JP3711881B2 - Charge / discharge control device - Google Patents

Charge / discharge control device Download PDF

Info

Publication number
JP3711881B2
JP3711881B2 JP2001068655A JP2001068655A JP3711881B2 JP 3711881 B2 JP3711881 B2 JP 3711881B2 JP 2001068655 A JP2001068655 A JP 2001068655A JP 2001068655 A JP2001068655 A JP 2001068655A JP 3711881 B2 JP3711881 B2 JP 3711881B2
Authority
JP
Japan
Prior art keywords
voltage
battery
unit
assembled battery
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001068655A
Other languages
Japanese (ja)
Other versions
JP2002272011A (en
Inventor
典彦 枚田
健一 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001068655A priority Critical patent/JP3711881B2/en
Publication of JP2002272011A publication Critical patent/JP2002272011A/en
Application granted granted Critical
Publication of JP3711881B2 publication Critical patent/JP3711881B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • B60L15/2018Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking for braking on a slope
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/10Driver interactions by alarm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • B60L2250/28Accelerator pedal thresholds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば電気自動車等の駆動用バッテリーとして用いられる組電池の充放電制御装置に関する。
【0002】
【従来の技術】
従来、電気自動車に搭載されるバッテリーには、セルと呼ばれる単位電池を複数直列接続した組電池が用いられている。このようなバッテリーの入出力可能電力の算出方法としては、特開平11−41711号公報に開示されているようなものがある。従来の算出方法では、放電時にバッテリーの総電圧および放電電流値をサンプリングし、このサンプリングデータに基づいてV−I特性を回帰算出することによって入出力可能電力を求めるようにしている。
【0003】
例えば、入力可能電力を求める際には、放電中に得られるサンプリングデータに基づいて回帰直線を算出する。次いで、入力可能電圧の目標電圧であるバッテリー上限電圧Vmaxのときの電流値Icmaxを回帰直線から求め、次式により入力可能電力Pcmaxを算出している。例えば、制動時の回生制御においては、充電電力が入力可能電力Pcmaxとなるように制御される。
【数1】
Pcmax=Icmax×Vmax
【0004】
ところで、回生制御の際には、電池保護のために各セルの各々が所定の充電上限電圧を越えないように回生制限が行われる。また、放電制御の際には、各セルの各々が所定の放電下限電圧を下回らないように出力制限が行われる。
【0005】
【発明が解決しようとする課題】
しかしながら、従来の入出力可能電力演算方法では、上述したように組電池全体の電圧および電流に基づいて入出力可能電力を算出しており、各セルの内部抵抗のばらつきは考慮されていなかった。この内部抵抗のばらつきが大きいと、例えば、走行制御中に最大内部抵抗を有するセルが放電下限電圧に達してしまった場合に、それ以上放電電流が上昇しないように放電制限をかけるようにしている。
【0006】
そのため、このような放電制限が実行される直前までは、算出された出力可能電力に基づいてアクセル操作に応じた電力が出力されるが、内部抵抗最大のセルが放電下限電圧に達すると放電制限が実行されて、要求された出力電力より小さな電力に出力制限されてしまう。従って、例えばドライバーが加速を行おうとしてアクセルを所定時間踏み込んだときに出力制限されると、ドライバーの意図する出力の増加が行われないことになり、ドライバーが違和感を感じるということがあった。
【0007】
本発明の目的は、単位電池の内部抵抗を考慮した入出力可能電力を用いて組電池の充放電制御を行う充放電制御装置を提供することにある。
【0008】
【課題を解決するための手段】
発明の実施の形態を示す図1および図3に対応付けて説明する。
(1)図1に対応付けて説明すると、請求項1の発明による充放電制御装置6は、組電池4の電流値を検出する電流検出部8と、組電池4の総電圧値を検出する総電圧検出部7と、組電池4を構成する複数の単位電池の各電圧値を検出する単位電池電圧検出部5と、電流値および総電圧に基づいて組電池4の電圧・電流特性を回帰演算するとともに、電流値および単位電池の電圧値に基づいて各単位電池の電圧・電流特性を回帰演算する回帰演算部6と、組電池4に関する回帰演算部6の演算結果に基づいて、組電池4の入力可能電力および出力可能電力を算出する入出力可能電力演算部6と、回帰演算部6で演算された内部抵抗の最も大きな単位電池の電圧・電流特性 12 および充電上限電圧から算出される電流値と、回帰演算部6で演算された組電池の電圧・電流特性L 11 および充電上限電圧から算出される電流値I cmax との比である補正係数を算出し、入出力可能電力演算部6により算出された入力可能電力を補正係数で補正する補正演算部6とを備え、入出力可能電力演算部6および補正演算部6の各演算結果に基づいて組電池4の充放電制御を行うことにより上述の目的を達成する。
(2)請求項2の発明による充放電制御装置6は、組電池4の電流値を検出する電流検出部8と、組電池4の総電圧値を検出する総電圧検出部7と、組電池4を構成する複数の単位電池の各電圧値を検出する単位電池電圧検出部5と、電流値および総電圧に基づいて組電池4の電圧・電流特性を回帰演算するとともに、電流値および単位電池の電圧値に基づいて各単位電池の電圧・電流特性を回帰演算する回帰演算部6と、組電池4に関する回帰演算部6の演算結果に基づいて、組電池4の入力可能電力および出力可能電力を算出する入出力可能電力演算部6と、回帰演算部6で演算された内部抵抗の最も大きな単位電池の電圧・電流特性L 12 および放電下限電圧から算出される電流値と、回帰演算部6で演算された組電池の電圧・電流特性L 11 および放電下限電圧から算出される電流値I dmax との比である補正係数を算出し、入出力可能電力演算部6により算出された出力可能電力を補正係数で補正する補正演算部6とを備え、入出力可能電力演算部6および補正演算部6の各演算結果に基づいて組電池4の充放電制御を行うことにより上述の目的を達成する。
