JP3879358B2 - Battery characteristic calculation method and battery control device - Google Patents

Battery characteristic calculation method and battery control device Download PDF

Info

Publication number
JP3879358B2
JP3879358B2 JP2000069124A JP2000069124A JP3879358B2 JP 3879358 B2 JP3879358 B2 JP 3879358B2 JP 2000069124 A JP2000069124 A JP 2000069124A JP 2000069124 A JP2000069124 A JP 2000069124A JP 3879358 B2 JP3879358 B2 JP 3879358B2
Authority
JP
Japan
Prior art keywords
battery
deterioration coefficient
output
secondary battery
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000069124A
Other languages
Japanese (ja)
Other versions
JP2001257009A (en
Inventor
康平 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000069124A priority Critical patent/JP3879358B2/en
Publication of JP2001257009A publication Critical patent/JP2001257009A/en
Application granted granted Critical
Publication of JP3879358B2 publication Critical patent/JP3879358B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、電気自動車等の電気車に用いられる2次電池の電池特性算出方法、および2次電池の電池制御装置に関する。
【0002】
【従来の技術】
電気自動車(EV)やハイブリッド車(HEV)には、モータ駆動用の2次電池が搭載されている。この2次電池の電池特性は、一般的に放電電力量と出力との関係を示す「放電電力量−出力特性」によって表される。2次電池の劣化時の電池特性(劣化時電池特性)は、電池が新品の時の特性(初期電池特性)を出力劣化係数および容量劣化係数で補正したものが用いられている。このような補正方法としては、特開平10−289734号公報や特開平11−55802号公報に開示されているものがある。
【0003】
出力劣化係数は、放電深度(DOD)が0〜50%のときに正確に求められることから、出力劣化演算は放電深度(DOD)が0〜50%の範囲のときに行うようにしている。一方、容量劣化係数は放電深度(DOD)が50〜100%のときに正確に求められることから、容量劣化演算は放電深度(DOD)が50〜100%の範囲のときに行うようにしている。各劣化演算とも、演算を繰り返し行う際に、それ以前に求められた劣化係数に基づいて、次の新たな劣化係数を演算する、いわゆる学習演算を行って、正確な出力劣化係数および容量劣化係数が速やかに算出されるようにしている。
【0004】
【発明が解決しようとする課題】
ところで、上述したような演算は2次電池を制御する電池制御装置(バッテリーコントローラと呼ばれる)によって行われ、算出された各劣化係数はバッテリーコントローラに記憶される。出力劣化係数および容量劣化係数は、電池が新品時の値を100としたパーセンテージで表され、新品時のバッテリーコントローラには、出力劣化係数および容量劣化係数の値として100%が記憶されている。そのため、バッテリーコントローラを新品のものに交換した場合、電池の劣化状態がどのような状態であっても、交換当初は、このバッテリーコントローラに記憶されている100%という値を用いた初期特性が電池の特性と見なされる。
【0005】
そして、放電深度(DOD)=0%から50%まで放電する際に出力劣化係数の学習演算が行われ、その後、放電深度(DOD)=50%から100%まで放電する際に容量劣化係数の学習演算が行われる。これにより、電池特性は初期特性から実際の電池特性へ近づくことになる。ここで、放電深度の算出は次々と更新される電池特性に基づいて行われるが、容量劣化係数の演算が開始される放電深度(DOD)の基準値(DOD)=50%は初期特性で算出した場合の値である。
【0006】
しかしながら、電池が容量劣化係数50%未満に容量劣化しているときに、新品のバッテリーコントローラと交換した場合には、電池が放電終了状態となるまで放電しても放電深度(DOD)の算出値は基準値(50%)以下とならず、出力劣化係数しか更新されないことになる。その結果、容量劣化係数の値は100%を維持したままとなり、正確な電池特性が算出できないという欠点があった。
【0007】
本発明の目的は、電池が容量劣化係数50%未満に容量劣化しているときに、電池制御装置が新品のものと交換された場合でも、正確な電池特性を算出することができる電池特性算出方法および電池制御装置を提供することにある。
【0008】
【課題を解決するための手段】
発明の実施の形態を示す図1および図8に対応付けて説明する。
(1)請求項1に発明は、2次電池11の放電深度が基準値(50%)未満のときに、2次電池11の初期内部抵抗と劣化時内部抵抗とのパーセント比で表される出力劣化係数Bを学習演算するとともに、放電深度が基準値(50%)以上のときに、2次電池11の劣化時放電電力量と初期放電電力量とのパーセント比で表される容量劣化係数Aを学習演算し、学習演算された出力劣化係数Bおよび容量劣化係数Aに基づいて、2次電池11の初期電池特性f0を補正して劣化時の電池特性fを算出する2次電池11の電池特性算出方法に適用される。そして、1乃至2回の充放電で2次電池の容量劣化係数が学習演算可能な出力劣化係数値および容量劣化係数値を設定し、容量劣化係数Aが100%で、かつ、出力劣化係数Bが出力劣化係数値(60%)となったならば、そのときの放電深度に関わらず容量劣化係数Aを100%から容量劣化係数値(60%)へと変更することにより上述の目的を達成する。
(2)請求項2の発明では、請求項1に記載の電池特性算出方法において、容量劣化係数値を60%とした。
(3)請求項3の発明では、請求項1または請求項2に記載の電池特性算出方法において、出力劣化係数値を60%とした。
(4)請求項4の発明の電池制御装置は、2次電池11で電動機13を駆動する電気車に搭載され、2次電池11を制御する電池制御装置16であって、2次電池11の初期電池特性f0が予め記憶されていて、2次電池11の電池特性を請求項1〜請求項3のいずれかに記載の電池特性算出方法により算出し、その算出した電池特性に基づいて2次電池11を制御することにより上述の目的を達成する。
【0009】
なお、本発明の構成を説明する上記課題を解決するための手段の項では、本発明を分かり易くするために発明の実施の形態の図を用いたが、これにより本発明が発明の実施の形態に限定されるものではない。
【0010】
【発明の効果】
本発明によれば、容量劣化係数が100%で、かつ、出力劣化係数が所定の出力劣化係数値となったならば、そのときの放電深度に関わらず容量劣化係数は100%から所定の容量劣化係数値へと変更される。その結果、例えば、2次電池の容量劣化係数が50%未満であるときに、算出された容量劣化係数や出力劣化係数が記憶される電池制御装置が、容量劣化係数および出力劣化係数が共に100%に設定されている新品の電池制御装置と交換されても、充放電によって、容量劣化係数は100%から電池の実際の容量劣化係数へと近づくように演算される。
特に、請求項2の発明のように、所定の容量劣化係数値を60%と設定したり、請求項3の発明のように、所定の出力劣化係数値を60%と設定することにより、1,2回の充放電で正確な容量劣化係数を素早く演算することができる。
【0011】
【発明の実施の形態】
以下、図1〜図9を参照して本発明の実施の形態を説明する。図1は、本発明による電池特性算出方法を適用した電気自動車の走行駆動機構の構成を示すブロック図である。2次電池11はインバータ12に直流電力を供給し、インバータ12は直流電力を交流電力に変換してモータ13を駆動し、走行エネルギーを発生させる。回生時には車両の走行エネルギーがモータ13およびインバータ12を介して電気エネルギーに逆変換され、電池11が充電されるとともに車両に回生ブレーキがかかる。電圧センサ14は電池11の両端電圧Vを検出し、電流センサ15は電池11に流れる電流Iを検出する。18は電池11の温度Tを検出する温度センサである。
【0012】
電池制御装置であるバッテリーコントローラ16は、電圧センサ14,電流センサ15および温度センサ18により検出された電圧V,電流Iおよび温度Tに基づいて、後述するように電池特性を演算するとともに、その演算結果に基づいて電池11の残存容量の算出や、インバータ12の出力制御や回生制御などを行なう。セルコントローラ17は、電池11を構成する各単セル111〜11nを管理コントロールする装置であり、各単セル111〜11nの端子電圧を検出したり、各単セル111〜11nの充放電制御を行ったりする。
【0013】
次に、バッテリーコントローラ16で行われる、2次電池11の初期特性に対する出力劣化補正および容量劣化補正について説明する。図2は、電池11の放電電力量(Wh)と出力P(パワー演算値P)(W)との関係「放電電力量−出力特性」を示したものである。「放電電力量−出力特性」は放電電力量=f(P)のように表すことができ、図2のf0は電池が新品の時の初期特性を示し、f3は電池が劣化したときの特性である。なお、走行時に得られるパワー演算値Pの測定方法もしくは演算方法は周知でありここでは説明を省略するが、パワー演算値Pは車両システムの最低電圧を保証できる電池の放電可能パワーを表す。
【0014】
容量劣化係数Aおよび出力劣化係数Bは初期時の値を100としたパーセンテージで表されるが、初期値を1として表した容量劣化係数β(=A/100)、出力劣化係数γ(=B/100)を用いると、図2に示した劣化時特性f3(P)は、初期特性f0(P)を次のように補正することにより求めることができる。
【数1】
3(P)=β・f0(P/γ) …(1)
すなわち、容量劣化に対しては、f1(P)=f0(P/γ)のように補正し、出力劣化に対してはf2(P)=β・f0(P)のように補正する。
【0015】
(出力劣化係数Bの演算方法)
出力劣化係数B(またはγ)は内部抵抗に比例するパラメータであり、この内部抵抗の変化に伴って、放電時のIV特性は図3(a)のように変化する。図3(a)において、L0は初期時の特性を、L1は劣化時の特性をそれぞれ示したものである。これらのIV特性は、走行時の電池11の電流変化を捉えて電流Iおよび電圧Vをサンプリングし、そのI,Vから一次回帰演算することにより得られる。IV特性直線の傾きは電池11の内部抵抗を表しており、特性直線L1から劣化時内部抵抗Rが得られる。一方、初期時の内部抵抗R0の値は、バッテリーコントローラ16に記憶されており、次式(2)により出力劣化係数Bが算出される。
【数2】
B=(R0/R)×100 (%) …(2)
【0016】
また、電池11の内部抵抗は放電深度(DOD)に応じて図3(b)のように変化する。図3(b)において、L10は電池初期時の抵抗R0を示し、L11は劣化時の抵抗Rを示している。内部抵抗R0,Rは、放電深度(DOD)が0〜50%の範囲であれば一定値を示すという特性を有している。そのため、より正確な出力劣化係数Bが得られるように、出力劣化係数Bの学習演算は、放電深度(DOD)が0〜50%のときに行うようにする。
【0017】
(容量劣化係数Aの演算方法)
図4(a)のf0は、図2の場合と同様に電池初期時の「放電電力量−出力特性」を表しており、この初期特性f0はバッテリーコントローラ16に記憶されている。次に、容量劣化係数Aの算出方法を説明するが、実際の電池特性は図4のf1であるとして考える。車両走行時に、出力P(パワー演算値P)が得られ、その時までの放電量電力量Whが得られたとする。当然ながら、座標(Wh,P)は電池特性f1上にある。一方、初期特性f0に基づく出力Pのときの初期放電量Wh0は、図4(a)のようにバッテリーコントローラ16に記憶されている初期特性f0から算出される。このようにして得られた値Wh,Wh0から、次式(3)により容量劣化係数Aが算出される。
【数3】
A=(Wh/Wh0)×100 (%) …(3)
【0018】
上述した容量劣化演算における、出力Pの放電深度(DOD)に対する演算精度は、図4(b)に示すように、放電深度(DOD)が浅い状態(パーセンテージが小さい状態)ほど誤差|±ΔP|が大きくなる。そのため、より正確な初期放電量Wh0を算出して精度の高い容量劣化係数Aを演算するためには、出力Pの演算精度の高い放電深度(DOD)領域で演算を行わなければならない。そこで、容量劣化係数Aの学習演算は、放電深度(DOD)が50〜100%の範囲のときに行う。
【0019】
なお、電池11の「放電電力量−出力特性」は電池温度により変化し、それは内部抵抗の変化として表される。すなわち、温度補正係数をαとすれば、f(P)=f0(P/α)、と補正され、この温度補正された特性に対して上述の容量劣化補正および出力劣化補正が行われる。上述した初期特性f0を温度補正後の特性であるとみなせば、上述した議論がそのまま成り立つので、ここでは、温度補正に関しての説明は省略する。このパラメータαは、温度に応じたテーブル参照値としてバッテリーコントローラ16に記憶されている。また、上述した特性fは、必ずしもf(P)のように出力Pの関数(例えば、Pのn次式で近似した式)で表す必要はなく、例えば、出力Pと放電電力量の関係をテーブルとして持てば、補間計算を用いることによって上述したものと同様の演算を行うことができる。
【0020】
ところで、従来の電池特性演算方法では、上述した容量劣化演算および出力劣化演算を図5に示すような手順で行っていた。ステップS1は電池の放電深度(DOD)が50%以上であるか否かを判断するステップであり、DOD≧50%と判断されるとステップS2へ進んで容量劣化係数Aの演算を行い、DOD<50%と判断されるとステップS3へ進んで出力劣化係数Bの演算を行う。ステップS2またはステップS3の処理を終了したならば、ステップS1へ戻る。すなわち、DOD≧50%となった時に初めて容量劣化係数Aの演算が行われる。そのため、図6のf4のように電池の容量劣化係数Aが50%未満に容量劣化しているときに、今まで使用していたバッテリーコントローラ16を新品のバッテリーコントローラと交換した場合は、以下のような不具合が生じる。
【0021】
図6において、一点鎖線で示すラインは、新品のバッテリーコントローラ(B/C)に交換した後の放電深度(DOD)=50%を示している。すなわち、バッテリーコントローラ交換直後の電池特性は初期特性f0となっており、初期特性f0から得られる電池容量(P=0のときの放電電力量)の半分まで放電した状態が放電深度(DOD)=50%に相当する。図5のステップS3で出力劣化係数Bの演算が行われる度に出力劣化係数Bは真の値(特性f4の出力劣化係数Bの値)に近づき、電池特性はf11,f12のように変化する。この段階では、まだ容量劣化演算は行われないので、容量劣化係数Aは新品のバッテリーコントローラに記憶されているA=100%のままであり、放電深度(DOD)=50%のラインは図6の一点鎖線に示す位置を保ったままである。
【0022】
そのため、電池11の放電が終了した段階の特性f13においても、計算上の放電深度(DOD)は50%より小さな状態を保っており、図5のステップS2に進まないまま放電終了となってしまい、容量劣化演算が行われない。そのため、得られる電池特性f13は実際の特性fと異なってしまうという欠点があった。
【0023】
本実施の形態の電池特性演算方法では、このような欠点を解消すべく、図7に示すような手順で容量劣化演算および出力劣化演算を行うようにした。図7のステップS11は電池の放電深度(DOD)が50%以上であるか否かを判断するステップであり、DOD<50%と判断されるとステップS12へ進んで出力劣化係数Bの演算を行い、DOD≧50%と判断されるとステップS13へ進む。ステップS13は、電池の出力劣化係数Bが60%以下で、かつ、容量劣化係数Aが100%であるか否かを判断するステップであり、yesと判断されるとステップS14に進んで容量劣化係数Aを60%に設定し、noと判断されるとステップS15へ進む。ステップS15は上述したステップS11と同様の判断を行うステップであり、DOD<50%と判断されるとステップS12へ戻り、DOD≧50%と判断されるとステップS16へ進んで容量劣化係数Aの演算を行った後にステップS11へ戻る。
【0024】
図7に示す手順を、具体的な例を用いて説明する。図8の特性fは、容量劣化係数A=50%,出力劣化係数B=50%に劣化した電池の「放電電力−出力特性」を示したものである。図8において、横軸は放電電力量(Wh)および初期特性に基づいて算出される放電深度(DOD)(電池初期DODと記す)を表しており、縦軸は容量劣化係数A、出力劣化係数Bおよび、次々と算出される電池特性に基づいた放電深度(DOD)を表している。すなわち、破線L20は電池初期DODに対する実際の放電深度の変化を示したものであり、一点鎖線L(A)は繰り返し行われる容量劣化演算による容量劣化係数Aの変化を、実線L(B)は繰り返し行われる出力劣化演算による出力劣化係数Bの変化をそれぞれ示したものである。
【0025】
劣化した電池11に対して、バッテリーコントローラ16を新品のものと交換すると、新品のバッテリーコントローラはA=B=100%と設定されている。このときの電池11の放電深度を0%(満充電状態)として考えると、交換直後は、図7のステップS11からステップS12へ進んだ後、ステップS12→ステップS13→ステップS15→ステップS12の処理を繰り返す。この段階では、ステップS12の出力劣化係数Bの演算を行う度に、図8のL(B)のように出力劣化係数Bは100%から減少する。一方、容量劣化係数AはA=100%のまま推移する。
【0026】
電池初期DODが10%になると出力劣化係数Bは60%に等しくなるので、図7のステップS13からステップS14へ進んで容量劣化係数Aが60%に設定され、図8の一点鎖線L(A)は60%へと変化する。なお、放電深度(DOD)は、電流Iおよび電圧Vから積算される電力積算値(Wh)と電池特性から推定される電池容量(Wh)との比をパーセンテージで表したものである。すなわち、図8において、放電深度0〜10%までは初期特性f0に基づいて放電深度(DOD)が算出されるが、電池初期DOD=10%になって容量劣化係数Aが100%から60%へとシフトすると、A=B=60%の電池特性(不図示)に基づいて放電深度(DOD)が算出されるようになる。
【0027】
新たに得られたこの電池特性に基づく電池容量は初期特性のものより小さく推定されるので、電池初期DOD=10%において放電深度(DOD)が急激に変化し、図8では40%に増加する。その後は、再びステップS12へと戻った後、放電深度(DOD)が50%以上となるまで、ステップS12→ステップS13→ステップS15→ステップS12の処理を繰り返し、出力劣化係数Bは真の値(50%)へとさらに近づく。
【0028】
次いで、放電深度(DOD)=50%となったときには、図7のステップS15からステップS16へ進んで、容量劣化係数Aの演算が行われる。その後、放電が進み放電深度(DOD)≧50%となるので、ステップS11→ステップS13→ステップS15→ステップS16→ステップS11の処理を繰り返し行い、容量劣化係数Aは真の値(50%)へとさらに近づく。
【0029】
図9は、電池の容量劣化係数Aおよび出力劣化係数BがそれぞれA=75%、B=40%の場合について、L20,L(A),L(B)の変化を示したものである。この場合、容量劣化係数Aは、出力劣化係数B=60%で100%から60%にシフトした後、放電深度(DOD)≧50%(縦軸)における容量劣化演算により60%から70%(真の値)へと増加する。
【0030】
このように、図7の手順に従って電池特性を算出すれば、電池11の容量劣化係数Aが50%未満に容量劣化しているときに、新品のバッテリーコントローラと交換した場合であっても、電池特性を精度良く演算することができる。容量劣化係数Aが100%から60%へとシフトするタイミングを出力劣化係数B=60%とした理由は、容量劣化係数Aが約35%〜100%に劣化した電池においても、充放電を1回若しくは2回行う間に、正確な容量劣化係数Aを素早く演算することが可能になるためである。このことは、容量劣化係数Aを60%へシフトさせる理由でもある。
【0031】
例えば、容量劣化係数Aを100%→80%とシフトさせた場合、このときの放電深度(DOD)の変化は図8の場合より小さなものとなる。その結果、その後、放電深度(DOD)が50%となるまでにはかなりの時間を要することになり、上述したように正確な容量劣化係数Aを素早く演算することができなくなる。また、容量劣化係数Aと出力劣化係数Bとは、一般的にA≒Bのように劣化するが、図9に示したように、A≒Bでない特性をもった電池であっても1回若しくは2回の充放電により容量劣化係数Aを学習演算できる。
【図面の簡単な説明】
【図1】本発明による電池特性算出方法を適用した電気自動車の走行駆動機構の構成を示すブロック図。
【図2】電池11の「放電電力量−出力特性」を示す図。
【図3】出力劣化演算を説明する図であり、(a)は電池11のIV特性を示し、(b)は放電深度(DOD)に対する内部抵抗の変化を示す。
【図4】容量劣化演算を説明する図であり、(a)は「放電電力量−出力特性」を示し、(b)は出力Pの誤差と放電深度(DOD)との関係を示す。
【図5】従来の電池特性演算方法における、演算手順を示すフローチャート。
【図6】従来の電池特性演算方法において、バッテリーコントローラを新品のものに交換した場合を説明する図。
【図7】本発明による電池特性演算方法における、演算手順を示すフローチャート。
【図8】図7の演算手順の第1の具体例を説明する図。
【図9】図7の演算手順の第2の具体例を説明する図。
【符号の説明】
11 2次電池
13 モータ
14 電圧センサ
15 電流センサ
16 バッテリーコントローラ
17 セルコントローラ
18 温度センサ
111〜11n 単セル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a battery characteristic calculation method for a secondary battery used in an electric vehicle such as an electric vehicle, and a battery control device for the secondary battery.
[0002]
[Prior art]
A secondary battery for driving a motor is mounted on an electric vehicle (EV) or a hybrid vehicle (HEV). The battery characteristics of the secondary battery are generally expressed by “discharge power amount-output characteristics” indicating the relationship between the discharge power amount and the output. As the battery characteristics at the time of deterioration of the secondary battery (battery characteristics at the time of deterioration), those obtained by correcting the characteristics when the battery is new (initial battery characteristics) with the output deterioration coefficient and the capacity deterioration coefficient are used. As such a correction method, there are methods disclosed in Japanese Patent Laid-Open Nos. 10-289734 and 11-55802.
[0003]
Since the output deterioration coefficient is accurately obtained when the depth of discharge (DOD) is 0 to 50%, the output deterioration calculation is performed when the depth of discharge (DOD) is in the range of 0 to 50%. On the other hand, since the capacity deterioration coefficient is accurately obtained when the depth of discharge (DOD) is 50 to 100%, the capacity deterioration calculation is performed when the depth of discharge (DOD) is in the range of 50 to 100%. . In each deterioration calculation, when the calculation is repeated, a so-called learning calculation is performed to calculate the next new deterioration coefficient based on the previously determined deterioration coefficient, and an accurate output deterioration coefficient and capacity deterioration coefficient are calculated. Is calculated promptly.
[0004]
[Problems to be solved by the invention]
By the way, the calculation as described above is performed by a battery control device (referred to as a battery controller) that controls the secondary battery, and the calculated deterioration coefficients are stored in the battery controller. The output deterioration coefficient and the capacity deterioration coefficient are expressed as a percentage where the value when the battery is new is 100, and the battery controller when the battery is new stores 100% as the values of the output deterioration coefficient and the capacity deterioration coefficient. For this reason, when the battery controller is replaced with a new one, the initial characteristics using the value of 100% stored in the battery controller are initially stored in the battery controller regardless of the deterioration state of the battery. Is considered a characteristic of
[0005]
Then, when the discharge depth (DOD) = 0% to 50%, the output deterioration coefficient is learned, and then, when the discharge depth (DOD) = 50% to 100%, the capacity deterioration coefficient is calculated. A learning operation is performed. As a result, the battery characteristics approach the actual battery characteristics from the initial characteristics. Here, the depth of discharge is calculated based on the battery characteristics that are updated one after another, but the reference value (DOD) = 50% of the depth of discharge (DOD) at which the calculation of the capacity deterioration coefficient starts is calculated with the initial characteristics. This is the value when
[0006]
However, if the battery has a capacity deterioration coefficient of less than 50% and is replaced with a new battery controller, the calculated depth of discharge (DOD) even if the battery is discharged until it is discharged. Is not less than the reference value (50%), and only the output deterioration coefficient is updated. As a result, the capacity degradation coefficient value remains 100%, and there is a drawback that accurate battery characteristics cannot be calculated.
[0007]
An object of the present invention is to calculate battery characteristics that can accurately calculate battery characteristics even when the battery control device is replaced with a new one when the capacity of the battery has deteriorated to less than 50%. It is to provide a method and a battery control device.
[0008]
[Means for Solving the Problems]
The embodiment of the invention will be described with reference to FIGS.
(1) The invention according to claim 1 is expressed as a percentage ratio between the initial internal resistance of the secondary battery 11 and the internal resistance during deterioration when the discharge depth of the secondary battery 11 is less than the reference value (50%). The capacity deterioration coefficient expressed by a percentage ratio between the discharge power amount at the time of deterioration of the secondary battery 11 and the initial discharge power amount when the output deterioration coefficient B is learned and calculated and the discharge depth is equal to or greater than the reference value (50%). learning calculation of a, based on the learning calculation output degradation coefficient B and the capacity deterioration coefficient a, the secondary battery 11 of the initial battery characteristics f0 secondary battery 11 for calculating the battery characteristics f during correction to degrade the Applied to battery characteristic calculation method. Then, an output deterioration coefficient value and a capacity deterioration coefficient value at which the capacity deterioration coefficient of the secondary battery can be learned and calculated by one or two charge / discharge operations are set, the capacity deterioration coefficient A is 100%, and the output deterioration coefficient B When the output deterioration coefficient value (60%) is reached, the above-mentioned object is achieved by changing the capacity deterioration coefficient A from 100% to the capacity deterioration coefficient value (60%) regardless of the depth of discharge at that time. To do.
(2) In the invention of claim 2, in the battery characteristic calculation method of claim 1, the capacity deterioration coefficient value is set to 60%.
(3) In the invention of claim 3, in the battery characteristic calculation method of claim 1 or 2, the output deterioration coefficient value is set to 60%.
(4) The battery control device of the invention of claim 4 is a battery control device 16 that is mounted on an electric vehicle that drives the electric motor 13 by the secondary battery 11 and controls the secondary battery 11. The initial battery characteristic f0 is stored in advance, the battery characteristic of the secondary battery 11 is calculated by the battery characteristic calculation method according to any one of claims 1 to 3, and the secondary battery is calculated based on the calculated battery characteristic. The above object is achieved by controlling the battery 11.
[0009]
In the section of the means for solving the above-described problems for explaining the configuration of the present invention, the drawings of the embodiments of the invention are used for easy understanding of the present invention. The form is not limited.
[0010]
【The invention's effect】
According to the present invention, if the capacity deterioration coefficient is 100% and the output deterioration coefficient reaches a predetermined output deterioration coefficient value, the capacity deterioration coefficient is from 100% to a predetermined capacity regardless of the depth of discharge at that time. Changed to deterioration factor value. As a result, for example, when the capacity deterioration coefficient of the secondary battery is less than 50%, the battery control device that stores the calculated capacity deterioration coefficient and the output deterioration coefficient has both the capacity deterioration coefficient and the output deterioration coefficient of 100. Even when the battery is replaced with a new battery control device set to%, the capacity deterioration coefficient is calculated so as to approach the actual capacity deterioration coefficient of the battery from 100% by charging and discharging.
In particular, by setting the predetermined capacity deterioration coefficient value as 60% as in the invention of claim 2 or by setting the predetermined output deterioration coefficient value as 60% as in the invention of claim 3, 1 , Accurate capacity degradation coefficient can be quickly calculated by two charge / discharge cycles.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a block diagram showing a configuration of a traveling drive mechanism of an electric vehicle to which a battery characteristic calculation method according to the present invention is applied. The secondary battery 11 supplies direct current power to the inverter 12, and the inverter 12 converts the direct current power into alternating current power to drive the motor 13 to generate travel energy. During regeneration, the running energy of the vehicle is reversely converted into electric energy via the motor 13 and the inverter 12, and the battery 11 is charged and a regenerative brake is applied to the vehicle. The voltage sensor 14 detects the voltage V across the battery 11, and the current sensor 15 detects the current I flowing through the battery 11. Reference numeral 18 denotes a temperature sensor that detects the temperature T of the battery 11.
[0012]
The battery controller 16 that is a battery control device calculates battery characteristics based on the voltage V, current I, and temperature T detected by the voltage sensor 14, current sensor 15, and temperature sensor 18, as will be described later. Based on the result, the remaining capacity of the battery 11 is calculated, and output control and regenerative control of the inverter 12 are performed. The cell controller 17 is a device that manages and controls each of the single cells 111 to 11n constituting the battery 11, detects the terminal voltage of each of the single cells 111 to 11n, and performs charge / discharge control of each of the single cells 111 to 11n. Or
[0013]
Next, output deterioration correction and capacity deterioration correction for the initial characteristics of the secondary battery 11 performed by the battery controller 16 will be described. FIG. 2 shows the relationship “discharge power amount-output characteristics” between the discharge power amount (Wh) of the battery 11 and the output P (power calculation value P) (W). “Discharge power amount-output characteristics” can be expressed as discharge power amount = f (P), where f 0 in FIG. 2 indicates initial characteristics when the battery is new, and f 3 is when the battery is deteriorated. It is a characteristic. Note that although the measurement method or calculation method of the power calculation value P obtained during traveling is well known and will not be described here, the power calculation value P represents the dischargeable power of the battery that can guarantee the minimum voltage of the vehicle system.
[0014]
The capacity deterioration coefficient A and the output deterioration coefficient B are expressed as percentages with the initial value being 100, but the capacity deterioration coefficient β (= A / 100) and the output deterioration coefficient γ (= B / 100), the deterioration characteristic f 3 (P) shown in FIG. 2 can be obtained by correcting the initial characteristic f 0 (P) as follows.
[Expression 1]
f 3 (P) = β · f 0 (P / γ) (1)
That is, the capacity deterioration is corrected as f 1 (P) = f 0 (P / γ), and the output deterioration is corrected as f 2 (P) = β · f 0 (P). to correct.
[0015]
(Calculation method of output degradation coefficient B)
The output deterioration coefficient B (or γ) is a parameter proportional to the internal resistance, and the IV characteristic during discharge changes as shown in FIG. In FIG. 3A, L0 indicates the characteristics at the initial stage, and L1 indicates the characteristics at the time of deterioration. These IV characteristics are obtained by capturing the current change of the battery 11 during traveling, sampling the current I and the voltage V, and performing a linear regression calculation from the I and V. The slope of the IV characteristic line represents the internal resistance of the battery 11, and the deterioration-time internal resistance R is obtained from the characteristic line L1. On the other hand, the initial value of the internal resistance R0 is stored in the battery controller 16, and the output deterioration coefficient B is calculated by the following equation (2).
[Expression 2]
B = (R0 / R) × 100 (%) (2)
[0016]
Further, the internal resistance of the battery 11 changes as shown in FIG. 3B according to the depth of discharge (DOD). In FIG. 3B, L10 indicates the resistance R0 at the initial stage of the battery, and L11 indicates the resistance R at the time of deterioration. The internal resistances R0 and R have a characteristic of showing a constant value when the depth of discharge (DOD) is in the range of 0 to 50%. Therefore, in order to obtain a more accurate output deterioration coefficient B, the learning calculation of the output deterioration coefficient B is performed when the depth of discharge (DOD) is 0 to 50%.
[0017]
(Calculation method of capacity degradation coefficient A)
As shown in FIG. 2, f 0 in FIG. 4A represents the “discharge power amount-output characteristic” at the initial stage of the battery, and this initial characteristic f 0 is stored in the battery controller 16. Next, a method for calculating the capacity deterioration coefficient A will be described. It is assumed that the actual battery characteristic is f 1 in FIG. It is assumed that an output P (power calculation value P) is obtained when the vehicle travels, and the amount of electric power Wh discharged until that time is obtained. Of course, the coordinates (Wh, P) are on the battery characteristic f 1 . On the other hand, the initial discharge capacity Wh0 when the output P based on the initial characteristics f 0 is calculated from the initial characteristic f 0 stored in the battery controller 16 as shown in FIG. 4 (a). From the values Wh and Wh0 thus obtained, the capacity deterioration coefficient A is calculated by the following equation (3).
[Equation 3]
A = (Wh / Wh0) × 100 (%) (3)
[0018]
In the capacity deterioration calculation described above, the calculation accuracy for the output depth P of the discharge P (DOD) is, as shown in FIG. 4B, the error | ± ΔP | as the discharge depth (DOD) is shallower (the percentage is smaller). Becomes larger. Therefore, in order to calculate the more accurate initial discharge amount Wh0 and calculate the capacity deterioration coefficient A with high accuracy, the calculation must be performed in the discharge depth (DOD) region where the calculation accuracy of the output P is high. Therefore, the learning calculation of the capacity deterioration coefficient A is performed when the depth of discharge (DOD) is in the range of 50 to 100%.
[0019]
The “discharge power amount—output characteristic” of the battery 11 varies depending on the battery temperature, which is expressed as a change in internal resistance. That is, if the temperature correction coefficient is α, f (P) = f 0 (P / α) is corrected, and the above-described capacity deterioration correction and output deterioration correction are performed on the temperature-corrected characteristics. If the above-described initial characteristic f 0 is regarded as a characteristic after temperature correction, the above-mentioned argument is maintained as it is, and thus the description regarding temperature correction is omitted here. The parameter α is stored in the battery controller 16 as a table reference value corresponding to the temperature. Further, the above-described characteristic f is not necessarily expressed by a function of the output P (for example, an expression approximated by an nth-order expression of P) like f (P). For example, the relationship between the output P and the discharge power amount If it is held as a table, the same calculation as described above can be performed by using interpolation calculation.
[0020]
Incidentally, in the conventional battery characteristic calculation method, the above-described capacity deterioration calculation and output deterioration calculation are performed according to the procedure shown in FIG. Step S1 is a step for determining whether or not the depth of discharge (DOD) of the battery is 50% or more. When it is determined that DOD ≧ 50%, the routine proceeds to step S2 where the capacity deterioration coefficient A is calculated and DOD is calculated. If it is determined that <50%, the routine proceeds to step S3, where the output deterioration coefficient B is calculated. If the process of step S2 or step S3 is complete | finished, it will return to step S1. That is, the capacity deterioration coefficient A is calculated only when DOD ≧ 50%. Therefore, when the capacity deterioration coefficient A of the battery has deteriorated to less than 50% as shown by f 4 in FIG. 6, the battery controller 16 used so far is replaced with a new battery controller. The following problems occur.
[0021]
In FIG. 6, the line indicated by the alternate long and short dash line indicates the depth of discharge (DOD) = 50% after replacement with a new battery controller (B / C). That is, the battery characteristic immediately after the battery controller replacement is the initial characteristic f 0, and the state where the battery is discharged to half of the battery capacity (discharged electric energy when P = 0) obtained from the initial characteristic f 0 is the depth of discharge (DOD ) = 50%. Each time the output deterioration coefficient B is calculated in step S3 of FIG. 5, the output deterioration coefficient B approaches a true value (value of the output deterioration coefficient B of the characteristic f 4 ), and the battery characteristics are f 11 and f 12 . To change. At this stage, the capacity deterioration calculation is not performed yet, so the capacity deterioration coefficient A remains A = 100% stored in the new battery controller, and the line with the depth of discharge (DOD) = 50% is shown in FIG. The position indicated by the alternate long and short dash line is maintained.
[0022]
Therefore, even at the stage of characteristics f 13 the discharge is completed the battery 11, calculated on the depth of discharge (DOD) is kept smaller than that 50%, become discharge end remains not proceed to step S2 of FIG. 5 Therefore, the capacity deterioration calculation is not performed. For this reason, the obtained battery characteristic f 13 is different from the actual characteristic f 4 .
[0023]
In the battery characteristic calculation method of the present embodiment, the capacity deterioration calculation and the output deterioration calculation are performed according to the procedure shown in FIG. 7 in order to eliminate such drawbacks. Step S11 in FIG. 7 is a step for determining whether or not the depth of discharge (DOD) of the battery is 50% or more. If it is determined that DOD <50%, the process proceeds to step S12 to calculate the output deterioration coefficient B. If it is determined that DOD ≧ 50%, the process proceeds to step S13. Step S13 is a step of determining whether or not the battery output deterioration coefficient B is 60% or less and the capacity deterioration coefficient A is 100%. If the determination is yes, the process proceeds to step S14 and the capacity deterioration is performed. The coefficient A is set to 60%, and if NO is determined, the process proceeds to step S15. Step S15 is a step for making the same determination as in step S11 described above. When it is determined that DOD <50%, the process returns to step S12. When it is determined that DOD ≧ 50%, the process proceeds to step S16 and the capacity deterioration coefficient A is determined. After performing the calculation, the process returns to step S11.
[0024]
The procedure shown in FIG. 7 will be described using a specific example. The characteristic f in FIG. 8 shows the “discharge power-output characteristic” of a battery deteriorated to a capacity deterioration coefficient A = 50% and an output deterioration coefficient B = 50%. In FIG. 8, the horizontal axis represents the discharge power amount (Wh) and the discharge depth (DOD) calculated based on the initial characteristics (referred to as battery initial DOD), and the vertical axis represents the capacity deterioration coefficient A and the output deterioration coefficient. B and the depth of discharge (DOD) based on the battery characteristics calculated one after another are shown. That is, the broken line L20 shows the change in the actual discharge depth with respect to the battery initial DOD, the alternate long and short dash line L (A) shows the change in the capacity deterioration coefficient A due to repeated capacity deterioration calculation, and the solid line L (B) shows The change of the output degradation coefficient B by the output degradation calculation performed repeatedly is each shown.
[0025]
When the battery controller 16 is replaced with a new one for the deteriorated battery 11, the new battery controller is set to A = B = 100%. Assuming that the discharge depth of the battery 11 at this time is 0% (fully charged state), immediately after replacement, the process proceeds from step S11 to step S12 in FIG. 7, and then the process of step S12 → step S13 → step S15 → step S12. repeat. At this stage, every time the output deterioration coefficient B is calculated in step S12, the output deterioration coefficient B decreases from 100% as indicated by L (B) in FIG. On the other hand, the capacity deterioration coefficient A remains unchanged at A = 100%.
[0026]
When the battery initial DOD becomes 10%, the output deterioration coefficient B becomes equal to 60%. Therefore, the process proceeds from step S13 in FIG. 7 to step S14, the capacity deterioration coefficient A is set to 60%, and the one-dot chain line L (A ) Changes to 60%. The depth of discharge (DOD) is a percentage of the ratio between the integrated power value (Wh) integrated from the current I and voltage V and the battery capacity (Wh) estimated from the battery characteristics. That is, in FIG. 8, the discharge depth (DOD) is calculated based on the initial characteristic f0 from 0 to 10% of the discharge depth, but the battery initial DOD = 10% and the capacity deterioration coefficient A is 100% to 60%. When the shift is made, the depth of discharge (DOD) is calculated based on the battery characteristics (not shown) of A = B = 60%.
[0027]
Since the battery capacity based on the newly obtained battery characteristics is estimated to be smaller than that of the initial characteristics, the depth of discharge (DOD) changes rapidly at the initial battery DOD = 10% and increases to 40% in FIG. . Thereafter, after returning to step S12 again, the process of step S12 → step S13 → step S15 → step S12 is repeated until the depth of discharge (DOD) reaches 50% or more, and the output deterioration coefficient B is a true value ( 50%).
[0028]
Next, when the depth of discharge (DOD) = 50%, the routine proceeds from step S15 to step S16 in FIG. 7, and the capacity deterioration coefficient A is calculated. Thereafter, the discharge progresses and the depth of discharge (DOD) ≧ 50%, so the process of Step S11 → Step S13 → Step S15 → Step S16 → Step S11 is repeated, and the capacity deterioration coefficient A becomes a true value (50%). And get closer.
[0029]
FIG. 9 shows changes in L20, L (A), and L (B) when the battery capacity deterioration coefficient A and the output deterioration coefficient B are A = 75% and B = 40%, respectively. In this case, after the capacity deterioration coefficient A is shifted from 100% to 60% when the output deterioration coefficient B = 60%, the capacity deterioration coefficient is calculated from 60% to 70% by the capacity deterioration calculation at the depth of discharge (DOD) ≧ 50% (vertical axis). To true value).
[0030]
Thus, if the battery characteristics are calculated according to the procedure of FIG. 7, when the capacity deterioration coefficient A of the battery 11 is less than 50%, even if the battery is replaced with a new battery controller, the battery The characteristics can be calculated with high accuracy. The reason why the capacity deterioration coefficient A is shifted from 100% to 60% is set to the output deterioration coefficient B = 60% even when the capacity deterioration coefficient A is deteriorated to about 35% to 100%. This is because it is possible to quickly calculate the accurate capacity deterioration coefficient A once or twice. This is also the reason for shifting the capacity deterioration coefficient A to 60%.
[0031]
For example, when the capacity deterioration coefficient A is shifted from 100% to 80%, the change in the depth of discharge (DOD) at this time is smaller than that in the case of FIG. As a result, after that, a considerable time is required until the depth of discharge (DOD) reaches 50%, and the accurate capacity deterioration coefficient A cannot be quickly calculated as described above. Further, the capacity deterioration coefficient A and the output deterioration coefficient B are generally deteriorated as A≈B. However, as shown in FIG. Alternatively, the capacity deterioration coefficient A can be learned and calculated by charging and discharging twice.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a traveling drive mechanism of an electric vehicle to which a battery characteristic calculation method according to the present invention is applied.
FIG. 2 is a view showing “discharge power amount-output characteristics” of a battery 11;
FIGS. 3A and 3B are diagrams for explaining output deterioration calculation, in which FIG. 3A shows the IV characteristics of the battery 11 and FIG. 3B shows the change in internal resistance with respect to the depth of discharge (DOD);
FIGS. 4A and 4B are diagrams for explaining a capacity deterioration calculation, where FIG. 4A shows “discharge power amount-output characteristics”, and FIG. 4B shows a relationship between an error in output P and a discharge depth (DOD);
FIG. 5 is a flowchart showing a calculation procedure in a conventional battery characteristic calculation method.
FIG. 6 is a diagram for explaining a case where a battery controller is replaced with a new one in a conventional battery characteristic calculation method.
FIG. 7 is a flowchart showing a calculation procedure in the battery characteristic calculation method according to the present invention.
FIG. 8 is a diagram for explaining a first specific example of the calculation procedure of FIG. 7;
FIG. 9 is a diagram for explaining a second specific example of the calculation procedure of FIG. 7;
[Explanation of symbols]
11 Secondary battery 13 Motor 14 Voltage sensor 15 Current sensor 16 Battery controller 17 Cell controller 18 Temperature sensors 111 to 11n Single cell

Claims (4)

2次電池の放電深度が基準値未満のときに、前記2次電池の初期内部抵抗と劣化時内部抵抗とのパーセント比で表される出力劣化係数を学習演算するとともに、前記放電深度が基準値以上のときに、前記2次電池の劣化時放電電力量と初期放電電力量とのパーセント比で表される容量劣化係数を学習演算し、前記学習演算された出力劣化係数および容量劣化係数に基づいて、前記2次電池の初期電池特性を補正して劣化時の電池特性を算出する2次電池の電池特性算出方法において、
1乃至2回の充放電で前記2次電池の容量劣化係数が学習演算可能な出力劣化係数値および容量劣化係数値を設定し、前記容量劣化係数が100%で、かつ、前記出力劣化係数が前記出力劣化係数値となったならば、前記容量劣化係数を100%から前記容量劣化係数値へと変更することを特徴とする2次電池の電池特性算出方法。
When the discharge depth of the secondary battery is less than a reference value, learning calculation of an output deterioration coefficient expressed as a percentage ratio between the initial internal resistance of the secondary battery and the internal resistance during deterioration is performed, and the discharge depth is the reference value At the time described above, a learning operation is performed for a capacity deterioration coefficient represented by a percentage ratio between the discharge electric energy at the time of deterioration of the secondary battery and the initial discharge electric energy, and the learning is performed based on the output deterioration coefficient and the capacity deterioration coefficient. In the battery characteristic calculation method for the secondary battery, the initial battery characteristic of the secondary battery is corrected to calculate the battery characteristic at the time of deterioration.
An output deterioration coefficient value and a capacity deterioration coefficient value at which the capacity deterioration coefficient of the secondary battery can be learned and calculated by charging and discharging once or twice are set, the capacity deterioration coefficient is 100%, and the output deterioration coefficient is Once a the output degradation coefficient values, battery characteristic calculation method of the secondary battery and changes with the capacity deterioration factor from 100% to the capacity degradation coefficient values.
請求項1に記載の電池特性算出方法において、
前記容量劣化係数値を60%としたことを特徴とする2次電池の電池特性算出方法。
In the battery characteristic calculation method according to claim 1,
A battery characteristic calculation method for a secondary battery, wherein the capacity deterioration coefficient value is 60%.
請求項1または請求項2に記載の電池特性算出方法において、
前記出力劣化係数値を60%としたことを特徴とする2次電池の電池特性算出方法。
In the battery characteristic calculation method according to claim 1 or claim 2,
A battery characteristic calculation method for a secondary battery, wherein the output deterioration coefficient value is 60%.
2次電池で電動機を駆動する電気車に搭載され、前記2次電池を制御する電池制御装置であって、
前記2次電池の初期電池特性が予め記憶されていて、前記2次電池の電池特性を請求項1〜請求項3のいずれかに記載の電池特性算出方法により算出し、その算出した電池特性に基づいて前記2次電池を制御することを特徴とする電池制御装置。
A battery control device that is mounted on an electric vehicle that drives an electric motor with a secondary battery and controls the secondary battery,
The initial battery characteristics of the secondary battery are stored in advance, the battery characteristics of the secondary battery are calculated by the battery characteristics calculation method according to any one of claims 1 to 3, and the calculated battery characteristics are A battery control device for controlling the secondary battery based on the battery control device.
JP2000069124A 2000-03-13 2000-03-13 Battery characteristic calculation method and battery control device Expired - Fee Related JP3879358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000069124A JP3879358B2 (en) 2000-03-13 2000-03-13 Battery characteristic calculation method and battery control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000069124A JP3879358B2 (en) 2000-03-13 2000-03-13 Battery characteristic calculation method and battery control device

Publications (2)

Publication Number Publication Date
JP2001257009A JP2001257009A (en) 2001-09-21
JP3879358B2 true JP3879358B2 (en) 2007-02-14

Family

ID=18588072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000069124A Expired - Fee Related JP3879358B2 (en) 2000-03-13 2000-03-13 Battery characteristic calculation method and battery control device

Country Status (1)

Country Link
JP (1) JP3879358B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4956881B2 (en) * 2001-09-27 2012-06-20 トヨタ自動車株式会社 How to replace an abnormal battery
JP5640344B2 (en) * 2009-09-10 2014-12-17 日産自動車株式会社 Battery control device and battery internal resistance estimation method
JP6225905B2 (en) * 2012-07-31 2017-11-08 パナソニックIpマネジメント株式会社 Control method and control device using the same
CN114019382B (en) * 2021-10-29 2023-08-25 华北电力大学 Method and system for determining service life attenuation of lithium ion battery energy storage power station

Also Published As

Publication number Publication date
JP2001257009A (en) 2001-09-21

Similar Documents

Publication Publication Date Title
JP6822300B2 (en) Charge rate estimation method and in-vehicle battery system
JP4786058B2 (en) Power storage device remaining capacity detection device
JP3879278B2 (en) Charge amount calculation method and charge amount calculation device for hybrid vehicle
JP3571026B2 (en) Pseudo-adaptive method and system for determining state of charge of battery
US10359474B2 (en) Charge state calculation device and charge state calculation method
JP4722976B2 (en) Storage capacity controller
WO2016140148A1 (en) Battery control device and vehicle system
JP2002243813A (en) Arithmetic unit for computing deterioration of capacity of secondary battery
JP2004014205A (en) Detection system of battery abnormality and degradation
JP3543662B2 (en) SOC calculation method for secondary battery for electric vehicle
JP5514822B2 (en) Storage capacity management device
JP3711881B2 (en) Charge / discharge control device
JP5482056B2 (en) Battery pack capacity adjustment device
KR20200075929A (en) Periodic supplementary charging method for battery of vehicle
JP2011209086A (en) Error correction method of current sensor
JP5867373B2 (en) Battery system and method for estimating internal resistance of lithium ion secondary battery
JP3879358B2 (en) Battery characteristic calculation method and battery control device
JP2003134678A (en) Vehicular secondary battery control device
JP2003153452A (en) Arithmetic device for residual capacity of secondary battery
JP4144116B2 (en) Battery charge state detection device
JP3697897B2 (en) Battery capacity meter controller
JP2006025538A (en) State-of-charge estimating method of secondary battery, recording medium for recording program for making computer execute state-of-charge estimating method and battery control system
JP3674465B2 (en) Maximum charge / discharge power calculation device for batteries for electric vehicles
JP3628912B2 (en) Battery charge state detection device
JP3775000B2 (en) Battery remaining capacity calculation method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees