CAPAH calculated by the equation (2). Therefore, in order to prevent the control of the system from becoming unstable due to such a sudden change in the state of charge SOC during traveling, for example, gradually over several tens of seconds (10 seconds in the case of the following equation (6)). To charge
Change the RSOC to the value of the charge amount CAPSOC. That is, the charge amount RSO is calculated using the current integrated value CAPAH calculated by the following equation (6).
Calculate C.

【数6】 CAPAH=[{Ah(Pmin)×(1−CAPSOC/100)}×T/10 +{CAPAH×(1−T/10)} …(6)CAPAH = [{Ah (Pmin) × (1-CAPSOC / 100)} × T / 10 + {CAPAH × (1-T / 10)} (6)

【0026】図8は図1に示したコントローラ1の演算
部1aの機能ブロック図である。22は電流センサ9か
らの電流値Iを積算してAh積算値を算出するAh演算部で
あり、23はAh積算値と電池容量演算部20で算出され
た電池容量Ah(Pmin)とから充電量RSOCを算出するRSOC
演算部である。また、21は電圧センサ8からの電圧値
Vおよび電流センサ9からの電流値Iをサンプリングし
て二次電池6(図1参照)の開放電圧E2,内部抵抗R
およびパワー演算値Pを演算する瞬時パワー演算部であ
り、25は電圧値Vおよび電流値Iに基づいて式(4)
により開放電圧E3を算出する開放電圧E3演算部であ
る。なお、パワー演算部21では、サンプリングした電
圧値Vおよび電流値Iに基づきパワー演算可能か否かの
判定も行われる。
FIG. 8 is a functional block diagram of the arithmetic unit 1a of the controller 1 shown in FIG. Reference numeral 22 denotes an Ah operation unit that integrates the current value I from the current sensor 9 to calculate an Ah integrated value, and 23 is charged from the Ah integrated value and the battery capacity Ah (Pmin) calculated by the battery capacity arithmetic unit 20. RSOC to calculate quantity RSOC
It is an operation unit. Reference numeral 21 denotes a voltage value V from the voltage sensor 8 and a current value I from the current sensor 9 to sample an open voltage E2 and an internal resistance R of the secondary battery 6 (see FIG. 1).
And an instantaneous power calculation unit 25 for calculating a power calculation value P. Reference numeral 25 denotes a formula (4) based on the voltage value V and the current value I.
Is an open-circuit voltage E3 calculation unit that calculates the open-circuit voltage E3 from The power calculation unit 21 also determines whether power calculation is possible based on the sampled voltage value V and current value I.

【0027】算出された開放電圧E2,E3および無負荷
時に検出される開放電圧E1は、CAPAH演算部24に入力
される。CAPAH演算部24は(a)各開放電圧E1〜E3
に応じた充電量CAPSOCの算出、(b)算出された充電量
CAPSOCとRSOC演算部23で算出された充電量RSOCとの偏
差の算出、(c)充電量CAPSOCに対応する電流積算値CA
PAHの算出をそれぞれ行い、上記の偏差の大きさに応じ
て(c)の電流積算値CAPAHをRSOC演算部23に出力す
る。
The calculated open-circuit voltages E2 and E3 and the open-circuit voltage E1 detected when there is no load are input to the CAPAH calculator 24. The CAPAH calculator 24 calculates (a) the open-circuit voltages E1 to E3
Of the charge amount CAPSOC according to (b) The calculated charge amount
Calculation of the deviation between CAPSOC and the charge amount RSOC calculated by the RSOC calculation unit 23, (c) Current integrated value CA corresponding to charge amount CAPSOC
The calculation of PAH is performed, and the integrated current CAPAH of (c) is output to the RSOC calculation unit 23 according to the magnitude of the deviation.

【0028】すなわち、CAPAH演算部24は、開放電圧
E1,E2に基づく充電量CAPSOCに対する偏差が所定値Δ
1以上となった時には、起動時であれば開放電圧E1に基
づく充電量CAPSOCから算出される電流積算値CAPAHを出
力し、走行時であれば開放電圧E2に基づく充電量CAPSO
Cから算出される電流積算値CAPAHを出力する。一方、走
行時に、開放電圧E3に基づく充電量CAPSOCに対する偏
差が所定値Δ2以上となった時には、開放電圧E3に基づ
く充電量CAPSOCから算出される電流積算値CAPAHを出力
する。
That is, the CAPAH calculation unit 24 determines that the deviation from the charge amount CAPSOC based on the open-circuit voltages E1 and E2 is a predetermined value Δ
When the value is 1 or more, the current integrated value CAPAH calculated from the charge amount CAPSOC based on the open voltage E1 is output if the vehicle is running, and the charge amount CAPSO based on the open voltage E2 is calculated if the vehicle is running.
Outputs the current integrated value CAPAH calculated from C. On the other hand, if the deviation from the charge amount CAPSOC based on the open voltage E3 becomes equal to or more than the predetermined value Δ2 during traveling, the integrated current CAPAH calculated from the charge amount CAPSOC based on the open voltage E3 is output.

【0029】なお、CAPAH演算部24では、例えば、図
3に示すようなSOC対開放電圧のテーブルを予めコン
トローラ1のメモリ(不図示)に記憶しておき、そのテ
ーブルを用いて充電量CAPSOCを求めるようにする。RSOC
演算部23は、CAPAH演算部24からの電流積算値CAPAH
を受信したならば、充電量RSOCの算出に用いるAh演算値
を受信した電流積算値CAPAHで置き換える。
In the CAPAH calculating section 24, for example, a table of SOC vs. open voltage as shown in FIG. 3 is stored in a memory (not shown) of the controller 1 in advance, and the charge amount CAPSOC is used by using the table. Ask for it. RSOC
The calculation unit 23 calculates the current integrated value CAPAH from the CAPAH calculation unit 24.
Is received, the Ah operation value used for calculating the charge amount RSOC is replaced with the received current integrated value CAPAH.

【0030】[電池容量演算部20の説明]次に、電池
容量演算部20における電池容量Ah(Pmin)の算出方法
の概略を説明する。図9は二次電池6の初期特性の温度
補正および劣化補正を説明する図であり、それぞれパワ
ー特性対放電電気量の関係Ah(P)を示している。図9
(a)の曲線L1は電池の初期特性(劣化が無く、電池
温度が基準温度である場合)を示しており、リチウムイ
オン電池などの場合には、Ah(P)はパワーPのn次式
で近似することができる。初期特性L1は次式(7)で
近似することができる。
[Description of Battery Capacity Computing Unit 20] Next, an outline of a method of calculating the battery capacity Ah (Pmin) in the battery capacity computing unit 20 will be described. FIG. 9 is a diagram for explaining the temperature correction and the deterioration correction of the initial characteristics of the secondary battery 6, and each shows the relationship Ah (P) between the power characteristics and the amount of discharged electricity. FIG.
The curve L1 in (a) shows the initial characteristics of the battery (when there is no deterioration and the battery temperature is the reference temperature). In the case of a lithium ion battery or the like, Ah (P) is an n-th order expression of power P. Can be approximated by The initial characteristic L1 can be approximated by the following equation (7).

【数7】Ah(P)=aP3+bP2+cP+d …(7) ここで、係数a,b,c,dは初期電池の特性から決定
される。
Ah (P) = aP 3 + bP 2 + cP + d (7) Here, the coefficients a, b, c, and d are determined from the characteristics of the initial battery.

【0031】この初期特性L1に対して温度補正係数α
で温度補正を行うと、図9(b)に示す温度補正特性L
2が得られる。この温度補正特性L2は次式(8)で表さ
れる。
For the initial characteristic L1, a temperature correction coefficient α
Is performed, the temperature correction characteristic L shown in FIG.
2 is obtained. This temperature correction characteristic L2 is expressed by the following equation (8).

【数8】 Ah(P)=Ah(P/α) =a(P/α)3+b(P/α)2+c(P/α)+d…(8) 図9(b)からも分かるようにαはパワーに対する比例
分であって、温度補正特性L2のP切片PrefはPref=P0
×αとなる。この温度補正係数αは二次電池の内部抵抗
変化を表すパラメータであり、温度センサ10からの電
池温度Tに基づいて電池容量演算部20のα演算部20
1で算出され、温度Tに応じたテーブル参照値である。
また、P0は特性L1のP切片である。
Ah (P) = Ah (P / α) = a (P / α) 3 + b (P / α) 2 + c (P / α) + d (8) As can be seen from FIG. 9B. Is a proportional component to the power, and the P intercept Pref of the temperature correction characteristic L2 is Pref = P0
× α. The temperature correction coefficient α is a parameter representing a change in the internal resistance of the secondary battery, and is based on the battery temperature T from the temperature sensor 10.
1 is a table reference value corresponding to the temperature T.
P0 is a P intercept of the characteristic L1.

【0032】さらに、温度補正された式(8)に対して
次式(9)で表されるような劣化補正を行うことによっ
て、温度補正および劣化補正が施された関係式Ah(P)
がパワー容量演算部203で算出される。
Further, the temperature-corrected equation (8) is subjected to deterioration correction as represented by the following equation (9), whereby the temperature-corrected and deterioration-corrected relational expression Ah (P)
Is calculated by the power capacity calculation unit 203.

【数9】 Ah(P)=β×Ah(P/αγ) =aβ(P/αγ)3+bβ(P/αγ)2+cβ(P/αγ)+dβ …(9) ここで、γは電池の内部抵抗変化を、βは電気容量変化
を表すパラメータであり、それぞれ内部抵抗劣化補正係
数、容量劣化補正係数と呼ばれる。上述した電池容量A
h(Pmin)は、式(9)で得られるAh(P)に車両のシス
テムに必要な最低保証出力Pminを代入して得られる。
Ah (P) = β × Ah (P / αγ) = aβ (P / αγ) 3 + bβ (P / αγ) 2 + cβ (P / αγ) + dβ (9) where γ is the battery Β is a parameter representing a change in internal resistance, and β is a parameter representing a change in electric capacity, and is called an internal resistance deterioration correction coefficient and a capacity deterioration correction coefficient, respectively. Battery capacity A described above
h (Pmin) is obtained by substituting the minimum guaranteed output Pmin required for the vehicle system into Ah (P) obtained by equation (9).

【0033】上述した内部抵抗劣化補正係数γは、α演
算部201で算出された温度補正係数αおよび瞬時パワ
ー演算部21で算出された内部抵抗Rに基づき、電池容
量演算部20のγ演算部202おいて次式(10)によ
り算出される。
The above-mentioned internal resistance deterioration correction coefficient γ is calculated based on the temperature correction coefficient α calculated by the α calculation section 201 and the internal resistance R calculated by the instantaneous power calculation section 21 in the γ calculation section of the battery capacity calculation section 20. In step 202, it is calculated by the following equation (10).

【数10】γ=(R0/α)/R …(10) ここで、R0は電池の初期内部抵抗である。一方、容量
劣化補正係数βは、Ah演算部22で算出されるAh積算値
およびパワー容量演算部203で算出されるAh(P/α
γ)に基づき、電池容量演算部20のβ演算部204に
おいて次式(11)により算出される。
Γ = (R0 / α) / R (10) where R0 is the initial internal resistance of the battery. On the other hand, the capacity deterioration correction coefficient β is calculated based on the Ah integrated value calculated by the Ah calculating section 22 and the Ah (P / α) calculated by the power capacity calculating section 203.
Based on γ), β calculation section 204 of battery capacity calculation section 20 calculates the following equation (11).

【数11】 β=(Ah積算値)/Ah(P/αγ) …(11) 式(9)で表されるAh(P)は図9(c)の曲線L3のよ
うになる。図9(c)において曲線L2’は特性曲線L2
を内部抵抗劣化補正係数γで補正した曲線であり、特性
曲線L2はこの曲線L2’を容量劣化補正係数βで補正し
たものである。
Β = (Ah integrated value) / Ah (P / αγ) (11) Ah (P) represented by the equation (9) is as shown by a curve L3 in FIG. 9C. In FIG. 9C, a curve L2 'is a characteristic curve L2.
Is a curve corrected by the internal resistance deterioration correction coefficient γ, and the characteristic curve L2 is obtained by correcting the curve L2 ′ by the capacity deterioration correction coefficient β.

【0034】なお、上述した方法はパワー特性対放電電
気量の関係に上記のようなパラメータで表現可能な相関
があれば適用可能であり、鉛酸電池,ニッケル水素電池
などの電池種を問わず使用できる。ただし、温度補正,
劣化補正をどの係数(α、β、γ)に当てはめるかにつ
いては各電池毎に検討をする必要がある。なお、必ずし
もAh(P)はPのn次式で近似する必要はなく、例え
ば、PとAhの関係をテーブルとして持てば、補間計算
を用いることによって上述した計算手順と同様に解を求
めることができる。
The above-described method is applicable as long as there is a correlation that can be expressed by the above-described parameters in the relationship between the power characteristics and the amount of discharged electricity, regardless of the type of battery such as a lead-acid battery or a nickel-metal hydride battery. Can be used. However, temperature compensation,
It is necessary to examine which coefficient (α, β, γ) the deterioration correction is applied to for each battery. Note that Ah (P) does not necessarily need to be approximated by an n-th order expression of P. For example, if a relationship between P and Ah is provided as a table, a solution can be obtained in the same manner as the calculation procedure described above by using interpolation calculation. Can be.

【0035】図10は充電量演算の手順を示すフローチ
ャートであり、IGキー・オンによりフローがスタート
する。なお、以下では開放電圧E1,E2に基づく充電量
CAPSOCを充電量ECAPSOCと記し、開放電圧E3に基づく充
電量CAPSOCを充電量VCAPSOCと記すことにする。ステッ
プS1は無負荷状態か否かを判定するステップであり、
無負荷状態の場合にはステップS2へ進み、負荷状態
(充放電時)の場合にはステップS7へ進む。ステップ
S1からステップS2へ進んだ場合には、ステップS2
で開放電圧E1を算出するとともにその開放電圧E1に基
づく充電量ECAPSOCを図3に示す相関から求め、その後
ステップS3へ進む。
FIG. 10 is a flowchart showing the procedure for calculating the charge amount. The flow starts when the IG key is turned on. In the following, the charge amount based on the open-circuit voltages E1 and E2
CAPSOC is referred to as charge amount ECAPSOC, and the charge amount CAPSOC based on the open circuit voltage E3 is referred to as charge amount VCAPSOC. Step S1 is a step of determining whether or not there is no load,
In the case of a no-load state, the process proceeds to step S2, and in the case of a load state (during charging and discharging), the process proceeds to step S7. If the process proceeds from step S1 to step S2, step S2
To calculate the open circuit voltage E1 and obtain the charge amount ECAPSOC based on the open circuit voltage E1 from the correlation shown in FIG. 3, and then proceed to step S3.

【0036】一方、ステップS1からステップS7へ進
んだ場合には、ステップS7においてパワー演算が可能
か否かの判定(例えば、瞬時パワー演算部21において
電流値I,電圧値Vの変化をとらえたサンプリングデー
タが所定数以上収集できたか否かで判定する)を行い、
パワー演算可能な場合にはステップS8へ、パワー演算
不可能な場合にはステップS10へ進む。ステップS8
では、開放電圧E2を算出するとともにその開放電圧E2
に基づく充電量ECAPSOCを図3に示す相関から求め、そ
の後ステップS3へ進む。なお、ステップS8で充電量
ECAPSOCを算出する際には、開放電圧E2の移動平均、す
なわち演算により得られる過去3回の値の平均値を用い
る。次いで、ステップS3ではステップS2またはステ
ップS8で算出された充電量ECAPSOCに対する充電量RSO
C(Ah積算値から得られる)の偏差ESOCOFSを次式(1
2)により算出する。
On the other hand, when the process proceeds from step S1 to step S7, it is determined in step S7 whether or not the power calculation is possible (for example, the change in the current value I and the voltage value V is detected in the instantaneous power calculation unit 21). Judgment is made based on whether or not a predetermined number or more of sampling data has been collected).
If the power calculation is possible, the process proceeds to step S8. If the power calculation is not possible, the process proceeds to step S10. Step S8
Then, the open circuit voltage E2 is calculated and the open circuit voltage E2
Is obtained from the correlation shown in FIG. 3, and then the process proceeds to step S3. Note that the charge amount is determined in step S8.
In calculating ECAPSOC, a moving average of the open circuit voltage E2, that is, an average value of the past three values obtained by calculation is used. Next, in step S3, the charge amount RSO with respect to the charge amount ECAPSOC calculated in step S2 or step S8.
The deviation ESOCOFS of C (obtained from the integrated value of Ah) is calculated by the following equation (1)
It is calculated by 2).

【数12】ESOCOFS=RSOC−ECAPSOC …(12)[Equation 12] ESOCOFS = RSOC−ECAPSOC (12)

【0037】ステップS4は偏差ESOCOFSの絶対値が1
%以上か否かを判定するステップであり、1%以上の場
合にはステップS5に進み、1%より小さい場合にはス
テップS9へ進みAh積算値に基づく充電量RSOCを式
(1)により算出した後にステップS16へ進む。ステ
ップS5では、式(2)(または式(6))の充電量CA
PSOCにステップS2またはステップS8で算出した充電
量ECAPSOCを代入して電流積算値CAPAHを算出し、その電
流積算値CAPAHでAh積算値をリセットする。ステップS
6では、ステップS5で算出された電流積算値CAPAHに
基づく充電量RSOCを式(1)により算出し、その後ステ
ップS16へ進む。
In step S4, the absolute value of the deviation ESOCOFS is 1
This step is a step of determining whether or not the charge amount is equal to or more than 1%. If it is not less than 1%, the process proceeds to step S5. If it is less than 1%, the process proceeds to step S9. After that, the process proceeds to step S16. In step S5, the charge amount CA of equation (2) (or equation (6))
The current integrated value CAPAH is calculated by substituting the charge amount ECAPSOC calculated in step S2 or step S8 into PSOC, and the Ah integrated value is reset with the current integrated value CAPAH. Step S
In step 6, the amount of charge RSOC based on the current integrated value CAPAH calculated in step S5 is calculated by equation (1), and then the process proceeds to step S16.

【0038】ところで、ステップS7においてパワー演
算不可能と判定されてステップS10へ進んだ場合に
は、ステップS10において電流値Iが15A以下であ
るか否かを判定し、15A以下の場合にはステップS1
1へ進み、15Aを越える場合にはステップS9へ進
む。ステップS11では、負荷時の開放電圧E3を式
(4)により算出し、その開放電圧E3に基づく充電量V
CAPSOCを図3に示す関係から求める。ステップS12で
は、ステップS11で算出された充電量VCAPSOCに対す
る充電量RSOC(Ah積算値から得られる)の偏差VSOCOFS
を次式(13)により算出する。
When it is determined in step S7 that the power calculation is impossible and the process proceeds to step S10, it is determined in step S10 whether the current value I is 15 A or less. S1
The process proceeds to step S1, and if it exceeds 15A, the process proceeds to step S9. In step S11, the open circuit voltage E3 under load is calculated by equation (4), and the charge amount V based on the open circuit voltage E3 is calculated.
CAPSOC is determined from the relationship shown in FIG. In step S12, the deviation VSOCOFS of the charge amount RSOC (obtained from the integrated value of Ah) with respect to the charge amount VCAPSOC calculated in step S11.
Is calculated by the following equation (13).

【数13】VSOCOFS=RSOC−VCAPSOC …(13)[Expression 13] VSOCOFS = RSOC−VCAPSOC (13)

【0039】ステップS13は偏差VSOCOFSの絶対値が
5%以上か否かを判定するステップであり、5%以上の
場合にはステップS14に進んで式(2)または式
(6)の充電量CAPSOCにステップS11の充電量VCAPSO
Cを代入して得られる電流積算値CAPAHでAh積算値をリセ
ットし、5%より小さい場合にはステップS9へ進む。
次いで、ステップS15において、ステップS14で算
出された電流積算値CAPAHに基づく充電量RSOCを式
(1)により算出したならば、ステップS16へ進む。
Step S13 is a step for determining whether or not the absolute value of the deviation VSOCOFS is 5% or more. If the absolute value is 5% or more, the process proceeds to step S14, where the charge amount CAPSOC of the equation (2) or (6) is calculated. The charge amount VCAPSO in step S11
The Ah integrated value is reset by the current integrated value CAPAH obtained by substituting C, and if it is smaller than 5%, the process proceeds to step S9.
Next, in step S15, if the amount of charge RSOC based on the integrated current value CAPAH calculated in step S14 is calculated by equation (1), the process proceeds to step S16.

【0040】ステップS16〜ステップS20は内部抵
抗劣化補正係数γおよび容量劣化補正係数βの学習に関
するステップであり、これらのステップを実行すること
により最新のγ,βに更新される。まず、ステップS1
6はパワー演算条件が成立したか否か、すなわち、電流
値I,電圧値Vの変化をとらえたサンプリングデータが
所定数以上収集できたか否かを判定するステップであ
り、条件が成立したならばステップS17へ進む。ステ
ップS17は充電量RSOCが所定値KCMSOC(例えば、40
%)以上か否かを判定するステップであり、充電量RSOC
が所定値KCMSOCより小さい場合にはステップS19へ進
み、所定値KCMSOC以上の場合にはステップS18へ進ん
でγを次式(14)で算出されるγで更新した後にステ
ップS19へ進む。
Steps S16 to S20 are steps relating to learning of the internal resistance deterioration correction coefficient γ and the capacity deterioration correction coefficient β, and are updated to the latest γ and β by executing these steps. First, step S1
Step 6 is a step for determining whether or not the power calculation condition is satisfied, that is, whether or not a predetermined number or more of sampling data that captures changes in the current value I and the voltage value V has been collected. Proceed to step S17. In step S17, the state of charge RSOC is set to a predetermined value KCMSOC (for example, 40
%) Is a step of determining whether or not the charge amount RSOC
If the value is smaller than the predetermined value KCMSOC, the process proceeds to step S19. If the value is equal to or larger than the predetermined value KCMSOC, the process proceeds to step S18 to update γ with γ calculated by the following equation (14), and then proceeds to step S19.

【数14】γ=(R0/α)/R …(14) ただし、R0は内部抵抗初期値、Rはパワー演算により
算出される内部抵抗である。
Γ = (R0 / α) / R (14) where R0 is an internal resistance initial value and R is an internal resistance calculated by power calculation.

【0041】ステップS19は充電量RSOCが所定値KCLS
OC(例えば、50%)以下か否かを判定するステップで
あり、充電量RSOCが所定値KCLSOCより大きい場合にはス
テップS7へ戻り、所定値KCLSOCより大きい場合にはス
テップS20へ進んでβを次式(15)で算出されるβ
で更新した後にステップS7へ戻る。
In step S19, the charge amount RSOC is set to the predetermined value KCLS.
This is a step of determining whether or not the charge amount is equal to or less than OC (for example, 50%). When the charge amount RSOC is larger than the predetermined value KCLSOC, the process returns to step S7. Β calculated by the following equation (15)
After returning to step S7, the process returns to step S7.

【数15】β=CAPAH/Ah(P/αγ) …(15) ただし、電流積算値CAPAHには最新の値を用いる。Β = CAPAH / Ah (P / αγ) (15) However, the latest value is used for the current integrated value CAPAH.

【0042】以上説明したように、本実施の形態では、
Ah積算値に基づく充電量RSOCの誤差が所定値Δ1やΔ2以
上となったならば、充電量RSOCを算出する際のAh積算値
を開放電圧E1〜E3から算出される電流積算値CAPAHで
置き換えることにより、充電量RSOCに対するAh積算値の
累積誤差の影響を低減することができる。また、走行状
態、例えば定速走行や電流値Iが15Aを越えるような
大きな場合、に応じて開放電圧E1〜E3を使い分けるこ
とにより、種々の走行パターンにおいて精度良く充電量
を算出することができる。
As described above, in the present embodiment,
If the error of the charge amount RSOC based on the integrated value of Ah becomes equal to or more than the predetermined value Δ1 or Δ2, the integrated value of Ah when calculating the charge amount RSOC is replaced with the integrated current value CAPAH calculated from the open-circuit voltages E1 to E3. This can reduce the influence of the accumulated error of the integrated Ah value on the charged amount RSOC. Further, by appropriately using the open-circuit voltages E1 to E3 in accordance with the traveling state, for example, when the vehicle is traveling at a constant speed or when the current value I exceeds 15A, the charge amount can be accurately calculated in various traveling patterns. .

【0043】なお、上述した実施の形態では、通常はAh
積算値に基づいて充電量RSOCを算出し、誤差が大きくな
ったらならば、充電量RSOCのAh積算値を開放電圧E1〜
E3から算出される電流積算値CAPAHで置き換えて補正す
るようにしたが、 Ah積算値を用いて充電量RSOCを算出する方法、 開放電圧E1から算出される電流積算値CAPAHを用いて
充電量RSOCを算出する方法、 開放電圧E2から算出される電流積算値CAPAHを用いて
充電量RSOCを算出する方法、 開放電圧E3から算出される電流積算値CAPAHを用いて
充電量RSOCを算出する方法、の内の少なくとも2つの方
法を用いて充電量RSOCを算出するようにしても良い。こ
の場合も、Ah積算値に基づいて充電量RSOCを算出する場
合に比べて充電量算出精度が向上するとともに、種々の
走行パターンにおいて精度良く充電量を算出できる。
In the above-described embodiment, Ah
The charge amount RSOC is calculated based on the integrated value, and if the error increases, the Ah integrated value of the charge amount RSOC is changed to the open circuit voltage E1 to
The correction is made by replacing the current integrated value CAPAH calculated from E3, but the method of calculating the charge amount RSOC using the integrated Ah value, the charge amount RSOC using the integrated current value CAPAH calculated from the open circuit voltage E1 A method for calculating the amount of charge RSOC using the integrated current value CAPAH calculated from the open-circuit voltage E2, and a method for calculating the amount of charge RSOC using the integrated current value CAPAH calculated from the open-circuit voltage E3. The charge amount RSOC may be calculated using at least two of the methods. Also in this case, the charge amount calculation accuracy is improved as compared with the case where the charge amount RSOC is calculated based on the Ah integrated value, and the charge amount can be accurately calculated in various traveling patterns.

【0044】以上説明した実施の形態と特許請求の範囲
の要素との対応において、開放電圧E2およびE3は開放
電圧算出値を構成するとともに、開放電圧E2は第1の
開放電圧を、開放電圧E3は第2の開放電圧を構成す
る。また、電流センサ9は電流検出手段を、電圧センサ
8は電圧検出手段を、Ah演算部22は電流積算手段を、
瞬時パワー演算部21および開放電圧E3演算部25は
開放電圧演算手段を、RSOC演算部23は第1の充電量演
算手段を、CAPAH演算部24は第2の充電量演算手段を
それぞれ構成し、RSOC演算部23およびCAPAH演算部2
4により補正手段が構成される。
In the correspondence between the embodiment described above and the elements of the claims, the open-circuit voltages E2 and E3 constitute the open-circuit voltage calculation value, and the open-circuit voltage E2 represents the first open-circuit voltage and the open-circuit voltage E3 Constitutes a second open circuit voltage. Further, the current sensor 9 is a current detecting unit, the voltage sensor 8 is a voltage detecting unit, the Ah calculating unit 22 is a current integrating unit,
The instantaneous power calculator 21 and the open-circuit voltage E3 calculator 25 constitute open-circuit voltage calculator, the RSOC calculator 23 constitutes first charge amount calculator, and the CAPAH calculator 24 constitutes second charge calculator. RSOC operation unit 23 and CAPAH operation unit 2
4 constitutes a correction means.

【図面の簡単な説明】[Brief description of the drawings]

【図1】パラレル・ハイブリッド車の構成を示すブロッ
ク図。
FIG. 1 is a block diagram showing a configuration of a parallel hybrid vehicle.

【図2】充電量SOCの変化の概念図でり、(a)はAh積
算値に基づく充電量RSOCと真の充電量SOCとを示す図、
(b)は本発明による充電量演算方法による充電量RSOC
を示す図。
FIG. 2 is a conceptual diagram of a change in a state of charge SOC, in which (a) shows a state of charge RSOC and a true state of charge SOC based on an integrated value of Ah;
(B) is a charged amount RSOC by the charged amount calculating method according to the present invention.
FIG.

【図3】開放電圧と充電量SOCとの相関を示す図。FIG. 3 is a diagram showing a correlation between an open circuit voltage and a state of charge SOC.

【図4】無負荷時の開放電圧に基づく充電量RSOCのリセ
ットを説明する図であり、(a)は開放電圧と充電量SO
Cとの相関図、(b)は充電量RSOCの変化を示す図。
4A and 4B are diagrams for explaining reset of a charge amount RSOC based on an open voltage at the time of no load, and FIG. 4A illustrates an open voltage and a charge amount SO;
FIG. 4B is a diagram illustrating a correlation with C, and FIG.

【図5】パワー演算を説明する図。FIG. 5 is a diagram illustrating power calculation.

【図6】開放電圧E2に基づく充電量RSOCのリセットを
説明する図であり、(a)は開放電圧と充電量SOCとの
相関図、(b)は充電量RSOCの変化を示す図。
6A and 6B are diagrams for explaining reset of a charged amount RSOC based on an open circuit voltage E2, wherein FIG. 6A is a diagram illustrating a correlation between an open circuit voltage and a charged system SOC, and FIG. 6B is a diagram illustrating a change in the charged system RSOC.

【図7】開放電圧E3に基づく充電量RSOCのリセットを
説明する図であり、(a)は開放電圧と充電量SOCとの
相関図、(b)は充電量RSOCの変化を示す図。
FIGS. 7A and 7B are diagrams for explaining reset of a charged amount RSOC based on an open-circuit voltage E3, where FIG. 7A is a correlation diagram between the open-circuit voltage and a charged amount SOC, and FIG. 7B is a diagram illustrating a change in the charged amount RSOC.

【図8】演算部1aの機能ブロック図。FIG. 8 is a functional block diagram of a calculation unit 1a.

【図9】二次電池の初期特性の温度補正および劣化補正
を説明する図であり、(a)は初期特性L1を示す図、
(b)は温度補正特性L2を示す図、(c)は温度補正
および劣化補正された特性L3を示す図。
9A and 9B are diagrams illustrating temperature correction and deterioration correction of initial characteristics of the secondary battery, and FIG. 9A is a diagram illustrating initial characteristics L1;
(B) is a diagram illustrating a temperature correction characteristic L2, and (c) is a diagram illustrating a temperature-corrected and deterioration-corrected characteristic L3.

【図10】充電量SOCの演算手順を示すフローチャー
ト。
FIG. 10 is a flowchart showing a calculation procedure of a state of charge SOC.

【符号の説明】[Explanation of symbols]

1 コントローラ 1a 演算部 1b 制御部 2 エンジン 3 モータ 6 二次電池 8 電圧センサ 9 電流センサ 10 温度センサ 20 電池容量演算部 21 瞬時パワー演算部 22 Ah演算部 23 RSOC演算部 24 CAPAH演算部 25 開放電圧E3演算部 201 α演算部 202 γ演算部 203 パワー容量演算部 204 β演算部 DESCRIPTION OF SYMBOLS 1 Controller 1a Operation part 1b Control part 2 Engine 3 Motor 6 Secondary battery 8 Voltage sensor 9 Current sensor 10 Temperature sensor 20 Battery capacity operation part 21 Instantaneous power operation part 22 Ah operation part 23 RSOC operation part 24 CAPAH operation part 25 Open voltage E3 operation unit 201 α operation unit 202 γ operation unit 203 power capacity operation unit 204 β operation unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02J 7/00 B60K 9/00 Z Fターム(参考) 2G016 CA03 CB06 CB11 CB12 CB13 CB21 CB31 CB32 CC01 CC04 CC07 CC12 CC14 CC24 CC27 5G003 AA07 BA01 CA05 CA16 CA20 DA04 EA05 FA06 GB06 5H030 AA08 AS08 FF42 FF43 FF44 5H115 PG04 PI16 PO17 PU01 PU23 PU25 QE10 QI04 TI01 TI05 TI06 TI10 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H02J 7/00 B60K 9/00 Z F-term (Reference) 2G016 CA03 CB06 CB11 CB12 CB13 CB21 CB31 CB32 CC01 CC04 CC07 CC12 CC14 CC24 CC27 5G003 AA07 BA01 CA05 CA16 CA20 DA04 EA05 FA06 GB06 5H030 AA08 AS08 FF42 FF43 FF44 5H115 PG04 PI16 PO17 PU01 PU23 PU25 QE10 QI04 TI01 TI05 TI06 TI10 TI10

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 (a)充放電時における二次電池の電流
値を積算し、その電流積算値に基づいて前記二次電池の
充電量を算出する第1の算出方法、 (b)無負荷状態における二次電池の端子電圧に基づい
て前記二次電池の充電量を算出する第2の算出方法、 (c)充放電時の二次電池の端子電圧値と電流値とに基
くパワー演算により前記二次電池の第1の開放電圧を算
出し、前記第1の開放電圧に基づいて前記二次電池の充
電量を算出する第3の算出方法、 (d)充放電時の二次電池の端子電圧値,前記電流値お
よび内部抵抗値に基づいて第2の開放電圧を算出し、前
記第2の開放電圧に基づいて前記二次電池の充電量を算
出する第4の算出方法、の内の少なくとも2つの算出方
法により二次電池の充電量を算出することを特徴とする
ハイブリッド車の充電量演算方法。
1. A first calculation method of: (a) integrating a current value of a secondary battery during charging and discharging, and calculating a charge amount of the secondary battery based on the integrated current value; (b) no load A second calculation method for calculating the charge amount of the secondary battery based on the terminal voltage of the secondary battery in the state, (c) by power calculation based on the terminal voltage value and the current value of the secondary battery during charging and discharging A third calculation method of calculating a first open-circuit voltage of the secondary battery and calculating a charge amount of the secondary battery based on the first open-circuit voltage; In a fourth calculation method, a second open-circuit voltage is calculated based on a terminal voltage value, the current value, and the internal resistance value, and a charge amount of the secondary battery is calculated based on the second open-circuit voltage. Calculating the amount of charge of the secondary battery by at least two of the calculation methods described above. A method for calculating the charge amount of a lid car.
【請求項2】 請求項1に記載の充電量演算方法におい
て、 前記第1の算出方法および前記第3の算出方法を用いて
二次電池の充電量を算出することを特徴とするハイブリ
ッド車の充電量演算方法。
2. The charge amount calculation method according to claim 1, wherein the charge amount of the secondary battery is calculated using the first calculation method and the third calculation method. Charge amount calculation method.
【請求項3】 請求項1に記載の充電量演算方法におい
て、 前記第1の算出方法および前記第4の算出方法を用いて
二次電池の充電量を算出することを特徴とするハイブリ
ッド車の充電量演算方法。
3. The charge amount calculation method according to claim 1, wherein the charge amount of the secondary battery is calculated using the first calculation method and the fourth calculation method. Charge amount calculation method.
【請求項4】 請求項1に記載の充電量演算方法におい
て、 前記第1の算出方法,前記第2の算出方法および前記第
3の算出方法を用いて二次電池の充電量を算出すること
を特徴とするハイブリッド車の充電量演算方法。
4. The charge amount calculation method according to claim 1, wherein the charge amount of the secondary battery is calculated using the first calculation method, the second calculation method, and the third calculation method. A method for calculating the charge amount of a hybrid vehicle, characterized in that:
【請求項5】 請求項1に記載の充電量演算方法におい
て、 前記第1の算出方法,前記第2の算出方法および前記第
4の算出方法を用いて二次電池の充電量を算出すること
を特徴とするハイブリッド車の充電量演算方法。
5. The method of calculating a charge amount according to claim 1, wherein the charge amount of the secondary battery is calculated using the first calculation method, the second calculation method, and the fourth calculation method. A method for calculating the charge amount of a hybrid vehicle, characterized in that:
【請求項6】 二次電池の充放電電流値に基づいて電流
積算値を算出し、その電流積算値に基づいて前記二次電
池の第1の充電量を算出するハイブリッド車の充電量演
算方法において、 (a)前記二次電池の無負荷状態時の端子電圧値に基づ
いて第2の充電量を算出し、前記第2の充電量と前記第
1の充電量との差が所定値以上となったときに前記第1
の充電量を前記第2の充電量で置き換える第1の補正方
法、 (b)前記二次電池の充放電時の端子電圧値と電流値と
に基づくパワー演算により第1の開放電圧を算出し、前
記第1の開放電圧に基づいて算出される第3の充電量と
前記第1の充電量との差が所定値以上となったときに前
記第1の充電量を前記第3の充電量で置き換える第2の
補正方法、 (c)前記二次電池の充放電時の端子電圧値,電流値お
よび内部抵抗値に基づいて第2の開放電圧を算出し、前
記第2の開放電圧に基づいて算出される第4の充電量と
前記第1の充電量との差が所定値以上となったときに前
記第1の充電量を前記第4の充電量で置き換える第3の
補正方法、の内の少なくとも2つの補正方法を用いて前
記第1の充電量を補正することを特徴とするハイブリッ
ド車の充電量演算方法。
6. A charge amount calculation method for a hybrid vehicle, comprising: calculating an integrated current value based on a charge / discharge current value of a secondary battery; and calculating a first charged amount of the secondary battery based on the integrated current value. In (a), a second charge amount is calculated based on a terminal voltage value of the secondary battery in a no-load state, and a difference between the second charge amount and the first charge amount is equal to or more than a predetermined value. When the first
(B) calculating a first open-circuit voltage by a power calculation based on a terminal voltage value and a current value at the time of charging and discharging of the secondary battery. When the difference between the third charge amount calculated based on the first open circuit voltage and the first charge amount is equal to or greater than a predetermined value, the first charge amount is changed to the third charge amount. (C) calculating a second open-circuit voltage based on a terminal voltage value, a current value, and an internal resistance value during charging and discharging of the secondary battery, and based on the second open-circuit voltage. A third correction method for replacing the first charge amount with the fourth charge amount when a difference between the fourth charge amount calculated by the calculation and the first charge amount becomes equal to or greater than a predetermined value. Wherein the first charge amount is corrected by using at least two correction methods. Car of the charge amount calculation method.
【請求項7】 請求項6に記載の充電量演算方法におい
て、 前記第1の補正方法および前記第2の補正方法を用いて
前記第1の充電量を補正することを特徴とするハイブリ
ッド車の充電量演算方法。
7. The hybrid vehicle according to claim 6, wherein the first charge amount is corrected using the first correction method and the second correction method. Charge amount calculation method.
【請求項8】 請求項6に記載の充電量演算方法におい
て、 前記第1の補正方法および前記第3の補正方法を用いて
前記第1の充電量を補正することを特徴とするハイブリ
ッド車の充電量演算方法。
8. The hybrid vehicle according to claim 6, wherein the first charge amount is corrected using the first correction method and the third correction method. Charge amount calculation method.
【請求項9】 二次電池の充放電電流値を検出する電流
検出手段と、 前記電流検出手段の電流検出値に基づいて電流積算値を
算出する電流積算手段と、 前記電流積算値に基づいて前記二次電池の第1の充電量
を算出する第1の充電量演算手段とを備えるハイブリッ
ド車の充電量演算装置において、 前記二次電池の端子電圧を検出する電圧検出手段と、 前記電流検出手段の検出値および前記電圧検出手段の検
出値に基づいて前記二次電池の開放電圧を算出する開放
電圧演算手段と、 前記開放電圧演算手段による開放電圧算出値に応じた第
2の充電量を算出する第2の充電量演算手段と、 前記第1の充電量と前記第2の充電量との差が所定値以
上となったときに、前記第2の充電量に基づいて前記第
1の充電量を補正する補正手段と、を設けたことを特徴
とするハイブリッド車の充電量演算装置。
9. A current detecting means for detecting a charge / discharge current value of a secondary battery, a current integrating means for calculating a current integrated value based on a current detected value of the current detecting means, and A charge amount calculating device for a hybrid vehicle, comprising: first charge amount calculating means for calculating a first charge amount of the secondary battery; voltage detecting means for detecting a terminal voltage of the secondary battery; Means for calculating an open-circuit voltage of the secondary battery based on a detection value of the means and a detection value of the voltage detection means, and a second charge amount according to the open-circuit voltage calculation value by the open-circuit voltage calculation means. A second charge amount calculating means for calculating, when the difference between the first charge amount and the second charge amount is equal to or greater than a predetermined value, the first charge amount is calculated based on the second charge amount. Correction means for correcting the charge amount. A charge amount calculation device for a hybrid vehicle, characterized in that:
JP31891298A 1998-11-10 1998-11-10 Charge amount calculation method and charge amount calculation device for hybrid vehicle Expired - Lifetime JP3879278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31891298A JP3879278B2 (en) 1998-11-10 1998-11-10 Charge amount calculation method and charge amount calculation device for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31891298A JP3879278B2 (en) 1998-11-10 1998-11-10 Charge amount calculation method and charge amount calculation device for hybrid vehicle

Publications (2)

Publication Number Publication Date
JP2000150003A true JP2000150003A (en) 2000-05-30
JP3879278B2 JP3879278B2 (en) 2007-02-07

Family

ID=18104370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31891298A Expired - Lifetime JP3879278B2 (en) 1998-11-10 1998-11-10 Charge amount calculation method and charge amount calculation device for hybrid vehicle

Country Status (1)

Country Link
JP (1) JP3879278B2 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020054812A (en) * 2000-12-28 2002-07-08 이계안 A compensation method of battery soc for electric vehicle and hybrid electric vehicle
KR100387501B1 (en) * 2000-12-28 2003-06-18 현대자동차주식회사 Method for correcting soc of battery
WO2005116675A1 (en) * 2004-05-26 2005-12-08 Nec Lamilion Energy, Ltd. Secondary battery residual-capacity estimating method and apparatus
JP2006275797A (en) * 2005-03-29 2006-10-12 Fuji Heavy Ind Ltd Residual capacity arithmetic unit for capacitor device
WO2007074614A1 (en) 2005-12-27 2007-07-05 Toyota Jidosha Kabushiki Kaisha Charged state estimation device and charged state estimation method of secondary battery
CN100382408C (en) * 2004-04-23 2008-04-16 索尼株式会社 Method of charging secondary battery, method of calculating remaining capacity rate of secondary battery, and battery pack
KR100849114B1 (en) * 2000-11-30 2008-07-30 코닌클리케 필립스 일렉트로닉스 엔.브이. A method of predicting the state of charge as well as the use time left of a rechargeable battery
JP2008199723A (en) * 2007-02-09 2008-08-28 Railway Technical Res Inst Residual capacity estimation unit of battery
JP2009250970A (en) * 2008-04-03 2009-10-29 Hyundai Motor Co Ltd Estimation method of remaining capacity of battery
JP2010256323A (en) * 2009-03-31 2010-11-11 Hitachi Ltd State detector for power supply device
JP2011061955A (en) * 2009-09-09 2011-03-24 Nissan Motor Co Ltd Device for adjusting capacity of battery pack
WO2012150405A1 (en) * 2011-05-05 2012-11-08 Renault S.A.S. Method for processing a signal quantifying the state of charge of an electric battery of a motor vehicle in time
FR2976364A1 (en) * 2011-06-07 2012-12-14 Peugeot Citroen Automobiles Sa Method for determining state of charge of electric battery of e.g. electric car, involves adjusting value of previous charge state of battery if verification of previous charge state calculation indicates error greater than preset threshold
WO2013002343A1 (en) * 2011-06-29 2013-01-03 三洋電機株式会社 Battery state detection device
CN102918411A (en) * 2010-06-07 2013-02-06 三菱电机株式会社 Charge status estimation apparatus
JP2013050433A (en) * 2011-07-29 2013-03-14 Yokogawa Electric Corp Battery monitoring device
KR101256073B1 (en) 2005-10-11 2013-04-18 삼성에스디아이 주식회사 Method of estimating SOC for battery and battery management system using the same
WO2013129273A1 (en) * 2012-02-29 2013-09-06 三洋電機株式会社 Power supply device, vehicle equipped with power supply device, electricity storage device, and method for detecting state of charge of battery
WO2013137141A1 (en) * 2012-03-13 2013-09-19 日産自動車株式会社 Battery residual capacitance calculation device and battery residual capacitance calculation method
CN103635822A (en) * 2011-08-30 2014-03-12 三洋电机株式会社 Battery system, electric vehicle, movable body, power storage device, and power supply device
JP2014103840A (en) * 2012-10-24 2014-06-05 Toyota Motor Corp Power storage system
JP2014117000A (en) * 2012-12-06 2014-06-26 Denso Corp Charge control apparatus
JP2015039279A (en) * 2013-08-12 2015-02-26 オーツー マイクロ, インコーポレーテッド System and method for controlling battery
WO2015045015A1 (en) * 2013-09-25 2015-04-02 株式会社日立製作所 Status determining method for secondary battery, status determining apparatus for secondary battery, secondary battery system, and charge/discharge control apparatus having status determining apparatus
KR20150043265A (en) * 2015-04-02 2015-04-22 주식회사 엘지화학 Apparatus and method for controlling charging of secondary battery
JP2015204131A (en) * 2014-04-10 2015-11-16 カルソニックカンセイ株式会社 Specific gravity estimation device and specific gravity estimation method
JP2016009657A (en) * 2014-06-26 2016-01-18 トヨタ自動車株式会社 Vehicle control device
WO2016129248A1 (en) * 2015-02-13 2016-08-18 パナソニックIpマネジメント株式会社 Secondary battery state-of-charge estimating device and secondary battery state-of-charge estimating method
US9566875B2 (en) 2010-03-30 2017-02-14 Honda Motor Co., Ltd. Method of detecting battery capacity of secondary battery
DE112012006216B4 (en) 2012-04-11 2019-03-21 Toyota Jidosha Kabushiki Kaisha battery status
CN113762948A (en) * 2020-06-02 2021-12-07 车主邦(北京)科技有限公司 Charging order settlement method and system
KR20220037169A (en) * 2020-09-17 2022-03-24 한화솔루션 주식회사 Estimating device for the state of charge on energy storage system and method thereof
WO2022249943A1 (en) * 2021-05-28 2022-12-01 株式会社Gsユアサ Estimation device, power storage device, and estimation method
EP4142101A1 (en) 2021-08-17 2023-03-01 Yazaki Corporation Storage battery control device, energy storage system, and storage battery control method

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100849114B1 (en) * 2000-11-30 2008-07-30 코닌클리케 필립스 일렉트로닉스 엔.브이. A method of predicting the state of charge as well as the use time left of a rechargeable battery
KR100387501B1 (en) * 2000-12-28 2003-06-18 현대자동차주식회사 Method for correcting soc of battery
KR20020054812A (en) * 2000-12-28 2002-07-08 이계안 A compensation method of battery soc for electric vehicle and hybrid electric vehicle
CN100382408C (en) * 2004-04-23 2008-04-16 索尼株式会社 Method of charging secondary battery, method of calculating remaining capacity rate of secondary battery, and battery pack
WO2005116675A1 (en) * 2004-05-26 2005-12-08 Nec Lamilion Energy, Ltd. Secondary battery residual-capacity estimating method and apparatus
JP4571000B2 (en) * 2005-03-29 2010-10-27 富士重工業株式会社 Remaining capacity calculation device for power storage device
JP2006275797A (en) * 2005-03-29 2006-10-12 Fuji Heavy Ind Ltd Residual capacity arithmetic unit for capacitor device
KR101256073B1 (en) 2005-10-11 2013-04-18 삼성에스디아이 주식회사 Method of estimating SOC for battery and battery management system using the same
US8274291B2 (en) 2005-12-27 2012-09-25 Toyota Jidosha Kabushiki Kaisha Charged state estimating device and charged state estimating method of secondary battery
WO2007074614A1 (en) 2005-12-27 2007-07-05 Toyota Jidosha Kabushiki Kaisha Charged state estimation device and charged state estimation method of secondary battery
US8664960B2 (en) 2005-12-27 2014-03-04 Toyota Jidosha Kabushiki Kaisha Charged state estimating device and charged state estimating method of secondary battery
EP2985618A1 (en) 2005-12-27 2016-02-17 Toyota Jidosha Kabushiki Kaisha Charged state estimating device and charged state estimating method of secondary battery
JP2008199723A (en) * 2007-02-09 2008-08-28 Railway Technical Res Inst Residual capacity estimation unit of battery
JP2009250970A (en) * 2008-04-03 2009-10-29 Hyundai Motor Co Ltd Estimation method of remaining capacity of battery
JP2010256323A (en) * 2009-03-31 2010-11-11 Hitachi Ltd State detector for power supply device
JP2011061955A (en) * 2009-09-09 2011-03-24 Nissan Motor Co Ltd Device for adjusting capacity of battery pack
US9566875B2 (en) 2010-03-30 2017-02-14 Honda Motor Co., Ltd. Method of detecting battery capacity of secondary battery
EP2579059A4 (en) * 2010-06-07 2013-05-29 Mitsubishi Electric Corp Charge status estimation apparatus
EP2579059A1 (en) * 2010-06-07 2013-04-10 Mitsubishi Electric Corporation Charge status estimation apparatus
CN102918411A (en) * 2010-06-07 2013-02-06 三菱电机株式会社 Charge status estimation apparatus
AU2010354957B2 (en) * 2010-06-07 2014-04-17 Mitsubishi Electric Corporation Charge status estimation apparatus
FR2974921A1 (en) * 2011-05-05 2012-11-09 Renault Sas METHOD FOR PROCESSING A SIGNAL THAT QUANTIFIES THE CHARGING CONDITION OF AN ELECTRIC BATTERY OF A MOTOR VEHICLE ACCORDING TO TIME
WO2012150405A1 (en) * 2011-05-05 2012-11-08 Renault S.A.S. Method for processing a signal quantifying the state of charge of an electric battery of a motor vehicle in time
FR2976364A1 (en) * 2011-06-07 2012-12-14 Peugeot Citroen Automobiles Sa Method for determining state of charge of electric battery of e.g. electric car, involves adjusting value of previous charge state of battery if verification of previous charge state calculation indicates error greater than preset threshold
WO2013002343A1 (en) * 2011-06-29 2013-01-03 三洋電機株式会社 Battery state detection device
JP2013050433A (en) * 2011-07-29 2013-03-14 Yokogawa Electric Corp Battery monitoring device
CN103635822A (en) * 2011-08-30 2014-03-12 三洋电机株式会社 Battery system, electric vehicle, movable body, power storage device, and power supply device
JPWO2013129273A1 (en) * 2012-02-29 2015-07-30 三洋電機株式会社 Power supply device, vehicle including power supply device, power storage device, and battery remaining capacity detection method
US9658293B2 (en) 2012-02-29 2017-05-23 Sanyo Electric Co., Ltd. Power supply unit, vehicle and storage battery unit equipped with power supply unit, and remaining capacity detecting method of battery
WO2013129273A1 (en) * 2012-02-29 2013-09-06 三洋電機株式会社 Power supply device, vehicle equipped with power supply device, electricity storage device, and method for detecting state of charge of battery
WO2013137141A1 (en) * 2012-03-13 2013-09-19 日産自動車株式会社 Battery residual capacitance calculation device and battery residual capacitance calculation method
DE112012006216B4 (en) 2012-04-11 2019-03-21 Toyota Jidosha Kabushiki Kaisha battery status
US10725108B2 (en) 2012-04-11 2020-07-28 Toyota Jidosha Kabushiki Kaisha Battery status estimating device
JP2014103840A (en) * 2012-10-24 2014-06-05 Toyota Motor Corp Power storage system
JP2014117000A (en) * 2012-12-06 2014-06-26 Denso Corp Charge control apparatus
JP2015039279A (en) * 2013-08-12 2015-02-26 オーツー マイクロ, インコーポレーテッド System and method for controlling battery
US10483779B2 (en) 2013-09-25 2019-11-19 Hitachi, Ltd. Status determining method for secondary battery, status determining apparatus for secondary battery, secondary battery system, and charge/discharge control apparatus having status determining apparatus
WO2015045015A1 (en) * 2013-09-25 2015-04-02 株式会社日立製作所 Status determining method for secondary battery, status determining apparatus for secondary battery, secondary battery system, and charge/discharge control apparatus having status determining apparatus
JP6072268B2 (en) * 2013-09-25 2017-02-01 株式会社日立製作所 Secondary battery state determination method, secondary battery state determination device, secondary battery system, and charge / discharge control device having state determination device
JP2015204131A (en) * 2014-04-10 2015-11-16 カルソニックカンセイ株式会社 Specific gravity estimation device and specific gravity estimation method
JP2016009657A (en) * 2014-06-26 2016-01-18 トヨタ自動車株式会社 Vehicle control device
JPWO2016129248A1 (en) * 2015-02-13 2017-12-14 パナソニックIpマネジメント株式会社 Secondary battery charge state estimation device and charge state estimation method
WO2016129248A1 (en) * 2015-02-13 2016-08-18 パナソニックIpマネジメント株式会社 Secondary battery state-of-charge estimating device and secondary battery state-of-charge estimating method
KR20150043265A (en) * 2015-04-02 2015-04-22 주식회사 엘지화학 Apparatus and method for controlling charging of secondary battery
KR101726384B1 (en) 2015-04-02 2017-04-12 주식회사 엘지화학 Apparatus and method for controlling charging of secondary battery
CN113762948A (en) * 2020-06-02 2021-12-07 车主邦(北京)科技有限公司 Charging order settlement method and system
KR20220037169A (en) * 2020-09-17 2022-03-24 한화솔루션 주식회사 Estimating device for the state of charge on energy storage system and method thereof
KR102481221B1 (en) 2020-09-17 2022-12-26 한화솔루션 주식회사 Estimating device for the state of charge on energy storage system and method thereof
WO2022249943A1 (en) * 2021-05-28 2022-12-01 株式会社Gsユアサ Estimation device, power storage device, and estimation method
EP4142101A1 (en) 2021-08-17 2023-03-01 Yazaki Corporation Storage battery control device, energy storage system, and storage battery control method

Also Published As

Publication number Publication date
JP3879278B2 (en) 2007-02-07

Similar Documents

Publication Publication Date Title
JP2000150003A (en) Method and device for charged amount calculation for hybrid vehicle
US9475480B2 (en) Battery charge/discharge control device and hybrid vehicle using the same
JP3395694B2 (en) Calculation method for battery capacity deterioration of secondary battery
US7456612B2 (en) Method for estimating polarization voltage of secondary cell, method and device for estimating remaining capacity of secondary cell, battery pack system, and vehicle
US6107779A (en) Apparatus for detecting remaining capacity of battery
JP2002243813A (en) Arithmetic unit for computing deterioration of capacity of secondary battery
US20180313905A1 (en) Method for estimating state of charge and on-vehicle battery system
US8947051B2 (en) Storage capacity management system
WO2007091722A1 (en) Secondary cell residual capacity estimating device and residual capacity estimating method
JP3543662B2 (en) SOC calculation method for secondary battery for electric vehicle
US20100052618A1 (en) Battery capacity controller
JP2004014205A (en) Detection system of battery abnormality and degradation
JP3711881B2 (en) Charge / discharge control device
JP3669202B2 (en) Battery status monitoring device
JP3767150B2 (en) Battery remaining capacity detection device
JP3104483B2 (en) Battery remaining capacity detection device for hybrid vehicles
JP3432463B2 (en) Battery capacity measurement device
JP2003294817A (en) Battery-capacity decision apparatus
US20230075768A1 (en) Drive control device, drive control method for electric vehicle, and non-transitory computer readable storage medium storing program
JP3692192B2 (en) Battery remaining capacity detector
JP2000221249A (en) Detecting apparatus for charging state of battery
JP2005341760A (en) Battery management device of hybrid vehicle
JP2005227164A (en) Device for calculating state of charge of secondary cell
JP3674465B2 (en) Maximum charge / discharge power calculation device for batteries for electric vehicles
JP3628912B2 (en) Battery charge state detection device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

EXPY Cancellation because of completion of term