)図1および図3に対応付けて説明すると、請求項の発明は、請求項1または2に記載の充放電制御装置6において、単位電池電圧検出部5で検出された電圧値のばらつきが所定電圧値Y以下であって、かつ、電流値の大きさが所定電流値(X/2)以下の場合に、回帰演算部6の演算を行うようにしたものである。
)請求項の発明は、請求項1〜3のいずれかに記載の充放電制御装置6において、内部抵抗の最も大きな単位電池の内部抵抗が所定値以上のときに、その単位電池を異常と判定する判定部5を設けたものである。
【0009】
なお、上記課題を解決するための手段の項では、本発明を分かり易くするために発明の実施の形態の図を用いたが、これにより本発明が発明の実施の形態に限定されるものではない。
【0010】
【発明の効果】
(1)請求項1の発明では、内部抵抗の最も大きな単位電池の電圧・電流特性および充電上限電圧から算出される電流値と、組電池の電圧・電流特性および充電上限電圧から算出される電流値との比である補正係数を算出し、算出された入力可能電力をその補正係数で補正し、その補正された入力可能電力に基づいて組電池の充放電制御を行うので、内部抵抗が最大の単位電池が制限電圧になったときに入力電力が急激に制限されるようなことがない。
(2)請求項2の発明では、内部抵抗の最も大きな単位電池の電圧・電流特性および放電下限電圧から算出される電流値と、組電池の電圧・電流特性および放電下限電圧から算出される電流値との比である補正係数を算出し、算出された出力可能電力をその補正係数で補正し、その補正された出力可能電力に基づいて組電池の充放電制御を行うので、内部抵抗が最大の単位電池が制限電圧になったときに出力電力が急激に制限されるようなことがない。
)請求項の発明では、請求項1または2と同様の効果が得られるとともに、各単位電池の電圧値のばらつきが所定電圧値以下であって、かつ、電流値が所定電流値以下のときに各単位電池に関する回帰演算を行うようにしているので、各単位電池の電池状態(SOC)のばらつきの影響を低減することができ、補正演算部の補正精度の向上が図れる。
)請求項の発明では、請求項1〜3のいずれかと同様の効果が得られるとともに、単位電池の異常を精度良く検出することができる。
【0011】
【発明の実施の形態】
以下、図1〜図9を参照して本発明の実施の形態を説明する。図1は本発明による充放電制御装置を備えるハイブリッド電気自動車(HEV)を示す図であり、パラレルHEVの駆動系の概略構成を示す図である。エンジン1の主軸には、電動モータ2の回転子が直結されている。エンジン1および/またはモータ2の駆動力は、図示しない駆動系を介して車軸に伝達される。インバータ3は二次電池で構成されたバッテリー4からの直流電力を交流電力に変換してモータ2に供給するとともに、後述する発電モード時にはモータ2からの交流電力を直流電力に変換してバッテリー4へ供給する。
【0012】
バッテリー4には、複数の単セルを直列接続した組電池と呼ばれるものが用いられる。組電池を構成する各々の単セルのセル電圧はセルコントローラ5により検出され、その検出値はバッテリーコントローラ6へと出力される。単セルには、例えば、リチウムイオン電池等が用いられる。バッテリーコントローラ6には、セルコントローラ5から送られたセル電圧値、電圧センサ7で検出されるバッテリー4の総電圧値、電流センサ8で検出される充放電電流値が入力される。マイクロコンピュータとその周辺部品から構成されるバッテリーコントローラ6は、これらの値に基づいてバッテリー4の充放電制御を行う。インジケータ9には、バッテリーコントローラ6で検出されたセル状態(セル異常等)が表示される。
【0013】
パラレルHEVにおけるモータ2の運転モードには、車軸を駆動する駆動モードとバッテリー4を充電する発電モードとがある。車両の駆動時、すなわち加速時,平坦路走行時や登坂時等に、モータ2へ電力を供給するバッテリー4が充分な充電状態にある場合には、モータ2を駆動モードで運転してエンジン1とモータ2の両方の駆動力により走行する。ただし、バッテリー4の充電状態が低い場合にはモータ2を発電モードで運転して、エンジン1の駆動力により走行を行うとともにモータ2の回転子を回転し、モータ2による発電を行ってバッテリー4を充電する。
【0014】
一方、車両の制動時、すなわち減速時や降坂時などには、駆動系を介した車輪の回転力によってエンジン1およびモータ2が駆動される。このとき、モータ2を発電モードで運転し、回生エネルギーを吸収してバッテリー4を充電する。
【0015】
次いで、充放電制御の際のバッテリー4の入出力可能電力の算出方法について説明する。まず、放電中に電圧センサ7および電流センサ8により電圧V,電流Iをサンプリングし、それらのサンプリングデータに基づいてV−I特性の回帰直線を求める。図2はV−I特性を示す図であり、「×」はサンプリングデータを、L1は回帰直線をそれぞれ示している。回帰直線L1の傾きはバッテリー4の内部抵抗Rを表しており、回帰直線L1とV軸との交点の値Eがバッテリー4の開放電圧である。
【0016】
充電上限電圧Vmaxを示す直線と回帰直線L1との交点Aの電流値Icmaxを用いると、バッテリー4の入力可能電力Pcmaxは次式(1)で算出される。
【数2】
Pcmax=Icmax×Vmax …(1)
【0017】
また、放電下限電圧Vminを示す直線と回帰直線L1との交点Bの電流値Icmaxを用いると、バッテリー4の出力可能電力Pdminは次式(2)で算出される。
【数3】
Pdmax=Idmax×Vmin …(2)
【0018】
このようにして算出された入力可能電力Pcmaxおよび出力可能電力Pdminを、各セルの内部抵抗のばらつきに応じて補正する。図3,4は補正方法を説明するための図であり、セル毎のV−I特性を示したものである。図4は、図3の充電領域の部分を拡大して示した図である。
【0019】
図3において、L12はセル内部抵抗rが最大rmaxのセルの回帰直線であり、L13はセル内部抵抗rが最小rminのセルの回帰直線である。すなわち、セル内部抵抗rはrmin≦r≦rmaxの範囲でばらついている。また、L11はセル内部抵抗の平均値に関する回帰直線である。この回帰直線L11は、各セルのセル電圧に基づいて回帰演算して求めても良いし、総電圧を用いたバッテリー4の回帰直線を1セル当たりに表したものでも良い。E0,F0は、回帰直線L11,L12から得られる開放電圧である。また、電流Icmaxのときには、内部抵抗rmaxのセルの電圧はF1で、平均電圧はE1である。電流Idmaxのときには、内部抵抗rmaxのセルの電圧はF2で、平均電圧はE2である。
【0020】
図4において、E1はE1=Vmax/(セル数)となっており、ここではVmax/(セル数)をvmaxで表す。いま、充電電流をゼロから次第に増加すると、回帰直線L12で表される最大内部抵抗rmaxのセルは、電流I3(<Icmax)でセルの充電上限電圧vmaxに達してしまう。そこで、1セル当たりの出力可能電力ΔPcmaxを、従来の「Icmax×vmax」から「I3×vmax」に補正すれば、最大内部抵抗rmaxのセルは充電上限電圧vmaxを越えることがない。
【0021】
このとき、充電補正係数K1は次式(3)で算出される。そして、総電圧より求めたバッテリー4の入力可能電圧演算値Pcmaxを充電補正係数K1で式(4)のように補正し、この補正され電力K1×Pcmaxを入力可能電力P'cmaxとしてバッテリー4の回生制御を行う。
【数4】

Figure 0003711881
【0022】
一方、出力可能電力の場合も同様であり、出力補正係数K2は次式(5)により算出され、式(6)により算出される電力K2×Pdmaxを出力可能電力P'dmaxとして放電制御を行う。
【数5】
K2=(F0−E2)/(F0−F2) …(5)
P'dmax=K2×Pdmax …(6)
【0023】
図5および図6に示すフローチャートは、バッテリーコントローラ6で行われる入出力電力演算の処理手順を示したものであり、図6は図5に続く手順を示す図である。なお、図5,6に示す一連の処理は、充放電中に所定のタイミングで繰り返し行われる。ステップS1では、セルコントローラ5によりバッテリー4の各セル電圧が検出され、それらの検出値がバッテリーコントローラ6に送信される。ステップS2では、ステップS1で検出されたセル電圧の平均電圧Eaveが算出される。ステップS3では、電流センサ8によりバッテリー4とインバータ3との間の電流が検出される。
【0024】
ステップS4では、検出されたセル電圧が図3の所定範囲Y内であるか否かを判定する。この所定範囲Yは、ステップS2で算出した平均電圧Eaveを挟んだ電圧(Eave−Y/2)から電圧(Eave+Y/2)の範囲である。ステップS4において所定範囲Y内と判定されるとステップS5へ進み、一方、範囲外と判定されるとステップS1へ戻る。続くステップS5では、ステップS3で検出された電流値が図3の所定範囲X内であるか否か、すなわち、電流値≦X/2であるか否かを判定する。ステップS5において所定範囲X内と判定されるとステップS6へ進み、一方、範囲外と判定されるとステップS1へ戻る。
【0025】
車両駆動用バッテリーに用いられるリチウムイオン電池では、セル開放電圧とSOCとの間に図7に示すような相関があり、開放電圧からSOCを把握することができる。一方、セル内部抵抗とSOCとの間には図8に示すような相関があり、内部抵抗はSOCにより変化する。そのため、内部抵抗のばらつきによる補正演算をより精度良く行うには、SOCのばらつきによる内部抵抗のばらつきへの影響を排除する必要がある。
【0026】
従って上述した所定範囲Yは、例えばSOCが3%の範囲になるようにすることを目的とするが、図7に示すようにSOCの変化量に対する開放電圧の変化量は比例していないので、開放電圧の値によって変わることになる。すなわち、例えばSOCが80%程度である場合、SOCの3%分に対応する電圧幅は30mVと小さく、SOCが20%程度である場合、SOCの3%に対応する電圧幅は50mVと大きくなることになる。よって、所定範囲Yは、ステップS2で算出されたEaveに基づいて、図7に示す開放電圧−SOC特性を考慮し、変更されるものとなる。
【0027】
次に上述した所定範囲Xについて説明すると、全ての温度範囲で、開放電圧−負荷電圧の差異を最小に抑えられる程度が望ましく、本実施の形態では、例えば±2.5A以内とする。
【0028】
SOCのばらつきは開放電圧のばらつきから推定できるので、ステップS4の処理により各セルのSOCがばらついているか否かを判定することができる。また、ステップS5で電流値が電流値≦X/2であるか否かを判定することによって、電流値がゼロに近い値のものだけを採用することにより、ステップS4の判定に用いられるセル電圧が開放電圧に近い値となるように制限している。これにより補正演算におけるSOCのばらつきの影響を低減させ、補正精度の向上を図っている。また、放電電流値が小さい場合だけに補正演算を行うことにより、演算時の誤差を小さくすることができる。
【0029】
次いで、ステップS6において、電圧センサ7で検出される総電圧,電流センサ8で検出される電流値およびセルコントローラ5により検出される各セルのセル電圧を複数サンプリングする。ステップS7では、ステップS6で検出された電流値に基づいて、サンプリングが放電中に行われたか否かを判定する。ステップS7において放電状態と判定されると、ステップS8へ進んでサンプリングデータを補正演算のデータとして取得する。一方、ステップS7でNOと判定されるとステップS6へ戻り、再びデータサンプリングを行う。
【0030】
図6のステップS9では、ステップS8で取得された複数のセル電圧および電流値に基づいて、図3に示すようなセル毎の回帰直線を演算する。ステップS10では、ステップS6でサンプリングされた複数の総電圧および電流値に基づいて、バッテリー4全体の回帰直線を演算する。ステップS11では、バッテリー4全体の回帰演算に基づいて、各セルの内部抵抗を平均したものである平均内部抵抗raveを算出する。ステップS12では、各セルの回帰演算からそれぞれの内部抵抗を算出し、最大内部抵抗rmaxを有するセルを求める。この最大内部抵抗rmaxは、図3のF0,F2およびIdmaxを用いて次式(7)により算出される。
【数6】
rmax=(F0−F2)/Idmax …(7)
【0031】
ステップS13では、ステップS12で算出された最大内部抵抗rmaxが所定値r0以上か否かを判定する。所定値r0としては、電池が新品のときの2〜3倍の値とし、例えば1.2Ωとする。ステップS13でrmax≧r0と判定されると、ステップS14へ進んで図1のインジケータ9にセル異常が生じたことを示す警告を表示した後に、ステップS15へ進む。一方、ステップS13でrmax<r0と判定されると、ステップS15に進んで上述した式(5)により出力補正係数K2を算出し、次のステップS16において式(3)により充電補正係数K1を算出する。そして、ステップS17で式(6)の出力可能電力K2×Pcmaxを算出したならば、続くステップS18で式(4)により入力可能電力K1×Pdmaxを算出し、一連の処理を終了する。
【0032】
図9は、本発明による充放電制御装置による出力例を、従来と比較して示した図である。(A)はアクセル踏み込み量に応じた要求出力を示しており、(B)はバッテリー4の回帰演算のみを用いて算出した従来の出力可能電力を用いた場合の出力電力を示し、(C)は本実施の形態の補正された出力可能電力を用いた場合の出力電力を示したものである。図9に示す例では、要求出力は最終的にP1となるが、(B)および(C)ではセルの内部抵抗のばらつきにより、最終的な出力はP2に制限されている。
【0033】
従来の出力(B)の場合には、出力可能電力にセル内部抵抗のばらつきが考慮されていないため、出力がP2となるまでは、要求出力と一致して増加している。しかし、出力がP2に達すると、最大内部抵抗rmaxのセル電圧が上限電圧に達するため、セルコントローラ5のセル上下限電圧保護機能が作動して、出力P2に出力制限される。そのため、時刻t0までは要求通りに出力されていたものが、時刻t0になると急に要求通りの出力が出なくなる。一方、出力(C)では、式(6)で示すように出力補正係数K2により出力可能電力が補正されるため、要求出力に対して出力補正係数K2に応じた所定比率の出力が出力開始時から出力される。そのため、出力Bに達するまではアクセル踏み込み量の変化に比例して出力が変化するので、ドライバーは違和感を感じることがない。
【0034】
上述した実施の形態では、E0およびF0として回帰直線L11,L12から算出される開放電圧を用いたが、所定範囲Xで検出された総電圧およびセル電圧を使用しても良い。また、回帰演算を用いて単位電池の最大内部抵抗を算出しているが、回帰演算以外の方法により最大内部抵抗を算出して、補正をするようにしても良い。
【0035】
また、上述した実施の形態では、放電中に電圧センサ7および電流センサ8によって電圧V、電流Iをサンプリングするようにしたが、充電中に電圧V、電流Iをンプリングするようにしても、放電中および充電中の両方において行っても良い。特に、組電池がリチウム・イオンで構成されている場合には、放電および充電で、電流と電圧の特性に変化が少ないので特に効果的である。
【0036】
なお、上述した実施の形態では、ハイブリッド電気自動車に搭載された駆動用バッテリーを例に説明したが、本発明の充放電制御装置は他のバッテリーにも適用することができる。
【0037】
以上説明した実施の形態と特許請求の範囲の要素との対応において、バッテリーコントローラ6は充放電制御装置,補正演算部,入出力電力演算部および回帰演算部を、セルコントローラ5は電圧検出部および判定部をそれぞれ構成する。
【図面の簡単な説明】
【図1】本発明による充放電制御装置を備えるハイブリッド電気自動車(HEV)の駆動系の概略構成を示す図である。
【図2】バッテリー4のV−I特性を示す図である。
【図3】セル毎のV−I特性を示す図である。
【図4】図3に示すV−I特性の充電領域の拡大図である。
【図5】バッテリーコントローラ6で行われる入出力電力演算の処理手順を示すフローチャートである。
【図6】図5に続く手順を示すフローチャートである。
【図7】開放電圧とSOCとの相関を示す図である。
【図8】内部抵抗とSOCとの相関を示す図である。
【図9】本発明による充放電制御装置の出力例を示す図である。
【符号の説明】
1 エンジン
2 モータ
3 インバータ
4 バッテリー
5 セルコントローラ
6 バッテリーコントローラ
7 電圧センサ
8 電流センサ
9 インジケータ
K1 充電補正係数
K2 出力補正係数
L1,L11〜L13 回帰直線[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a charge / discharge control device for an assembled battery used as a drive battery for an electric vehicle, for example.
[0002]
[Prior art]
Conventionally, an assembled battery in which a plurality of unit batteries called cells are connected in series is used for a battery mounted on an electric vehicle. As a calculation method of such battery input / output possible power, there is a method disclosed in Japanese Patent Laid-Open No. 11-41711. In the conventional calculation method, the total voltage and discharge current value of the battery are sampled at the time of discharging, and the input / output possible power is obtained by performing regression calculation of the VI characteristic based on this sampling data.
[0003]
For example, when calculating the input power, a regression line is calculated based on sampling data obtained during discharge. Next, the current value Icmax at the battery upper limit voltage Vmax that is the target voltage of the inputtable voltage is obtained from the regression line, and the inputtable power Pcmax is calculated by the following equation. For example, in regenerative control at the time of braking, control is performed such that the charging power becomes the input allowable power Pcmax.
[Expression 1]
Pcmax = Icmax × Vmax
[0004]
By the way, at the time of regenerative control, regenerative restriction is performed so that each cell does not exceed a predetermined charging upper limit voltage for battery protection. In the discharge control, output restriction is performed so that each cell does not fall below a predetermined discharge lower limit voltage.
[0005]
[Problems to be solved by the invention]
However, in the conventional input / output possible power calculation method, as described above, the input / output possible power is calculated based on the voltage and current of the entire assembled battery, and variations in internal resistance of each cell are not taken into consideration. If the variation of the internal resistance is large, for example, when a cell having the maximum internal resistance reaches the discharge lower limit voltage during running control, the discharge limit is set so that the discharge current does not increase further. .
[0006]
Therefore, until such discharge restriction is executed, power corresponding to the accelerator operation is output based on the calculated output possible power, but when the cell having the maximum internal resistance reaches the discharge lower limit voltage, the discharge restriction is performed. Is executed, and the output is limited to a power smaller than the requested output power. Therefore, for example, if the output is limited when the driver depresses the accelerator for a predetermined time in order to accelerate, the output intended by the driver is not increased, and the driver may feel uncomfortable.
[0007]
The objective of this invention is providing the charging / discharging control apparatus which performs charging / discharging control of an assembled battery using the input / output possible electric power which considered the internal resistance of the unit battery.
[0008]
[Means for Solving the Problems]
A description will be given in association with FIGS. 1 and 3 showing an embodiment of the invention.
(1) Referring to FIG. 1, the charge / discharge control device 6 according to the invention of claim 1 detects the current value of the assembled battery 4 and the total voltage value of the assembled battery 4. Total voltage detection unit 7, unit battery voltage detection unit 5 that detects each voltage value of a plurality of unit batteries constituting the assembled battery 4, and the voltage / current characteristics of the assembled battery 4 are regressed based on the current value and the total voltage Based on the calculation results of the regression calculation unit 6 for calculating the voltage / current characteristics of each unit battery based on the current value and the voltage value of the unit battery and the calculation result of the regression calculation unit 6 for the assembled battery 4 4 is calculated from the input / output possible power calculation unit 6 for calculating the input possible power and the output possible power, the voltage / current characteristic L 12 of the unit battery having the largest internal resistance calculated by the regression calculation unit 6 and the charging upper limit voltage. Current value and calculation by regression calculation unit 6 The calculated ratio is a correction coefficient between the current value I cmax calculated from the voltage-current characteristics L 11 and the charging upper limit voltage of the assembled battery, corrects the input electric power calculated by the input electric power calculating unit 6 The above-described object is achieved by performing charging / discharging control of the assembled battery 4 based on the calculation results of the input / output possible power calculation unit 6 and the correction calculation unit 6.
(2) The charge / discharge control device 6 according to the invention of claim 2 includes a current detector 8 that detects a current value of the assembled battery 4, a total voltage detector 7 that detects a total voltage value of the assembled battery 4, and an assembled battery. Unit battery voltage detection unit 5 for detecting each voltage value of a plurality of unit batteries constituting 4, and performing a regression calculation of the voltage / current characteristics of the assembled battery 4 based on the current value and the total voltage, and the current value and unit battery The regression calculation unit 6 that performs regression calculation of the voltage / current characteristics of each unit battery based on the voltage value of the battery unit, and the input possible power and the output possible power of the assembled battery 4 based on the calculation result of the regression calculation unit 6 related to the assembled battery 4 Input / output possible power calculation unit 6, current value calculated from voltage / current characteristic L 12 of the unit battery having the largest internal resistance and discharge lower limit voltage calculated by regression calculation unit 6, and regression calculation unit 6 Battery voltage and current characteristics calculated by 11 and the ratio between the current value I dmax calculated from the discharge lower limit voltage to calculate a correction coefficient and a correction calculating unit 6 for correcting the output power calculated by the input electric power calculating unit 6 by the correction factor The above-described object is achieved by performing charge / discharge control of the assembled battery 4 based on the calculation results of the input / output capable power calculation unit 6 and the correction calculation unit 6.
( 3 ) Referring to FIGS. 1 and 3, the invention of claim 3 is the charge / discharge control device 6 according to claim 1 or 2 , wherein the voltage value detected by the unit battery voltage detector 5 is When the variation is not more than the predetermined voltage value Y and the magnitude of the current value is not more than the predetermined current value (X / 2), the regression calculation unit 6 performs the calculation.
( 4 ) The invention of claim 4 is the charge / discharge control device 6 according to any one of claims 1 to 3, wherein the unit battery having the largest internal resistance is not less than a predetermined value. A determination unit 5 for determining an abnormality is provided.
[0009]
In the section of means for solving the above problems, the drawings of the embodiments of the invention are used for easy understanding of the present invention. However, the present invention is not limited to the embodiments of the invention. Absent.
[0010]
【The invention's effect】
(1) In the invention of claim 1, a current value calculated from the voltage / current characteristics and charging upper limit voltage of the unit battery having the largest internal resistance, and a current calculated from the voltage / current characteristics and charging upper limit voltage of the assembled battery A correction coefficient that is a ratio to the value is calculated, the calculated input possible power is corrected with the correction coefficient, and charge / discharge control of the assembled battery is performed based on the corrected input possible power. The input power is not suddenly limited when the unit battery reaches the limit voltage.
(2) In the invention of claim 2, the current value calculated from the voltage / current characteristics and discharge lower limit voltage of the unit battery having the largest internal resistance, and the current calculated from the voltage / current characteristics and discharge lower limit voltage of the assembled battery A correction coefficient that is a ratio to the value is calculated, the calculated output power is corrected with the correction coefficient, and charge / discharge control of the assembled battery is performed based on the corrected output power, so that the internal resistance is maximized. The output power is not suddenly limited when the unit battery reaches the limit voltage.
( 3 ) In the invention of claim 3 , the same effect as that of claim 1 or 2 can be obtained, the variation of the voltage value of each unit battery is not more than a predetermined voltage value, and the current value is not more than the predetermined current value. Since the regression calculation for each unit battery is performed at this time, the influence of variations in the battery state (SOC) of each unit battery can be reduced, and the correction accuracy of the correction calculation unit can be improved.
( 4 ) In the invention of claim 4 , the same effect as in any of claims 1 to 3 can be obtained, and an abnormality of the unit battery can be detected with high accuracy.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram showing a hybrid electric vehicle (HEV) equipped with a charge / discharge control device according to the present invention, and is a diagram showing a schematic configuration of a parallel HEV drive system. A rotor of the electric motor 2 is directly connected to the main shaft of the engine 1. The driving force of the engine 1 and / or the motor 2 is transmitted to the axle via a driving system (not shown). The inverter 3 converts the DC power from the battery 4 formed of a secondary battery into AC power and supplies it to the motor 2, and also converts the AC power from the motor 2 into DC power in the power generation mode to be described later. To supply.
[0012]
As the battery 4, a so-called assembled battery in which a plurality of single cells are connected in series is used. The cell voltage of each single cell constituting the assembled battery is detected by the cell controller 5, and the detected value is output to the battery controller 6. For example, a lithium ion battery or the like is used for the single cell. The battery controller 6 receives the cell voltage value sent from the cell controller 5, the total voltage value of the battery 4 detected by the voltage sensor 7, and the charge / discharge current value detected by the current sensor 8. A battery controller 6 composed of a microcomputer and its peripheral components performs charge / discharge control of the battery 4 based on these values. The indicator 9 displays a cell state (cell abnormality or the like) detected by the battery controller 6.
[0013]
The operation mode of the motor 2 in the parallel HEV includes a drive mode for driving the axle and a power generation mode for charging the battery 4. When the vehicle 4 is driven, that is, when accelerating, traveling on a flat road, or when climbing a hill, when the battery 4 that supplies power to the motor 2 is in a sufficiently charged state, the motor 1 is operated in the drive mode to drive the engine 1. And the motor 2 drive. However, when the state of charge of the battery 4 is low, the motor 2 is operated in the power generation mode to run by the driving force of the engine 1 and rotate the rotor of the motor 2 to generate power by the motor 2 to generate the battery 4. To charge.
[0014]
On the other hand, at the time of braking of the vehicle, that is, at the time of deceleration or downhill, the engine 1 and the motor 2 are driven by the rotational force of the wheels via the drive system. At this time, the motor 2 is operated in the power generation mode, and the regenerative energy is absorbed to charge the battery 4.
[0015]
Next, a method for calculating the input / output possible power of the battery 4 in charge / discharge control will be described. First, the voltage V and the current I are sampled by the voltage sensor 7 and the current sensor 8 during discharge, and a regression line of the VI characteristic is obtained based on the sampling data. FIG. 2 is a diagram showing VI characteristics, where “x” indicates sampling data and L1 indicates a regression line. The slope of the regression line L1 represents the internal resistance R of the battery 4, and the value E at the intersection of the regression line L1 and the V axis is the open circuit voltage of the battery 4.
[0016]
When the current value Icmax at the intersection A between the straight line indicating the charging upper limit voltage Vmax and the regression line L1 is used, the input possible power Pcmax of the battery 4 is calculated by the following equation (1).
[Expression 2]
Pcmax = Icmax × Vmax (1)
[0017]
When the current value Icmax at the intersection B between the straight line indicating the discharge lower limit voltage Vmin and the regression line L1 is used, the output possible power Pdmin of the battery 4 is calculated by the following equation (2).
[Equation 3]
Pdmax = Idmax × Vmin (2)
[0018]
The input possible power Pcmax and the output possible power Pdmin calculated in this way are corrected according to variations in internal resistance of each cell. 3 and 4 are diagrams for explaining the correction method and show the VI characteristics for each cell. FIG. 4 is an enlarged view of a portion of the charging area in FIG.
[0019]
In FIG. 3, L12 is a regression line of a cell having a cell internal resistance r of a maximum rmax, and L13 is a regression line of a cell having a cell internal resistance r of a minimum rmin. That is, the cell internal resistance r varies in the range of rmin ≦ r ≦ rmax. L11 is a regression line concerning the average value of the cell internal resistance. The regression line L11 may be obtained by regression calculation based on the cell voltage of each cell, or may be a regression line of the battery 4 using the total voltage expressed per cell. E0 and F0 are open-circuit voltages obtained from the regression lines L11 and L12. When the current is Icmax, the cell voltage of the internal resistance rmax is F1, and the average voltage is E1. When the current is Idmax, the cell voltage of the internal resistance rmax is F2, and the average voltage is E2.
[0020]
In FIG. 4, E1 is E1 = Vmax / (number of cells), and here, Vmax / (number of cells) is represented by vmax. If the charging current is gradually increased from zero, the cell having the maximum internal resistance rmax represented by the regression line L12 reaches the charging upper limit voltage vmax of the cell at the current I3 (<Icmax). Therefore, if the output possible power ΔPcmax per cell is corrected from “Icmax × vmax” to “I3 × vmax”, the cell having the maximum internal resistance rmax does not exceed the charging upper limit voltage vmax.
[0021]
At this time, the charging correction coefficient K1 is calculated by the following equation (3). Then, the input possible voltage calculation value Pcmax of the battery 4 obtained from the total voltage is corrected by the charge correction coefficient K1 as shown in the equation (4), and the corrected power K1 × Pcmax is set as the input possible power P′cmax. Regenerative control is performed.
[Expression 4]
Figure 0003711881
[0022]
On the other hand, the same applies to the case of outputable power, and the output correction coefficient K2 is calculated by the following equation (5), and discharge control is performed using the electric power K2 × Pdmax calculated by equation (6) as the outputable power P′dmax. .
[Equation 5]
K2 = (F0−E2) / (F0−F2) (5)
P′dmax = K2 × Pdmax (6)
[0023]
The flowcharts shown in FIGS. 5 and 6 show the processing procedure of the input / output power calculation performed by the battery controller 6, and FIG. 6 shows the procedure following FIG. The series of processes shown in FIGS. 5 and 6 are repeatedly performed at a predetermined timing during charging / discharging. In step S <b> 1, each cell voltage of the battery 4 is detected by the cell controller 5, and those detected values are transmitted to the battery controller 6. In step S2, the average voltage Eave of the cell voltage detected in step S1 is calculated. In step S <b> 3, the current between the battery 4 and the inverter 3 is detected by the current sensor 8.
[0024]
In step S4, it is determined whether or not the detected cell voltage is within the predetermined range Y in FIG. The predetermined range Y is a range from a voltage (Eave−Y / 2) to a voltage (Eave + Y / 2) across the average voltage Eave calculated in step S2. If it is determined in step S4 that it is within the predetermined range Y, the process proceeds to step S5, whereas if it is determined that it is out of the range, the process returns to step S1. In the subsequent step S5, it is determined whether or not the current value detected in step S3 is within the predetermined range X in FIG. 3, that is, whether or not the current value ≦ X / 2. If it is determined in step S5 that it is within the predetermined range X, the process proceeds to step S6, whereas if it is determined that it is out of the range, the process returns to step S1.
[0025]
In the lithium ion battery used for the vehicle drive battery, there is a correlation as shown in FIG. 7 between the cell open voltage and the SOC, and the SOC can be grasped from the open voltage. On the other hand, there is a correlation as shown in FIG. 8 between the cell internal resistance and the SOC, and the internal resistance changes depending on the SOC. Therefore, in order to perform the correction calculation due to the variation in the internal resistance with higher accuracy, it is necessary to eliminate the influence on the variation in the internal resistance due to the variation in the SOC.
[0026]
Therefore, the above-described predetermined range Y is intended to make the SOC within a range of 3%, for example, but the change amount of the open circuit voltage is not proportional to the change amount of the SOC as shown in FIG. It depends on the value of the open circuit voltage. That is, for example, when SOC is about 80%, the voltage width corresponding to 3% of SOC is as small as 30 mV, and when SOC is about 20%, the voltage width corresponding to 3% of SOC is as large as 50 mV. It will be. Therefore, the predetermined range Y is changed in consideration of the open-circuit voltage-SOC characteristic shown in FIG. 7 based on Eave calculated in step S2.
[0027]
Next, the predetermined range X described above will be described. It is desirable that the difference between the open-circuit voltage and the load voltage is suppressed to the minimum in all temperature ranges. In the present embodiment, for example, it is within ± 2.5 A.
[0028]
Since the variation in SOC can be estimated from the variation in open circuit voltage, it is possible to determine whether or not the SOC of each cell varies by the processing in step S4. Further, by determining whether or not the current value is current value ≦ X / 2 in step S5, by adopting only the current value close to zero, the cell voltage used for the determination in step S4 Is limited to a value close to the open circuit voltage. As a result, the influence of SOC variation in the correction calculation is reduced, and the correction accuracy is improved. Further, by performing the correction calculation only when the discharge current value is small, the error during the calculation can be reduced.
[0029]
Next, in step S6, the total voltage detected by the voltage sensor 7, the current value detected by the current sensor 8, and the cell voltage of each cell detected by the cell controller 5 are sampled. In step S7, based on the current value detected in step S6, it is determined whether sampling has been performed during discharge. If it is determined in step S7 that the battery is discharged, the process proceeds to step S8, and sampling data is acquired as correction calculation data. On the other hand, if NO is determined in step S7, the process returns to step S6, and data sampling is performed again.
[0030]
In step S9 of FIG. 6, a regression line for each cell as shown in FIG. 3 is calculated based on the plurality of cell voltages and current values acquired in step S8. In step S10, a regression line of the entire battery 4 is calculated based on the plurality of total voltages and current values sampled in step S6. In step S11, an average internal resistance rave, which is the average of the internal resistances of the cells, is calculated based on the regression calculation of the entire battery 4. In step S12, each internal resistance is calculated from the regression calculation of each cell, and a cell having the maximum internal resistance rmax is obtained. This maximum internal resistance rmax is calculated by the following equation (7) using F0, F2 and Idmax in FIG.
[Formula 6]
rmax = (F0−F2) / Idmax (7)
[0031]
In step S13, it is determined whether or not the maximum internal resistance rmax calculated in step S12 is greater than or equal to a predetermined value r0. The predetermined value r0 is 2 to 3 times the value when the battery is new, for example, 1.2Ω. If it is determined in step S13 that rmax ≧ r0, the process proceeds to step S14, a warning indicating that a cell abnormality has occurred is displayed on the indicator 9 in FIG. 1, and then the process proceeds to step S15. On the other hand, if it is determined in step S13 that rmax <r0, the process proceeds to step S15 to calculate the output correction coefficient K2 by the above-described equation (5), and in the next step S16, the charge correction coefficient K1 is calculated by the equation (3). To do. If the outputtable power K2 × Pcmax in the equation (6) is calculated in step S17, the inputable power K1 × Pdmax is calculated in the following step S18 by the equation (4), and the series of processes is terminated.
[0032]
FIG. 9 is a diagram showing an output example of the charge / discharge control device according to the present invention in comparison with the conventional example. (A) shows the required output according to the accelerator depression amount, (B) shows the output power when using the conventional output possible power calculated using only the regression calculation of the battery 4, and (C) Shows the output power when the corrected output possible power of the present embodiment is used. In the example shown in FIG. 9, the required output finally becomes P1, but in (B) and (C), the final output is limited to P2 due to variations in the internal resistance of the cell.
[0033]
In the case of the conventional output (B), the variation in the cell internal resistance is not taken into consideration in the output power, and therefore increases until the output reaches P2, in accordance with the required output. However, when the output reaches P2, the cell voltage of the maximum internal resistance rmax reaches the upper limit voltage, so that the cell upper / lower limit voltage protection function of the cell controller 5 is activated and the output is limited to the output P2. Therefore, what was output as requested until time t0 suddenly stops being output as requested at time t0. On the other hand, in the output (C), since the output possible power is corrected by the output correction coefficient K2 as shown in the equation (6), an output with a predetermined ratio corresponding to the output correction coefficient K2 with respect to the requested output is output. Is output from. Therefore, until the output B is reached, the output changes in proportion to the change in the accelerator depression amount, so the driver does not feel uncomfortable.
[0034]
In the embodiment described above, the open circuit voltage calculated from the regression lines L11 and L12 is used as E0 and F0. However, the total voltage and cell voltage detected in the predetermined range X may be used. Further, although the maximum internal resistance of the unit battery is calculated using the regression calculation, the maximum internal resistance may be calculated by a method other than the regression calculation and corrected.
[0035]
In the above-described embodiment, the voltage V and the current I are sampled by the voltage sensor 7 and the current sensor 8 during the discharge. It may be performed both during and during charging. In particular, when the assembled battery is composed of lithium ions, it is particularly effective because there is little change in the current and voltage characteristics during discharging and charging.
[0036]
In the above-described embodiment, the driving battery mounted on the hybrid electric vehicle has been described as an example. However, the charge / discharge control device of the present invention can also be applied to other batteries.
[0037]
In the correspondence between the embodiment described above and the elements of the claims, the battery controller 6 includes a charge / discharge control device, a correction calculation unit, an input / output power calculation unit, and a regression calculation unit, and the cell controller 5 includes a voltage detection unit and Each determination unit is configured.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of a drive system of a hybrid electric vehicle (HEV) including a charge / discharge control device according to the present invention.
FIG. 2 is a diagram illustrating a VI characteristic of a battery.
FIG. 3 is a diagram illustrating VI characteristics for each cell.
4 is an enlarged view of a charging region of the VI characteristic shown in FIG.
FIG. 5 is a flowchart showing a processing procedure of input / output power calculation performed by the battery controller 6;
6 is a flowchart showing a procedure following FIG. 5. FIG.
FIG. 7 is a diagram showing a correlation between an open circuit voltage and SOC.
FIG. 8 is a diagram showing a correlation between internal resistance and SOC.
FIG. 9 is a diagram showing an output example of the charge / discharge control device according to the present invention.
[Explanation of symbols]
1 Engine 2 Motor 3 Inverter 4 Battery 5 Cell Controller 6 Battery Controller 7 Voltage Sensor 8 Current Sensor 9 Indicator K1 Charge Correction Coefficient K2 Output Correction Coefficients L1, L11 to L13 Regression Line

Claims (4)

組電池の電流値を検出する電流検出部と、
前記組電池の総電圧値を検出する総電圧検出部と、
前記組電池を構成する複数の単位電池の各電圧値を検出する単位電池電圧検出部と、
前記電流値および総電圧に基づいて前記組電池の電圧・電流特性を回帰演算するとともに、前記電流値および前記単位電池の電圧値に基づいて各単位電池の電圧・電流特性を回帰演算する回帰演算部と、
前記組電池に関する前記回帰演算部の演算結果に基づいて、前記組電池の入力可能電力および出力可能電力を算出する入出力可能電力演算部と、
前記回帰演算部で演算された内部抵抗の最も大きな単位電池の電圧・電流特性および充電上限電圧から算出される電流値と、前記回帰演算部で演算された組電池の電圧・電流特性および充電上限電圧から算出される電流値との比である補正係数を算出し、前記入出力可能電力演算部により算出された前記入力可能電力を前記補正係数で補正する補正演算部とを備え、
前記入出力可能電力演算部および補正演算部の各演算結果に基づいて前記組電池の充放電制御を行うことを特徴とする充放電制御装置。
A current detection unit for detecting the current value of the assembled battery;
A total voltage detector for detecting a total voltage value of the assembled battery;
A unit battery voltage detector for detecting each voltage value of a plurality of unit batteries constituting the assembled battery;
Regression calculation for performing regression calculation of voltage / current characteristics of the assembled battery based on the current value and total voltage, and regression calculation of voltage / current characteristics of each unit battery based on the current value and voltage value of the unit battery And
Based on the calculation result of the regression calculation unit related to the assembled battery, an input / output possible power calculation unit that calculates input possible power and output possible power of the assembled battery;
The current value calculated from the voltage / current characteristic and charging upper limit voltage of the unit battery having the largest internal resistance calculated by the regression calculation unit, and the voltage / current characteristic and charging upper limit of the assembled battery calculated by the regression calculation unit A correction coefficient that calculates a correction coefficient that is a ratio to a current value calculated from the voltage, and corrects the input possible power calculated by the input / output possible power calculation part with the correction coefficient ,
The charging / discharging control apparatus characterized by performing charging / discharging control of the said assembled battery based on each calculation result of the said input / output possible electric power calculating part and a correction | amendment calculating part.
組電池の電流値を検出する電流検出部と、A current detector for detecting the current value of the assembled battery;
前記組電池の総電圧値を検出する総電圧検出部と、  A total voltage detector for detecting a total voltage value of the assembled battery;
前記組電池を構成する複数の単位電池の各電圧値を検出する単位電池電圧検出部と、  A unit battery voltage detector for detecting each voltage value of a plurality of unit batteries constituting the assembled battery;
前記電流値および総電圧に基づいて前記組電池の電圧・電流特性を回帰演算するとともに、前記電流値および前記単位電池の電圧値に基づいて各単位電池の電圧・電流特性を回帰演算する回帰演算部と、  Regression calculation for performing regression calculation of voltage / current characteristics of the assembled battery based on the current value and total voltage, and regression calculation of voltage / current characteristics of each unit battery based on the current value and voltage value of the unit battery And
前記組電池に関する前記回帰演算部の演算結果に基づいて、前記組電池の入力可能電力および出力可能電力を算出する入出力可能電力演算部と、  Based on the calculation result of the regression calculation unit related to the assembled battery, an input / output possible power calculation unit that calculates input possible power and output possible power of the assembled battery;
前記回帰演算部で演算された内部抵抗の最も大きな単位電池の電圧・電流特性および放電下限電圧から算出される電流値と、前記回帰演算部で演算された組電池の電圧・電流特性および放電下限電圧から算出される電流値との比である補正係数を算出し、前記入出力可能電力演算部により算出された前記出力可能電力を前記補正係数で補正する補正演算部とを備え、  The current value calculated from the voltage / current characteristics and discharge lower limit voltage of the unit battery having the largest internal resistance calculated by the regression calculation section, and the voltage / current characteristics and discharge lower limit of the assembled battery calculated by the regression calculation section A correction coefficient that calculates a correction coefficient that is a ratio with the current value calculated from the voltage, and corrects the output power that is calculated by the input / output possible power calculator by the correction coefficient,
前記入出力可能電力演算部および補正演算部の各演算結果に基づいて前記組電池の充放電制御を行うことを特徴とする充放電制御装置。  A charge / discharge control device that performs charge / discharge control of the assembled battery based on calculation results of the input / output possible power calculation unit and the correction calculation unit.
請求項1または2に記載の充放電制御装置において、In the charging / discharging control device according to claim 1 or 2,
前記回帰演算部は、前記単位電池電圧検出部で検出された電圧値のばらつきが所定電圧値以下であって、かつ、前記電流値の大きさが所定電流値以下の場合に、前記回帰演算を行うことを特徴とする充放電制御装置。  The regression calculation unit performs the regression calculation when a variation in the voltage value detected by the unit battery voltage detection unit is equal to or less than a predetermined voltage value and the magnitude of the current value is equal to or less than a predetermined current value. A charge / discharge control device.
請求項1〜3のいずれかに記載の充放電制御装置において、In the charging / discharging control apparatus in any one of Claims 1-3,
前記内部抵抗の最も大きな単位電池の内部抵抗が所定値以上のときに、その単位電池を異常と判定する判定部を設けたことを特徴とする充放電制御装置。  A charge / discharge control apparatus comprising a determination unit that determines that a unit battery has an abnormality when an internal resistance of the unit battery having the largest internal resistance is equal to or greater than a predetermined value.
JP2001068655A 2001-03-12 2001-03-12 Charge / discharge control device Expired - Fee Related JP3711881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001068655A JP3711881B2 (en) 2001-03-12 2001-03-12 Charge / discharge control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001068655A JP3711881B2 (en) 2001-03-12 2001-03-12 Charge / discharge control device

Publications (2)

Publication Number Publication Date
JP2002272011A JP2002272011A (en) 2002-09-20
JP3711881B2 true JP3711881B2 (en) 2005-11-02

Family

ID=18926809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001068655A Expired - Fee Related JP3711881B2 (en) 2001-03-12 2001-03-12 Charge / discharge control device

Country Status (1)

Country Link
JP (1) JP3711881B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101855774A (en) * 2007-11-13 2010-10-06 丰田自动车株式会社 Secondary battery control device and method

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4196210B2 (en) * 2004-09-10 2008-12-17 日産自動車株式会社 Charge / discharge control device for battery pack
KR100717789B1 (en) 2005-07-29 2007-05-11 삼성에스디아이 주식회사 Method for estimating soc of secondary battery module
JP4786355B2 (en) 2006-01-31 2011-10-05 株式会社日本自動車部品総合研究所 Power supply voltage control method for vehicles
JP4484858B2 (en) * 2006-10-19 2010-06-16 日立ビークルエナジー株式会社 Storage battery management device and vehicle control device including the same
JP4943296B2 (en) * 2007-10-30 2012-05-30 ソニー株式会社 Battery pack, secondary battery charging method, and charging device
JP5366601B2 (en) * 2009-03-17 2013-12-11 本田技研工業株式会社 Charge control device
JP2011030397A (en) * 2009-07-29 2011-02-10 Shinmaywa Industries Ltd Motor-driven system having power storage device
DE102009045783A1 (en) 2009-10-19 2011-04-21 Robert Bosch Gmbh Precise power prediction method for battery packs
JP5682433B2 (en) * 2010-06-09 2015-03-11 日産自動車株式会社 Charge control system
JP5299397B2 (en) * 2010-10-18 2013-09-25 株式会社デンソー Battery status monitoring device
JP5616254B2 (en) * 2011-02-28 2014-10-29 日立オートモティブシステムズ株式会社 Battery state detection method and control device
JP5626190B2 (en) * 2011-12-02 2014-11-19 トヨタ自動車株式会社 Power storage system
JP5955714B2 (en) * 2012-09-18 2016-07-20 株式会社東芝 Battery pack and electric vehicle
JP6376069B2 (en) * 2015-07-30 2018-08-22 トヨタ自動車株式会社 Vehicle power supply
CN105490331B (en) * 2015-12-19 2022-01-14 江苏常隆客车有限公司 Battery management system for electric vehicle
CN110509814A (en) * 2019-09-10 2019-11-29 海汇新能源汽车有限公司 Electric vehicle battery low battery Preservation tactics
EP3871919B1 (en) * 2020-02-25 2022-04-06 Samsung SDI Co., Ltd. Method and detection unit for detecting inhomogeneous cell performance of a battery system
MX2022013412A (en) * 2020-04-27 2022-11-14 Nissan Motor Output control method for secondary battery and output control system for secondary battery.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101855774A (en) * 2007-11-13 2010-10-06 丰田自动车株式会社 Secondary battery control device and method
CN101855774B (en) * 2007-11-13 2013-05-22 丰田自动车株式会社 Secondary battery control device and method

Also Published As

Publication number Publication date
JP2002272011A (en) 2002-09-20

Similar Documents

Publication Publication Date Title
JP3711881B2 (en) Charge / discharge control device
JP3879278B2 (en) Charge amount calculation method and charge amount calculation device for hybrid vehicle
JP3409661B2 (en) Control device for hybrid vehicle
JP2004014205A (en) Detection system of battery abnormality and degradation
US9475480B2 (en) Battery charge/discharge control device and hybrid vehicle using the same
JP4649101B2 (en) Secondary battery status detection device and status detection method
JP4722976B2 (en) Storage capacity controller
JP3864590B2 (en) Battery charge state detection device
JP3395694B2 (en) Calculation method for battery capacity deterioration of secondary battery
WO2016140148A1 (en) Battery control device and vehicle system
CN103079897B (en) Control device for vehicle and control method for vehicle
JP5514822B2 (en) Storage capacity management device
JP2002243813A (en) Arithmetic unit for computing deterioration of capacity of secondary battery
JP3543662B2 (en) SOC calculation method for secondary battery for electric vehicle
US20180118049A1 (en) Apparatus and method for controlling charging of battery for hybrid vehicle
JP5482056B2 (en) Battery pack capacity adjustment device
US20140062409A1 (en) Power supply system
JP3104483B2 (en) Battery remaining capacity detection device for hybrid vehicles
JP7447631B2 (en) Cruising range calculation device
JP3750412B2 (en) In-vehicle battery control system
JP3692192B2 (en) Battery remaining capacity detector
JP3772730B2 (en) Deterioration diagnosis device for vehicle battery
JP3674465B2 (en) Maximum charge / discharge power calculation device for batteries for electric vehicles
JP4876340B2 (en) Battery control device
JP3879358B2 (en) Battery characteristic calculation method and battery control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees